Quinidine Trial in a Patient with Epilepsy of Infancy with Migrating Focal Seizure and KCNT1 Mutation

Epilepsy of infancy with migrating focal seizure (MFEI) is an early-onset epileptic encephalopathy characterized by randomly migrating focal seizures and psychomotor deterioration. It is associated with mutations in a variety of genes, with potassium sodium-activated channel subfamily T member 1 (KCNT1) being an example. Previously reported KCNT1 mutations in MFEI are gain-of-function mutations. Therefore, quinidine therapy targeted at reduction of pathologically increased KCNT1 channel-mediated potassium conductance has been proposed as a target treatment for MEFI with KCNT1 mutation. The authors report a case involving a patient with MFEI and a missense mutation in KCNT1 (c.7129G>A; p.Phe346Leu) treated with quinidine therapy. Seizure activity was poorly responsive to quinidine.

Key Words: Epilepsy of infancy with migrating focal seizure, KCNT1 mutation, Quinidine

Introduction

Epilepsy of infancy with migrating focal seizures (MFEI) is a rare, early onset epileptic encephalopathy characterized by pharmacoresistant epilepsy and arrest of psychomotor development in the first 6 months of life.1-4) Interictal electroencephalography (EEG) demonstrates multifocal spikes and slowing, with ictal EEG discharges arising from various areas of both hemispheres and migrating from one brain region to another.

Several genetic causes of MFEI have been identified, including mutations in the potassium sodium-activated channel subfamily T member 1 (KCNT1)5), phospholipase C beta 1 (PLCB1)6), sodium voltage-gated channel alpha subunit1 (SCN1A)7), solute carrier family 25 member 22 (SLC25A22)6), and TBC1 domain family member 24 (TBC1D24)8). More recently, de novo mutations in the KCNT1 gene (also known as Slo2.2 or Slack) were described as disease-causing in approximately 40% to 50% of all MFEI patients5,9,10). Mutations result in KCNT1 channel gain of function. Importantly, reported KCNT1 mutations in MFEI are gain-of-function mutations leading to constitutive activation of the channel; therefore, pharmacological inhibition of KCNT1 is a potential therapeutic target8).

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C1601). This paper is a poster presented at the Fall Meeting of the Pediatric Society of Korea in 2016.

Submitted: 27 July, 2017
Revised: 12 August, 2017
Accepted: 30 August, 2017

Correspondence to Hoon-Chul Kang, M.D, PhD
Department of Pediatrics, Severance Children’s Hospital, Epilepsy Research Institute
Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Tel: +82-2-2228-2050, Fax: +82-2-393-9118
E-mail: hipo0207@yuhs.ac

Copyright © 2017 by The Korean Child Neurology Society
http://www.cns.or.kr
In this report, we describe a patient with MFEI and KCNT1 mutation (c.7129G>A; p.Phe346Leu) who underwent a trial of quinidine.

Case report

A 3-month-old boy was admitted to our hospital via the emergency center for 5 generalized tonic seizures that lasted 1 min to 2 min for 1 day. He was first child from nonconsanguineous Korean parent. He was born at full term and weighted 2.6 kg. There was no family history of seizures or other neurological disorders. EEG demonstrated clinical and subclinical seizures associated with ictal discharges arising independently from the left frontal, left temporal, or right temporal areas. Brain magnetic resonance imaging revealed no abnormal findings. EEG demonstrated a pattern of MFEI; with focal seizures migrating between left and right hemispheres (Fig.1). Therefore, the patient was started on antiepileptic drugs (AEDs).

Trials of multiple medications alone and in various combinations, including phenobarbital, levetiracetam, phenytoin, topiramate, valproic acid, gabapentin, and clobazam, were without effect on seizure frequency, and the patient continued to have the patient has daily seizures of tonic seizures involving the left, right, or both sides of the body, 10 to 20 times a day, and about 1 or 2 of these seizures last longer than 20 minutes and required intravenous injection of benzodiazepine or other AEDs. When placed on continuous EEG monitoring, subclinical seizures were also frequently detected. A ketogenic diet was also attempted but was, however, abandoned after 2 months due to lack of efficacy.

Metabolic and imaging work-up were negative. A gene panel was sent out for epileptic encephalopathy, and revealed that the patient had a heterozygous mutation in the KCNT1 (c.7129G>A):

Fig. 1. Electroencephalogram at initial presentation(Ictal phase) Electroencephalogram at initial presentation. (A) Focal seizure originating from right temporal lobe. (B) Several seconds later, seizure has migrated to the left, clinically presenting as desaturation, vacant staring with eyeball fixation, sometimes with both arm elevation, which are associated with ictal rhythmic discharges evolving from Rt. temporal (10 times) or Lt. temporal (13 times) areas, and then spreading to ipsilateral diffuse hemisphere, sometimes spreading ton whole brain.
p.Phe346Leu). His parents were also tested; however, they did not carry such a mutation, confirming that the mutation of KCNT1 gene in the patient was a de novo mutation (Fig. 2).

After genetic diagnosis of KCNT1 encephalopathy, quinidine therapy was attempted. He was started on 11 mg/kg/day of quinidine with gradual dose increase to 54.2 mg/kg/day (320 mg/day), but was stopped after 10 days of trial due to lack of response and tremor that appeared to be a side effect (Table 1).

To date, the patient (now 20 months old) experiences tonic seizures of either or both sides of the body 10 to 20 times per day, with approximately 1 or 2 of these seizures lasting longer than 20 min and requiring adjuvant rectal benzodiazepine injections in addition to 4 oral AEDs (barbiturate, levetiracetam, stitipentol, topiramate). The head circumference of the patient was normal (42 cm, 50 percentile) at the onset of disease, but now it is microcephaly (45 cm, <3 percentile). He has exhibited profound developmental regression since the onset of these seizures.

Discussion

We report a case involving a patient with MFEI and mutation in KCNT1, who demonstrated no response to quinidine therapy. The identification of KCNT1 mutations as a genetic cause for MFEI and autosomal dominant nocturnal frontal lobe epilepsy suggests that these conditions may be treatable using a drug that specifically targets the KCNT1 channel. Quinidine therapy has been introduced as a targeted therapy in MFEI with KCNT1 mutation to reduce increased KCNT1 channel-mediated potassium conductance. KCNT1 encodes the pore-forming alpha subunit of the potassium channel; quinidine acts to these block pores. Therefore, quinidine is a potential therapeutic agent for individuals with KCNT1 mutation.

Previous studies have demonstrated that quinidine reduces the conductance of the activated channel by a gain-of-function mutation of KCNT1 in vitro. Additionally, quinidine treatment has been trialed in three patients with KCNT1 mutations for whom treatment with standard antiepileptic therapies had been unsuccessful. Two patients with malignant migrating focal seizures of infancy experienced marked improvement in seizure control following quinidine administration. However, our patient did not experience the same effect as in vitro studies or other clinical cases.

There are several reasons why quinidine is not effective against the KCNT1 mutation when applied to actual patients. The first is that the exact concentration of quinidine needed to be effective in the brain is unknown. KCNT1 is highly expressed in both neurons and cardiomyocytes in which quinidine acts as an effective antiarrhythmic agent. However, previous studies have shown that quinidine does not accumulate well in the cerebrospinal fluid, and that levels change with interactions with AEDs. Thus, quinidine levels in the brains of patients taking AEDs may be lower than serum levels of those taking it to treat arrhythmias. However, it remains unclear whether quinidine can pass the blood-brain barrier and what levels are effective once it

![Fig. 2. Sequence chromatogram and alignment to the reference sequence revealing variation. KCNT1 (likely pathogenic), a missense mutation that was not previously reported was observed as a heterozygote, and a family test was performed. The mutation was not detected in the parent sample and was confirmed as a de novo mutation. A mutation that has not been reported so far or is not reported in the normal population, and the KCNT1 is a de novo mutation in the autosomal dominant genetic pattern in epileptic encephalopathy, which may be a genetic cause in this patient.](image)

Table 1. Timeline of Treatment

Day 1-3	11 mg/kg/day	0.6 µg/mL	10
Day 4-6	40 mg/kg/day	2.4 µg/mL	13
Day 7-10	54.2 mg/kg/day	1.7 µg/mL	8
has reached the brain. QT prolongation may occur due to the side effects of quinidine, which makes it difficult to determine an appropriate level because quinidine cannot be tried in unlimited doses until it becomes effective. Second, MFEI patients with KCNT1 mutations who undergo quinidine trials have already failed many conventional AEDs. Most are taking multiple AEDs, which can also affect quinidine levels. In addition, because seizures have been intractable for a certain period of time, it is likely that morphological changes have already occurred in the brain, regardless of the presence of KCNT1 mutation. Third, because phenotype and genotype are not always consistent, unlike previous reports describing the effectiveness of quinidine for MFEI, it may not have been effective in our patient. It is necessary to confirm that the treatment for the mutation in the genotype applies to the phenotype.

The isolation of human induced pluripotent stem cells (iPSCs) offers a novel strategy for modeling human disease, recent studies have reported the derivation and differentiation of disease-specific human iPSCs. Therefore, iPSCs may represent a possible investigative avenue in this disease model. It is also possible to perform experiments in an animal-based model with KCNT1 using gene editing through clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 (CRISPR associated protein 9) technology.

Seizure frequency in our patient was not decreased by quinidine therapy. In conclusion, this case suggests that quinidine is not always an effective treatment for individuals with epilepsy of infancy with KCNT1 mutation. To tailor therapy to genetic mutations in patients, therefore, it will be necessary to conduct preliminary studies on how genotypes are actually expressed as phenotypes. Further studies are necessary to investigate exact effective doses and serum levels for the use of quinidine in patients with KCNT1 mutation, and to study whether the effect will be different when using preemptive targeting agents in addition to conventional AEDs.

References

9. De Filippo MR, Rizzo F, Marchese G,Giurato G, Nassa G, Ravo...

