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Immunological Prediction of Cytomegalovirus (CMV) 
Replication Risk in Solid Organ Transplantation 
Recipients: Approaches for Regulating the Targeted 
Anti-CMV Prevention Strategies 
Sang Hoon Han
Division of Infectious Diseases, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea

The current cytomegalovirus (CMV) prevention strategies in solid organ transplantation (SOT) recipients have contributed to-
wards overcoming the detrimental effects caused by CMV lytic infection, and improving the long-term success rate of graft 
survival. Although the quantification of CMV in peripheral blood is the standard method, and an excellent end-point for diag-
nosing CMV replication and modulating the anti-CMV prevention strategies in SOT recipients, a novel biomarker mimicking 
the CMV control mechanism is required. CMV-specific immune monitoring can be employed as a basic tool predicting CMV 
infection or disease after SOT, since uncontrolled CMV replication mostly originates from the impairment of immune responses 
against CMV under immunosuppressive conditions in SOT recipients. Several studies conducted during the past few decades 
have indicated the possibility of measuring the CMV-specific cell-mediated immune response in clinical situations. Among sev-
eral analytical assays, the most advancing standardized tool is the QuantiFERON®-CMV assay. The T-Track® CMV kit that uses 
the standardized enzyme-linked immunospot assay is also widely employed. In addition to these assays, immunophenotyping 
and intracellular cytokine analysis using flow cytometry (with fluorescence-labeled monoclonal antibodies or peptide-major 
histocompatibility complex multimers) needs to be adequately standardized and validated for potential clinical applications.
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 Introduction

Cytomegalovirus (CMV) is a major pathogen causing con-

siderable morbidity and mortality by infecting the host. It is 

also responsible for causing graft failure or loss due to episodes 

of rejection, in absence of the anti-CMV prevention strategies 

in solid organ transplantation (SOT) recipients [1-9]. The 

harmful effects of CMV infection in SOT recipients are catego-

rized into two main types, the direct and indirect effects. CMV 

infection can directly cause symptomatic diseases (such as tis-
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sue-invasive end-organ damage, and complications like pneu-

monia and colitis), as well as mononucleosis-like syndrome 

and asymptomatic viremia [4, 7, 10, 11]. In addition, CMV in-

fection indirectly results in various general or transplant-spe-

cific ill-effects on both the short and long-term graft outcome 

mediated via immunomodulation [3, 5-7, 11-21]. The lytic or 

cytopathic replication of CMV in SOT recipients may be due to 

the reactivation of life-long latent CMV infection, de novo pri-

mary CMV infection by transmission from donor, reinfection, 

or superinfection [1, 2, 9, 11, 22, 23]. 

Several clinical risk factors responsible for increasing the in-

cidence or severity of CMV infection after SOT have been elu-

cidated. These include the CMV IgG serostatus of the donor 

(D) and recipient (R) (which indicates the probability of trans-

mission and pre-existing CMV-specific immunity; from high to 

low risk: D+/R− > D+/R+ > D−/R+ > D−/R−), type of organ 

transplant (from high to low risk: lung, intestine > heart, liver > 

kidney), immunological sensitization of recipients with a high 

degree of human leukocyte antigen (HLA) mismatch, mainte-

nance of immunosuppressive (IS) regimens [by using T lym-

phocyte-depleting antibodies like thymoglobulin® or anti-thy-

mocyte globulin (ATG®)], coinfection with human herpes virus 

(HHV)-6 or HHV-7, and the existence of specific genetic poly-

morphisms regulating innate immunity (such as Toll-like re-

ceptors 2 and 4) [1, 2, 7, 11, 24-29]. 

In SOT recipients at high risk for CMV replication post-trans-

plantation, CMV infection and disease can be treated using 

multiple strategies (depending on the clinical situations and 

risk categories), which are classically divided into universal 

prophylaxis and preemptive treatment for CMV viremia [4, 10, 

11, 28, 29]. Some methods can help in measuring the extent of 

CMV replication in the peripheral blood samples of SOT recip-

ients after transplantation and then direct to the beginning 

and interruption time of preemptive management [4, 10, 11, 

29]. These prevention strategies could be used successfully; 

however, depending on the clinical situation, they are associat-

ed with their respective pros and cons [4, 10, 11, 29]. In case of 

universal prophylaxis, severe CMV viremia and tissue-invasive 

diseases (especially, the late-onset CMV disease) were ob-

served after discontinuation of the prevention strategies for 

some time [4, 10, 11, 29]. In addition, the CMV quantitative nu-

cleic acid testing (QNAT; using real-time polymerase chain re-

action [PCR]) and phosphoprotein (pp) 65 antigenemia assays 

have been used to monitor CMV replication and to guide the 

initiation of preemptive treatment after SOT; however, these 

assays lack standardization, despite the release of the stan-

dardized International Unit (IU) by the World Health Organi-

zation (WHO) to address the discrepancy regarding clinically 

meaningful cut-off levels for CMV infection [4, 11, 24, 30, 31]. 

These observations have necessitated the development of 

novel diagnostic and/or prognostic methods for the efficient 

diagnosis of CMV replication for regulation of prevention strat-

egies after SOT. Immunological monitoring for CMV manage-

ment in SOT recipients was performed using a novel clinical 

method that specifically determined an individual’s CMV-spe-

cific cell-mediated immunity (CMV-CMI), among other com-

plex immune responses against CMV [32, 33]. Immune moni-

toring of CMV has been broadly classified as non-CMV-specific 

and CMV-specific monitoring [32-34]. The non-CMV-specific 

immune monitoring includes monitoring the intracellular con-

centration of ATP in the stimulated CD4+ T lymphocytes (Im-

muKnowTM assay), soluble CD30, serum complement factors 

(including C3, C4, and mannose-binding lectin), as well as the 

QuantiFERON® Monitor assay [34]. The CMV-CMI can be mea-

sured using a variety of methods including enzyme-linked im-

munosorbent assay (ELISA), enzyme-linked immunospot 

(ELIspot) assay, and flow cytometry. Measurement of the in-

terferon-gamma (IFN-γ) levels, among the levels of various cy-

tokines produced in the activated CMV-specific CD8+ T lym-

phocytes, after stimulation of peripheral blood mononuclear 

cells (PBMCs) by specific CMV antigens (Ags) ex vivo, is pri-

marily used for quantifying CMI responses [32, 34]. In this re-

view, we have focused on CMV-specific immune monitoring in 

SOT recipients.

CMV-CMI 

Although CMV can trigger immune responses from virtually 

every arm of the host immune system, including innate immu-

nity [from dendritic cells (DC) and natural killer (NK) cells] 

and adaptive immunity [from the αβ and γδ regulatory T cells], 

the cell-mediated adaptive immunity is thought to play a piv-

otal role in controlling CMV replication [35]. Both CD4+ (type I 

T helper cell, Th1) and CD8+ memory T lymphocytes have been 

largely implicated in protection against CMV infection [32]. 

The IFN-γ-producing CMV-specific CD8+ cytotoxic T lympho-

cytes (CTL) have a crucial role in limiting CMV viremia during 

the initial acute phase of primary infection, whereas the CD4+ 

T lymphocyte subset is responsible for establishing long-term 

immune control for CMV infection. Therefore, the CMV-CMI 

response plays a crucial role during the development of prima-

ry CMV infection and disease, as well as in the recurrent epi-

sodes in SOT recipients [32].



  https://doi.org/10.3947/ic.2017.49.3.161  •  Infect Chemother 2017;49(3):161-175www.icjournal.org 163

In general, CMV infection and replication elicits an increase 

in IFN-γ release during the CMV-CTL response. This response 

often results in the production of a diverse variety of CMV-as-

sociated antigenic proteins such as tegument phosphoproteins 

pp50 and pp65, glycoprotein B (gB), and immediate early (IE)-

1, 2. Finally, as a result of the CMV-specific CD8+ memory T 

lymphocyte response, the CMV-associated antigens pp50, 

pp65, pp150, gB, IE-1, and IE-2 stimulate the secretion of IFN-γ, 

whereas the specific HLA class I alleles act as restriction deter-

minants of the immune response [36–40]. The enumeration 

and ex vivo assessment of the functionality of CMV-specific 

CD4+ and/or CD8+ T lymphocytes could help in predicting the 

actual risk of developing CMV disease in SOT recipients.

The basic principle and importance of immune 
monitoring against CMV in SOT recipients

The shortcomings in the measurement of CMV viral load (VL) 

using QNAT assay and the WHO standardized IU, and the dis-

advantages associated with the current prevention strategies, 

elicited the need for a novel biomarker and a laboratory tech-

nique to accurately predict or diagnose CMV replication with 

higher level of sensitivity, consistency, and standardization. 

This advancement would ultimately enable efficient control of 

CMV and improve long-term outcome in SOT recipients.

The extent of CMV-CMI response in SOT recipients shall be 

important in inhibiting immunological evasion and preventing 

lytic replication of latent CMV. It could assist in making crucial 

decisions related to the modification of current prevention 

strategies, and tailoring them more accurately for the respective 

recipient. If the recipient displays poor CMV-CMI response, it 

indicates an increased risk for CMV replication. Thus, the clini-

cians could choose between long-term primary prevention 

treatment, secondary prophylaxis after discontinuation of the 

primary universal prophylaxis, or preemptive treatment to pre-

vent the recurrence of CMV replication and late-onset CMV 

disease [41, 42]. In contrast, if the recipient displays robust 

CMV-CMI response, it indicates a decreased risk of CMV infec-

tion after SOT. In such cases, antiviral treatment for prevention 

of CMV infection can be discontinued with increased confi-

dence [33, 42]. The novel prevention strategies against CMV in-

volving the measurements of CMV-CMI and plasma CMV VL, 

could be potentially used for real-time monitoring and tailoring 

treatment in clinical settings [32, 34, 43]. The clinical benefit of 

monitoring CMV-CMI does not lie in measuring the magnitude 

of the response at a certain time point, but its lies in under-

standing whether the response increases, decreases, or remains 

constant over time. The measurement of CMV-CMI, at varying 

time intervals before and after SOT, is the best indicator of po-

tential immunity against CMV disease [32, 34, 43, 44]. Tables 1 

and 2 summarize the immunological hallmarks and the ongo-

ing clinical trials (using ELISA, ELISpot, and flow cytometry) 

for CMV prediction in SOT recipients, respectively. Figure 1 

shows a schematic representation of the potential clinical tools 

used for CMV-specific immune monitoring.  

The QuantiFERON® -CMV assay

1. Basic principle and protocol

The basic principle and procedure for performing the Quan-

Table 1. Immunological hallmarks of the commercially available assays for CMV-specific immune monitoring 

Assay 
Method for measuring 
the CMV-CMI response

Immunological hallmarks References

QuantiFER-
ON®-CMV 

ELISA • Does not analyze the CMV-specific CD4+ T lymphocyte function
• Dose not apply to recipients with not-covered HLA class I haplotypes 
• Restricted to particular class I HLA types
• Measurement cannot be performed at single-cell level
• High rate of indeterminate results (which cannot be interpreted)

[44, 48, 54, 

55]

T-Track® CMV ELISpot • Not restricted to particular HLA types
• Measures the functionality of a broad array of effector cells including 

CD4+/CD8+ T lymphocytes, NK, and NKT cells

[32, 34, 62, 

63]

iTAgTM Class I 
pMHC Tetram-
ers

pMHC tetramer staining 
with flow cytometry 
standard

• High sensitivity (since results are strictly dependent upon the cover-
age of specific HLA types in individuals)

• Does not assess the function of CMV-specific CD8+ T lymphocytes
[34, 85, 87]

CMV, cytomegalovirus; CMI, cell-mediated immunity; ELISA, enzyme-linked immunosorbent assay; HLA, human leukocyte antigen; ELISpot, enzyme-linked immunospot; NK, 
natural killer cell; NKT, natural killer T cell; pMHC, peptide-major histocompatibility complex.
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tiFERON®-CMV assay are identical to the QuantiFERON®-TB 

Gold In-Tube test, except for the Ags used for in vitro stimula-

tion of the CD8+ T lymphocytes. This assay belongs to a class of 

diagnostic tests called interferon-gamma release assays (IGRAs) 

[45, 46]. The QuantiFERON®-CMV assay was used for the first 

time by Walker et al. in 2006 [47]. This original assay measured 

the CMI response by quantitating the IFN-γ levels released after 

in vitro stimulation of the CMV-specific CD8+ memory T lym-

phocytes with 21 CMV CD8+ T lymphocyte epitopes (used as 

Ags) from the human CMV (HCMV) proteins (including pp50, 

pp65, gB, IE-1, and IE-2) that were specific and restricted for 

various class I HLA-A and HLA-B alleles. The IFN-γ levels of ≥ 0.2 

IU/mL were considered to be positive. Walker et al. confirmed 

that each HCMV peptide epitope could induce IFN-γ secretion 

that was sufficiently measurable using ELISA. They demonstrat-

ed that 10 HCMV seropositive healthy volunteers displayed 

high IFN-γ levels measured by QuantiFERON®-CMV and ELIS-

POT assays using ELISA and all the 21 HCMV Ags [47]. 

Presently, the commercially available standardized QuantiF-

ERON®-CMV assay kit (Cellestis Ltd, Qiagen Inc., Melbourne, 

Australia) uses three specific collection tubes containing phy-

tohemagglutinin [PHA (a mitogen), as the positive control], 

CMV Ags (CMV tube), and only heparin (no Ag, labelled “nil”, 

used as the negative control). This assay has been approved 

and is commercially used in the European Union (EU); howev-

er, it has not been approved by the Food and Drug Administra-

tion (FDA). The CMV Ag tube contains a mixture of the 22 

CMV CD8+ T lymphocyte-specific synthetic peptide epitopes, 

composed of 8 to 13 amino acids and derived from the 6 

uniquely immunodominant HCMV proteins (namely pp28, 

pp50, pp65, gB, IE-1 and IE-2) that are specific and restricted 

for various class I HLA (A, B, and C) alleles. This CMV Ag tube 

consists of an epitope peptide (amino acid sequence TRATK-

MQVI), derived from the HCMV pp65 protein restricted 

through CwB (A30/B13), in addition to those present in the 

original assay performed by Walker et al. [45, 47]. These 22 epi-

topes cover 20 HLA class I haplotypes, accounting for > 98% of 

the human population. About 1 mL of the whole peripheral 

blood drawn from the recipients is directly added into the 

three collection tubes. After shaking and incubating for 16–24 

h or overnight at 37°C, the IFN-γ levels in supernatants har-

vested from each tube are measured using ELISA [45]. 

The interpretation of test is performed after subtracting the 

IFN-γ level of the nil tube from the IFN-γ levels of the HCMV 

Ag or PHA tubes. The result is reported as “reactive” or “posi-

tive” if the IFN-γ levels for CMV Ags are ≥0.2 IU/mL (irrespec-

tive of the level for PHA). The results are reported as “non-re-

active” if the IFN-γ levels are <0.2 IU/mL for CMV Ags and ≥0.5 

IU/mL for PHA. When IFN-γ levels are <0.2 IU/mL for CMV 

Ags and <0.5 IU/mL for PHA, the result is reported as “indeter-

minate”. These cut-off values were defined according to the 

study by Walker et al. [47]. 

2. Application of the QuantiFERON®-CMV assay for 
SOT recipients 

Initially, when Walker et al. analyzed the 21 CMV Ags in pe-

ripheral blood from 25 SOT recipients at various time intervals 

post-transplant using the QuantiFERON®-CMV assay, all the 

CMV-seronegative recipients showed nearly undetectable 

IFN-γ levels (<0.1 IU/mL) and all the CMV-seropositive recipi-

ents showed high IFN-γ levels (19 ± 22.5 IU/mL, positive test). 

The IFN-γ levels stimulated by the CMV Ags correlated well 

with those stimulated by PHA [47]. 

Several prospective observational studies using the commer-

cially available QuantiFERON®-CMV assay have demonstrated 

the potential of this assay for measuring the CD8+ T lympho-

cyte responses, in order to predict clinically relevant events re-

lated to CMV lytic replication [48, 49]. These events may in-

clude either the risk of initial CMV reactivation (for example, 

after discontinuation of primary prophylaxis) or recurrence of 

CMV viremia after the initial treatment. 

1) Pre-transplant risk-stratification in CMV-seropositive 

recipients 

 The baseline assessment of risk of CMV infection conven-

tionally relies on the pre-transplant CMV IgG serostatus, under 

the assumption that CMV-seropositive recipients (R+) have 

pre-existing CMV-specific immunity. Nevertheless, Cantisan et 

al. recently observed that about one-third of the R+ transplant 

candidates actually lacked a proper CMV-CMI response (eval-

uated using the QuantiFERON®-CMV assay) [50]. Interestingly, 

the recipients with a non-reactive test result were more likely 

to develop post-transplant CMV replication than those with a 

reactive test result before SOT. The authors concluded that this 

strategy may eventually contribute towards reclassification of 

the current CMV risk stratification, and the R+ recipients with 

non-reactive test results pre-transplant should be regarded as 

high-risk recipients [50]. 

2) Predicting the occurrence of late-onset CMV disease 

after discontinuation of primary prophylaxis in high-

risk D+/R− recipients 

 The major disadvantage of universal anti-CMV prophylaxis 
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(for 3–6 months), which is the most effective strategy for D+/

R− recipients with highest risk of post-transplant CMV infec-

tion and disease, is the development of CMV lytic replication 

after discontinuation of prophylaxis (called the late-onset CMV 

disease) [10, 32]. Although longer prophylactic duration of 6 

months can reduce the frequency of late-onset CMV disease, it 

may also lead to a delay in the spontaneous development of 

CMV-specific memory and effector T lymphocyte-mediated 

immune responses [32, 51]. 

A few studies for assessing the efficiency of the QuantiFER-

ON®-CMV assay for the prediction of late-onset CMV-disease 

have been reported. Kumar et al. monitored 108 recipients 

with high risk for CMV disease using the QuantiFERON®-CMV 

assay, before transplantation and after 1-month intervals for 3 

months after SOT. These were D+/R− or D+/R+ recipients who 

were previously administrated the T lymphocyte-depleting 

antibodies (ATG®) or those who underwent lung transplanta-

tion. All enrolled recipients had been receiving the anti-CMV 

prophylaxis for 3 months. After the completion of anti-CMV 

prophylaxis, the recipients who tested positive for the Quanti-

FERON®-CMV assay had a significantly lower incidence of 

late-onset CMV disease (cut-off IFN-γ levels ≥0.2 IU/mL, for 

positive test: 3.3% [1/30] versus for negative test: 21.8% [17/78], 

P = 0.044; cut-off IFN-γ levels ≥0.1 IU/mL, for positive test: 5.3% 

[2/38] versus for negative test: 22.9% [16/70], P = 0.038). How-

ever, in a subgroup analysis using 35 (32.4%) D+/R− recipients, 

the frequency of late-onset CMV disease was not significantly 

different between the recipients who tested positive and those 

who tested negative (10% versus 40%, P = 0.12). These results 

suggested that immune monitoring for CMV-CMI response 

using the QuantiFERON®-CMV assay may be helpful in pre-

dicting the occurrence of late-onset CMV disease in selected 

SOT recipients at a high risk for CMV replication [44].

These data were validated using a multicenter study with 124 

D+/R− recipients, in which the QuantiFERON®-CMV assay was 

monitored after 1 and 2 months of completing the 3-month 

anti-CMV prophylaxis. Recipients with a reactive result (IFN-γ 

level ≥0.1 IU/mL) at any time point showed a significantly low-

er cumulative incidence of the late-onset CMV disease 

12-month post-transplantation compared to those with a 

non-reactive result (including negative or indeterminate re-

sults [6.4%, 2/31 versus 26.8%, 25/93; P = 0.02]). This study re-

vealed that the QuantiFERON®-CMV assay showed good posi-

tive and modest negative predictive values of 0.93 (95% 

Figure 1. Schematic representation of immune monitoring for cytomegalovirus-specific cell-mediated immune response  
aIt needs the immunodominant synthetic peptides. These generally comprise of long synthetic peptides (13–22 amino acids) for CD4+ T lymphocyte stimulation, and 
short synthetic peptides (8–10 amino acids) for CD8+ T lymphocyte stimulation [97]. 
w/, with; w/o, without; PBMC, peripheral blood mononuclear cell; BAL, bronchoalveolar lavage; CMV, cytomegalovirus; DC, dendritic cell; IE, immediate-early; pp, 
phosphoprotein; gB, glycoprotein B; CMV-CMI, cytomegalovirus-specific cell-mediated immune response; IFN-γ, interferon-gamma; TNF-α, tumor necrosis factor alpha; 
CCL, chemokine (C-C motif) ligand; CXCL, C-X-C motif chemokine; ICS, intracellular staining; ELISA, enzyme-linked immunosorbent assay; ELISpot, enzyme-linked im-
munosorbent spot assay; pMHC, peptide-major histocompatibility complex; CyTOF, cytometry by time of flight; HLA, human leukocyte antigen.   
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confidence interval, CI = 0.78−0.99) and 0.27 (95% CI = 

0.18−0.37), respectively, for predicting the development of 

late-onset CMV disease in D+/R− SOT recipients. A drawback 

of this study was that the number of indeterminate results 

(9.7%), which were difficult to interpret, was considerably high 

[48]. 

Based on these findings, we can use the QuantiFER-

ON®-CMV assay for predicting the development of late-onset 

CMV disease after the completion of primary prophylaxis in 

the D+/R− recipients, every month for a year after transplanta-

tion. For positive test results, which indicated good CMV-CMI 

response, regular monitoring using the QuantiFERON®-CMV 

assay may be sufficient. However, in case of negative test re-

sults at the end of primary prophylaxis or during any follow-up 

time point, we should consider continuing the primary pro-

phylaxis with regular monitoring [32].

3) Predicting spontaneous clearance of asymptomatic 

low-level CMV viremia without anti-CMV prevention 

 It is understood that the CMV-seropositive recipients at low 

or intermediate risk for developing post-transplant CMV infec-

tion or disease can spontaneously suppress several episodes of 

asymptomatic temporal low-level CMV viremia, which result 

from the reactivation of latent CMV infection or superinfection 

in the D+/R+ recipients, even if they did not receive the an-

ti-CMV prevention [52]. Lisboa et al. reported that a high CMV-

CMI response during immune monitoring predicted a high 

frequency of spontaneous clearance of asymptomatic CMV vi-

remia, without preemptive prevention against CMV [49]. They 

analyzed 37 recipients at intermediate risk for developing 

CMV infection or disease. These recipients were CMV-seropos-

itive and did not receive the T lymphocyte-depleting antibod-

ies (ATG®) or lung transplants. It was observed that the recipi-

ents with a positive QuantiFERON®-CMV test result (IFN-γ 

level ≥0.2 IU/mL) during the onset of detectable CMV viremia 

showed significantly higher frequency of spontaneous CMV 

clearance, compared to those with a negative QuantiFER-

ON®-CMV result (IFN-γ level <0.2 IU/mL) and then progres-

sion to anti-CMV treatment (92.3% versus 45.5%, P = 0.004) 

[49]. This preliminary evidence suggests that the measurement 

of CMV-CMI response using the QuantiFERON®-CMV assay 

can be used as biomarker or end-point for predicting the de-

velopment of CMV lytic replication, similar to the QNAT assay 

for monitoring the recipients undergoing preemptive treat-

ment. This can be helpful in deciding the initiation or discon-

tinuation of the anti-CMV preemptive treatment, depending 

on the level of the CMV-CMI response in the recipient at a spe-

cific time point [43]. If the recipient shows asymptomatic 

low-level viremia in the QNAT assay, the QuantiFERON®-CMV 

assay can be performed at the onset of low-level viremia for 3 

weeks at 1-week intervals. The preemptive CMV treatment can 

be initiated when the QuantiFERON®-CMV results are nega-

tive, and can be discontinued when the results are positive. 

Subsequently, monitoring using the QuantiFERON®-CMV as-

say should be continued over time. This approach could be ap-

plied to another possible option of preemptive treatment [32].

4) A novel biomarker for the prediction of CMV replica-

tion in R+ recipients undergoing secondary prophylac-

tic or preemptive treatment: prediction of relapse of 

CMV disease or viremia 

 Evaluating the CMV-CMI response can be useful in deciding 

whether modification of preemptive strategies is necessary or 

not and can also be helpful in deciding secondary prophylaxis 

in the R+ recipients with a history of CMV disease treatment, 

in order to prevent the onset or relapse of CMV replication [32]. 

To tailor the CMV prevention strategies for individual patients 

in clinical practice via real-time measurement of the CMV-CMI 

response, the first interventional study was performed by Ku-

mar et al. They used the QuantiFERON®-CMV assay results to 

decide upon the early discontinuation of the CMV prevention 

therapy in SOT recipients. The 27 recipients (44.4% D+/R−, 

48.1% D+/R+) who enrolled at the start of anti-CMV treatment 

(after the first episode of asymptomatic CMV viremia) were in-

cluded in this study. The anti-CMV treatment was discontin-

ued, if VL was undetectable (<137 IU/mL) at a single time 

point or at two time points spaced one week apart. They per-

formed the QuantiFERON®-CMV assay after the completion of 

treatment and obtained the results within 3 days of blood col-

lection. By doing so, they applied this test in real-time practice. 

According to the results of the QuantiFERON®-CMV assay, the 

subsequent anti-CMV treatment strategy was divided into two 

categories: (1) if the test was positive (IFN-γ level ≥0.2 IU/mL), 

the anti-CMV treatment was discontinued, and (2) if the test 

was negative, the secondary anti-CMV prophylaxis was initiat-

ed for 2 months. Only 1 out of 14 (7.1%) recipients with posi-

tive QuantiFERON®-CMV assay results and early discontinua-

tion of the anti-CMV treatment without secondary prophylaxis 

showed the recurrence of asymptomatic low-level CMV vire-

mia. However, 9 out of 13 (69.2%) recipients who received ad-

ditional secondary prophylaxis for 2 months showed clinically 

significant CMV recurrence (IFN-γ level ≥ 500 IU/mL) despite 

prolonged treatment. The positive QuantiFERON®-CMV assay 

group displayed significantly lower CMV recurrence rate com-



Han SH • CMV-specific immune monitoring in SOT recipients www.icjournal.org168

pared to the negative QuantiFERON®-CMV group (P = 0.001) [53]. 

ELISpot assay

The ELISpot assay quantifies the number of IFN-γ-producing 

CMV-specific effector T lymphocytes upon ex vivo stimulation 

as spot-forming units (SFUs). The number of SFUs in a given 

number of PBMCs was enumerated using a standard automat-

ed imaging scanner. Since different CMV ELISpot assays use 

different CMV-stimulating proteins, the results showed less 

clarity and reliability in determining the cut-off value for the 

number of SFUs that defined adequate CD4+ and CD8+ T lym-

phocyte response. Thus, clinical applicability of the ELISpot as-

say in SOT recipients has been limited [54–58]. Abate et al. 

evaluated the patterns of CMV-specific T lymphocyte immune 

reconstitution using the ELISpot assay in 117 kidney transplant 

recipients, before and one year after SOT at regular intervals, 

and reported that the recipients who did not have CMV vire-

mia had significantly higher SFUs compared to those having 

viremia (median value = 138 versus 28 SFUs/200,000 PBMCs; P 

<0.001) [55]. Bestard et al. reported that the observation of low 

number of SFUs in kidney transplant recipients at the 

pre-transplant stage after stimulation with the IE-1 peptide 

pool, predicted the risk of both primary and late-onset CMV 

infection with good sensitivity (> 80%). The negative predicted 

values (>90%) and the high area under the curve (AUC > 0.70) 

in the receiver operating characteristic (ROC) curve, calculated 

the optimal cut-off value as 7 or 8 SFUs/300,000 PMBCs [59]. 

An optimized and standardized ELISpot assay using the 

commercially available Conformité Européenne (CE)-marked 

T-Track® CMV kit (Lophius Biosciences GmbH, Regensburg, 

Germany) has been recently developed, which consists of the 

recombinant urea-formulated (T-activated®) CMV IE-1 and 

pp65 stimulants [10, 60, 61]. The principle and protocol of the 

T-Track® CMV assay are similar to the QuantiFERON®-CMV 

assay (an IGRA), except for the measurement of the IFN-γ-re-

leasing T lymphocytes in PBMCs using IFN-γ ELISpot and 

IFN-γ levels in supernatant using ELISA [61]. In contrast to oth-

er immunodominant epitopes, unmodified proteins, and pep-

tides used for the in-house ELISpot assays, the urea-formulat-

ed proteins are processed and presented via both the 

exogenous MHC class II and endogenous MHC class I path-

ways, using cross-presentation by Ag-presenting cells (APC), 

which mimics the naturally acquired CMV infection [62]. The-

oretically, they can activate a broader range of Ag-reactive ef-

fector cells, including the CD4+/CD8+ T lymphocytes as well as 

the bystander NK and NK T cells (NKT) via HLA-independent 

stimulation [62, 63]. Banas et al. compared three commercially 

available assay kits, namely QuantiFERON®-CMV, T-Track® 

CMV, and a kit containing a mixture of six class I iTAgTM MHC 

Tetramers, for evaluating the CMV-CMI response in 124 hemo-

dialysis patients [60]. They reported that the positive-detection 

rate in the CMV-seropositive patients was the highest (90%) 

using the T-Track® CMV assay, compared to that using the 

QuantiFERON®-CMV (73%) and iTAgTM MHC Tetramers (77%) 

assays [60]. Two studies using the T-Track® CMV assay in SOT 

recipients are currently underway (Table 2). The T-SOPT®.
CMV assay is also available as a CE-marked commercial kit 

(Oxford Immunotec Ltd., Abingdon, UK). However, the 

T-Track® CMV and T-SOPT®.CMV assays are not currently 

available for use outside the EU. The applicability of T-SOPT®.
CMV test in SOT recipients has not been evaluated yet. 

Measurement of cell surface proteins and 
intracellular inflammatory cytokines using  
multi-color flow cytometry or mass cytometry

1. Flow cytometry (or flow cytometry standard)

Flow cytometry standard (FCS) is a single-cell-based plat-

form, which allows the separation of subsets of unique immu-

nologic cell populations using fluorescently labeled proteins. 

Multi-color (polychromatic) multi-channel flow cytometric 

analysis is a widely used standard method for immune moni-

toring. Analysis of the phenotypes (called immunophenotyp-

ing) and function of specific immune cells is performed using 

gating strategies for FCS data [64]. Immunophenotyping is typ-

ically performed by measuring cluster of differentiation (CD) 

markers, which are cell surface proteins. Enumeration of 

CD4+/CD8+ T lymphocytes in HIV-infected individuals using 

FCS is the most popular immunophenotyping test used rou-

tinely in clinical practice in the field of infectious diseases. 

Functional analysis of immune cells can be conducted using 

intracellular cytokine staining (ICS) after permeabilizing the 

cell membrane. The fluorescently labelled proteins in FCS are 

separated into monoclonal Abs and soluble peptide-major his-

tocompatibility complex (pMHC) multimers (tetra, penta, or 

dextramers) [65]. A strong interaction between the αβ T cell Ag 

receptor (TCR), and the fluorescence [phycoerythrin (PE) or 

allophycocyanin (APC)]- and streptavidin-labeled biotinylated 

pMHC (class I or II) tetramers in conjunction with Ag epitopes 

enables immunophenotyping via costaining of the Ag-specific 
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receptor-carrying T lymphocytes [65, 66]. 

2. Intracellular cytokine staining (ICS)

Using FCS, ICS detects diverse inflammatory cytokines, such 

as IFN-γ, tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-

2), and IL-6, present in whole blood or PBMCs and produced by 

the CMV-specific effector memory Th1 cells. For this, the ex vivo 

CMV-specific stimulation was performed for 48 h using various 

stimulants, including the CMV-infected dendritic cells, CMV-in-

fected cell lysates, or several CMV-specific immunodominant 

epitopic peptides (such as pp65, pp72, and IE-1) [32, 67-77]. In 

several studies, the CMV-specific CMI assay using ICS has been 

demonstrated to be useful in predicting the risk of CMV viremia 

or disease after kidney, lung, heart, liver, and small bowel trans-

plantation [32, 44, 56, 67-73, 75-81]. These results also demon-

strate the importance of polyfunctionality in the CMV-specific 

CD4+ and CD8+ T lymphocytes, in order to control CMV replica-

tion after SOT [56, 68-70, 75, 77, 81-83]. 

Few clinical studies indicating the cut-off value for a homo-

geneous subpopulation of CMV-specific T lymphocytes have 

been performed in a large number of SOT recipients. Gerna et 

al. investigated the CMV-CMI response in 134 SOT recipients 

using FCS and ICS. They suggested that the presence of 

CMV-specific CD4+IFN-γ+ and CD8+IFN-γ+ T lymphocytes (≥0.4 

cells/mm3) in peripheral whole blood or ≥0.05% of either cell 

subset at any time point monthly till 6 months and 9, 12 

months after SOT was considered as a protective immune re-

sponse against CMV disease [70]. Mena-Romo et al. evaluated 

the CMV-CMI response of the CD8+CD69+IFN-γ+ T lympho-

cytes in 106 CMV-seropositive (R+) SOT recipients using FCS 

and ICS. The presence of CD8+CD69+IFN-γ+ cells (≥0.25%) in 

total PBMCs 4-weeks post-SOT was independently associated 

with the significant reduction of high-grade CMV viremia 

(≥2,000 IU/mL; odd ratio, OR = 0.31, 95% CI = 0.02 – 0.74, P = 

0.021) and served as an indication of preemptive CMV treat-

ment (OR = 0.22, 95% CI = 0.07 – 0.74, P = 0.014) [80]. Thus, 

they demonstrated clinical utility of the unique CMV-specific 

CD8+ T lymphocyte subsets and their meaningful cut-off val-

ues using a multivariate model including other clinical risk 

factors [80]. The CMV-CMI assay using FCS and ICS can be 

used in clinical practice, subject to corroboration of the above 

results with additional large-scale clinical studies.

3. pMHC tetramer staining 

The extent of pMHC-tetramer staining with high specificity 

could be diminished due to the recipient HLA restriction of a 

large panel of tetramers [65]. Clinical studies demonstrating 

the role of pMHC-tetramer staining on CMV replication in 

SOT are limited. Sund et al. performed a pilot study for moni-

toring the levels of tetramer-selected CD8+ T lymphocytes 

(tetraCD8) at 1-month intervals for a year after SOT. The study 

was performed with 17 kidney transplant recipients and em-

ployed the in-house pMHC (class I) tetramers loaded with 

pp65 peptides [84]. Immediately after SOT, the tetraCD8 

counts were significantly lower compared to the pre-trans-

plant baseline. However, one year after SOT, the tetraCD8 lev-

els were not significantly different compared to the baseline 

levels. Thus, the tetraCD8 counts could not predict the devel-

opment of CMV viremia after SOT [84]. The commercially de-

veloped iTAgTM [Ni2+-nitrilotriacetic acid (NTA)–His-tag Che-

late complexes] class I MHC Tetramers (Beckman Coulter, 

Krefeld, Germany) allow the staining of epitope-specific CD8+ 

T lymphocytes [85]. Mees et al. evaluated the CMV-specific 

CD8+ T lymphocytes in 23 kidney transplant recipients using 

the CMV-specific iTAgTM class I pMHC Tetramers (Beckman 

Coulter, Germany) with the CMV-Ag specific pMHC-tetramers 

restricted by five different HLA-A and HLA-B alleles for 6 

months after SOT [86]. The CMV-specific tetramers did not 

play a significant role in predicting CMV replication after SOT, 

because of small number of CMV viremia or disease [86]. A 

study by Brooimans et al. suggested that the standardized sin-

gle-platform iTAgTM class I CMV-specific pMHC Tetramer as-

says against the TCRs specific for the three different MHC 

class I CMV peptides were reproducible and useful for enu-

merating the CMV-specific T lymphocytes [87]. Other 

CMV-specific pMHC dextramer reagent tubes have been de-

veloped in Denmark (Immudex, Copenhagen, Denmark), 

which are composed of a “Dextramer” tube with CMV-TCR-spe-

cific pMHC-dextramers, a “Negative Control” tube, and a “FMO 

(Fluorescence Minus One)” tube without dextramers. Despite 

being inconvenient, the HLA-A and HLA-B alleles of the indi-

viduals corresponded to the MHC class I haplotypes within 

these dextramers [88]. The quantity and function of the 

CMV-specific T lymphocytes have not evaluated using the Im-

mudex MHC Dextramer® in SOT recipients. 

4. Mass cytometry or cytometry by time of flight  
(CyTOF)

Mass cytometry or CyTOF is recently emerging as a novel in-

novative technology in the field of immunology, although it is 

associated with some problems [64, 89, 90]. Its principle is sim-
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ilar to that of matrix-assisted laser desorption/ionization time-

of-flight (MALDI-TOF) mass spectrometry, which is common-

ly used in microbial species identification and measures the 

vaporized or nebulized ions using TOF mass spectrometry [64, 

90, 91]. The most promising aspect of CyTOF, which uses 

monoclonal Abs tagged with rare heavy-metal-isotope probes 

(instead of  a f luorochrome), is its unique ability for 

high-throughput high-content data collection using over 50 

high-dimension parameters [64, 89, 90, 92]. On the other hand, 

the fluorescence-based polychromatic flow cytometer current-

ly do not increase more than 18 color-channels [64]. Using sev-

eral analytical tools or plotting methods [such as CITRUS 

(cluster identification, characterization, and regression), 

SPADE (spanning-tree progression of density-normalized 

events), PCA (principal component analysis), and t-SNE (t-dis-

tributed stochastic neighbor embedding)], we can extract the 

highly multiplexed imaging results from the CyTOF data and 

understand the current status of immunophenotypes or spe-

cific cellular components (such as proliferation or activation 

markers, intracellular cytokines, and transcription factors) in 

various immune cells [64, 90, 93]. These immune cells include 

the naïve/activated/effector/memory CD4+/CD8+ T lympho-

cytes, immature/mature B lymphocytes, plasma cells, NK cells, 

NKT cells, non-classical/classical monocytes, and myeloid/

plasmacytoid dendritic cells [92]. In addition, we could obtain 

a more comprehensive immunological profile for functional 

markers and cell surface/intracellular proteins, such as the 

repertories of NK cell receptors [for example, killer cell immu-

noglobulin-like receptor (KIR)] [92, 94]. 

To date, studies involving the use of CyTOF in the field of 

transplantation biology and CMV replication are in their pre-

liminary stages [90]. Horowitz et al. examined the association 

between CMV reactivation, and the regulation of NK cells and 

CD8+ T lymphocytes during lymphocyte reconstitution after 

allogeneic hematopoietic cell transplantation using mass cy-

tometry [94]. In 15 pediatric liver transplant recipients, using 

CyTOF, Lau et al. compared the immunological profiles of the 

seven recipients with operational tolerance defined as stable 

graft function in the absence of IS, with the immunological 

profiles of the eight recipients on IS drug [95]. This analysis re-

vealed that the pediatric liver transplant recipients with opera-

tional tolerance showed a distinct subset (CD5+CD25+CD38−/

loCD45RA−) of the CD4+ T lymphocytes [95]. However, studies 

involving mass immunological profiling in SOT adult recipi-

ents with CMV replication using CyTOF have not been report-

ed. 

The problems associated with CyTOF include low sampling 

efficiency, low acquisition rate, low sensitivity (low staining in-

dex), and sorting inability. These problems need to be resolved, 

since this technique can be used as a promising tool for im-

mune monitoring. Unlike multi-color conventional flow cy-

tometry, high-parameter CyTOF does not suffer from interfer-

ence (spill over), compensation owing to spectral overlap, or 

background signals due to autofluorescence [64, 90, 92, 96].

Conclusion

The drawbacks associated with the QuantiFERON®-CMV 

and ELISpot assays hinder their routine application in clinical 

studies. These drawbacks include: (1) class I HLA restriction in 

the QuantiFERON®-CMV assay, (2) low sensitivity and poor 

specificity, (3) high indeterminate rate or unacceptably high 

rate of uninterpretable results, (4) inability to distinguish be-

tween the CMV-CMI response mediated by the CD4+ and CD8+ 

T lymphocytes, (5) unreliable cut-off levels in various clinical 

scenario, and (6) measurement of a single cytokine (IFN-γ) [44, 

48, 54, 55]. However, recently, Kumar et al. suggested that im-

mune monitoring could be used as a promising biomarker for 

deciding the anti-CMV prevention strategies in SOT recipients 

[53]. Coupled with the highly standardized and easy-to-use 

techniques like ELISA, ELISpot, and FCS, these tools for im-

mune monitoring in conjunction with the QNAT assay can be 

used for administering more efficient therapies for CMV pre-

vention (involving the limited use of antiviral agents). Finally, 

due to the inhibition of CMV lytic replication, this would result 

in the improvement of short- and long-term outcomes in SOT 

recipients.
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