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Abstract

Background: Many studies have been conducted to quantitatively estimate biological age using measurable
biomarkers. Biological age should function as a valid proxy for aging, which is closely related with future work
ability, frailty, physical fitness, and/or mortality. A validation study using cohort data found biological age to be a
superior index for disease-related mortality than chronological age. The purpose of this study is to demonstrate the
validity of biological age as a useful index to predict a person’s risk of death in the future.

Methods: The data consists of 13,106 cases of death from 557,940 Koreans at 20–93 years old, surveyed from 1994
to 2011. Biological ages were computed using 15 biomarkers measured in general health check-ups using an algorithm
based on principal component analysis. The influence of biological age on future mortality was analyzed using Cox
proportional hazards regression considering gender, chronological age, and event type.

Results: In the living subjects, the average biological age was almost the same as the average chronological age.
In the deceased, the biological age was larger than the chronological age: largest increment of biological age
over chronological age was observed when their baseline chronological age was within 50–59 years. The death
rate significantly increased as biological age became larger than chronological age (linear trend test, p value < 0.0001).
The largest hazard ratio was observed in subjects whose baseline chronological age was within 50–59 years when
the cause was death from non-cancerous diseases (HR = 1.30, 95% confidence intervals = 1.26 - 1.34). The survival
probability, over the 17 year term of the study, was significantly decreased in the people whose biological age was
larger than chronological age (log rank test, p value < 0.001).

Conclusions: Biological age could be used to predict future risk of death, and its effect size varied according to
gender, chronological age, and cause of death.
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Background
Many studies have been conducted to quantitatively esti-
mate biological age using measurable biomarkers since a
study by Comfort in 1969 [1]. Biological age can repre-
sent a person’s aging status more appropriately com-
pared to chronological age because, while chronological
age is just a period of living which does not consider
person’s health status, biological age is associated with
health status, which is closely related with aging. There

are no standardized or widely accepted sets of bio-
markers for estimating biological age; nonetheless, sev-
eral researchers have suggested some criteria that should
be satisfied by biomarkers of aging [2–4], which included
age-related change, nonlethal measurability, essential
factor for health, fundamental reflection of biological or
bodily process, and highly reproducibility. By consider-
ing these criteria, some clear set of requirements for bio-
markers has been discussed in the research by Sharman
and Zhumadilov [5]: 1) provide information about the
functional condition of the body, its metabolic and regu-
latory systems, 2) have quantitative characteristics that
correlate with age, 3) be reproducible, sensitive, and
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specific, 4) be suitable for use in humans as well as in la-
boratory animals. Since the biological age study began,
by considering these criteria, various biomarkers includ-
ing physical, physiological, or biochemical parameters
have been used to compute biological age [6–10]. Some
biomarkers were commonly found in these studies: body
mass index (BMI), blood pressure (BP), waist circumfer-
ence (WC), forced expiratory volume in 1 s (FEV1), body
muscle percentage (BMP), body fat percentage (BFP),
blood urea nitrogen (BUN), albumin, globulin, high dens-
ity lipoprotein (HDL), low density lipoprotein (LDL), and/
or triglyceride (TG), which are all relatively easily obtain-
able in a general health check-up. BMI, BP, and WC are
associated with physical fitness, and physical strength
could be represented by FEV1, BMP and/or BFP. Mean-
while, BUN, albumin, globulin, HDL, LDL, and TG are as-
sociated with biochemical factors.
Appropriate statistical algorithm is essential for com-

puting biological age. Currently, two statistical algo-
rithms have been introduced and widely used: multiple
linear regression (MLR) and principal component ana-
lysis (PCA). MLR had been used widely in the early stage
of biological age study; however, since several shortcom-
ings, such as overestimation of biological age for youn-
ger people, and an underestimation of biological age for
older people, have been raised [11–13], PCA algorithm
has become an alternative statistical tool to compute
biological age [6, 9, 10, 14]. In recent years, a new and
somewhat complicated algorithm, developed by
Klemera and Doubal, [15] has been used by some re-
searchers [16, 17].
Several studies have been conducted to use biological

age as an index for work ability [16], frailty [18], or phys-
ical fitness [19]. Levine and Crimmins has shown that
biological age could predict 10 year mortality more ac-
curately than other measures, such as Allostatic Load
and Framingham Risk Score using 9,942 subjects [20],
and shown that differences in biological age relative to
chronological age account for disparities in mortality be-
tween black and white subjects [21]. In the Mennonite
community in Kansas in USA, a close relationship be-
tween biological age and mortality has been investigated
using 1,009 and 568 subjects, respectively [22, 23].
Meanwhile, Brown and McDaid [24] reviewed a number
of studies and identified several risk factors affecting
mortality in elderly person: socioeconomic/demographic
risk factors such as age, education, gender, income, mari-
tal status, occupation, race/ethnicity, religion, and behav-
ioral risk factors such as smoking, alcohol intake,
physical activity, and obesity. Based on several risk fac-
tors of socioeconomic/demographic and behavioral risk
factors, a mortality prediction model has been developed
using a Markov chain framework and logistic regression
[25]. Zhu et al. have presented a logistic regression

model to gain efficiency and effectiveness in addressing
a spectrum of mortality risk assessment issues based on
US insure mortality experience study using 9 risk factors
including gender, smoking status, issue age, and under-
writing class [26].

Methods
Study population
The Korean Metabolic Syndrome Mortality Study
(KMSMS) is a retrospective cohort study based on pri-
vate health examination from 1994 to 2004, which in-
cluded 557,940 Koreans of 20–93 years old who received
routine total health check-ups at 15 health examination
centers in Korea. The causes of death in Korea were de-
rived from the Korean Statistics Information Service
(KOSIS) database. The database was confirmed and guar-
anteed by national death records from the Statistics Korea
(KOSTAT), the national agency of Korea. The KOSTAT
estimates that its registry includes more than 99% of the
deaths in Korea; cause of death was available beginning in
1992. The KOSTAT records provide the residence regis-
tration number (RRN; a unique 13-digit number assigned
to all Koreans), the cause of death (International Classifi-
cation of Diseases, 10th Edition), and the date of death. In
Korea, all people must register the birth and death by law.
The death certificate including the cause of death was al-
most written by doctors. Therefore, the cause of death is
very reliable. The study data were merged with Cause of
Death Database by residence registration number up to the
year 2011. The follow-up time for the study population was
a minimum of 7 years and extended up to 17 years.
From the total of 15,732 deceased people, 13,106 cases

were classified as intrinsic death by referencing a previ-
ous research [27]: the numbers of death caused by can-
cer and non-cancerous diseases were 7,250 and 5,856,
respectively. Extrinsic causes of death, such as suicide,
accident, infectious disease, pregnancy-related death,
or unknown causes were excluded from the study
(Additional file 1: Table S1). The research proposal
was approved by the Institutional Review Board of
Human Research of Yonsei University.

Construction of PCA model for biological age
The statistical engine for computing biological age was
developed using a data set including total 469,754
Koreans (277,029 men and 192,725 women), which is
different from MSMS data, based on PCA algorithm.
From over 60 variables measured in the general health
check-up, a total of 15 variables were selected as bio-
markers, including WC, systolic blood pressure (SBP),
diastolic blood pressure (DBP), FEV1, gamma GTP (G-
GTP), BUN, HDL, LDL, TG, fasting blood sugar (FBS),
erythrocyte sedimentation rate (ESR), BMI, BFP, BMP,
and albumin/globulin ratio (AGR). The biomarker
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selection process was based on the stepwise variable se-
lection method by maximizing coefficient of determin-
ation, which was computed using chronological age and
biological age as the dependent variable and independ-
ent variable, respectively. More detailed explanation re-
garding the construction of PCA models to compute
biological age is shown in the Additional file 1 (Appen-
dix in Additional file 1). By using the constructed model,
biological ages of the subjects consisting of MSMS data
were computed at the baseline survey. The age incre-
ment of biological age over chronological age was de-
fined as AgeDiff = biological age – chronological age for
each subject: AgeDiff was used as a covariate for logistic
regression analysis and Cox proportional hazards regres-
sion analysis to assess the absolute effect of biological
age on mortality.

Statistical analysis
SAS software, Version 9.2.0 (SAS Institute Inc., Cary,
NC) and R language ver. 3.0.1 (R Foundation for Statis-
tical Computing, Vienna, Austria) were used for all stat-
istical analyses. If there were missing values in the
biomarkers, population averages of the biomarkers mea-
sured in the relevant age and gender group were used.
Binary logistic regression analysis and chi-square statis-
tical tests were used to analyze the influence of bio-
logical age on the mortality adjusted by gender and
chronological age. For estimating 17 years risk of mor-
tality affected by age increment of biological age over
chronological age (i.e. AgeDiff ), Cox proportional haz-
ards regression models were constructed for total sub-
jects and for subgroups, considering chronological age
and gender. Age increments of biological age over
chronological age were categorized into 3 subgroups
(AgeDiff < 2, 2 ≤AgeDiff < 5, and AgeDiff ≥ 5) to estimate
the discrete effect of biological age on mortality. Kaplan-
Meier analysis with log rank test was applied to analyze
and compare the survival probabilities of subgroups de-
fined by AgeDiff.

Results
Construction of PCA model
Two PCA models were constructed to compute biological
ages of men and women, respectively, which consisted of
four unrotated principal components with corresponding
eigen values of ≥ 1.0. About 55% of total variance was
explained by these four principal components for men, and
53% of total variance for women, respectively. More detailed
results about the construction of PCA model is shown in
the Additional file 1 (Appendix in Additional file 1).

Descriptive statistics of the biomarkers
From the total 557,940 subjects, 316,848 were men
(56.8%) and 241,092 were women (43.2%). Average

chronological ages of men and women at the baseline
survey were 43.5 years and 43.6 years, respectively, and
average death ages in men and women were 64.5 years
and 65.4 years, respectively (Table 1). The baseline
chronological ages were significantly different between
alive and deceased subjects for both men and women
(two sample t-test, p < 0.001). The weight of body
muscle could not be obtained from the MSMS data, so
population averages and standard deviations of BMP
were estimated using a different data set (refer to
Appendix in Additional file 1 for more detailed informa-
tion). The proportions of the data which were used for
the analysis excluding missing data were between 4.6%
and 99.8%; 14.4% (WC), 99.8% (SBP), 92.4% (FEV1),
94.9% (G-GTP), 98.8% (BUN), 90.4%(HDL), 98.7% (TG),
99.7% (FBS), 90.7% (LDL), 21.2% (BFP), 0% (BMP), and
94.3% (AGR) for male data, and 16.5% (WC), 99.3%
(DBP), 92.1% (FEV1), 93.5% (G-GTP), 98.6% (BUN),
88.6% (HDL), 98.5% (TG), 99.7% (FBS), 4.6% (ESR),
88.9% (LDL), 99.8% (BMI), 20.2% (BFP), 0% (BMP), and
93.0% (AGR) for female data. The overall distribution
of biomarkers is described in the Additional file 1:
Table S2. The numbers of deceased subjects whose
cause of death by cancer and non-cancerous diseases
were 7,250 and 5,856, respectively (Additional file 1:
Table S3). Death by senility was regarded as death by
non-cancerous disease, because too few cases were ob-
served to be analyzed separately (127 cases in men and
80 cases in women, data not shown).

Distribution of age increment of biological age over
chronological age
The biological ages of the subjects at the baseline survey
and AgeDiff were computed as described in the Methods.
The average biological age and chronological age were
nearly the same in the alive subjects, however, biological
age was larger than chronological age in the deceased sub-
jects: in the deceased subjects, average AgeDiffs were
0.39 years both in men and women, which were signifi-
cantly larger than the average AgeDiffs for the alive
subjects, which were nearly zero (p value < 0.001, Table 2).
AgeDiff was the largest in the subjects whose baseline
chronological age was within 50–59 years (AgeDiff = 0.51
± 1.93), and smallest in the people whose baseline chrono-
logical age was within 20–39 years (AgeDiff = 0.19 ± 2.14).
In the oldest subgroup (baseline chronological age ≥
60 years), AgeDiff was smaller than the other subgroups
except 20–39 years subgroup (AgeDiff = 0.34 ± 1.66).
However, the distribution of AgeDiff was different be-
tween men and women: in women, AgeDiff was smallest
in the 40–49 years subgroup (AgeDiff = 0.31 ± 2.17).
Meanwhile, when the cause of death was considered, Age-
Diffs were computed to be larger in the subjects whose
cause of death was non-cancerous disease, rather than
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cancer, regardless of chronological age subgroup or gen-
der. When AgeDiff was categorized into 2 subgroups,
261,525 subjects were AgeDiff ≤ 0 (49.3%) and 268,495
were AgeDiff > 0 (50.7%) in alive subjects. In the deceased
subjects, the proportions changed to 41.9% and 58.1%, re-
spectively. When AgeDiff was categorized into 3 sub-
groups of AgeDiff < 2, 2 ≤AgeDiff < 5, and AgeDiff ≥ 5, the
proportions became 88.5%, 10.8%, and 0.7%, respectively
in alive subjects. Meanwhile, in the deceased subjects, the
proportions changed to 83.5%, 14.9%, and 1.6%, respect-
ively: the ratios of deceased subjects relative to alive sub-
jects significantly increased from 2.2% to 5.1% as AgeDiff
became larger, whereas, ratios of alive subjects decreased
from 97.8% to 94.9% as AgeDiff became larger (linear
trend test, p value < 0.0001, Table 3). Similar patterns were
observed when AgeDiff was categorized into 2 subgroups
(AgeDiff ≤ 0 and AgeDiff > 0, data not shown). The trends
of proportions separated by the cause of death and gender
were presented in the Additional file 1: Figure S1.

Influence of AgeDiff on mortality and survival analysis
Significant influence of AgeDiff on mortality was found by
binary logistic regression analysis. In men, if biological age

Table 2 Average and standard deviation of AgeDiff according to gender and chronological age subgroup at the baseline survey

Men Women Total

Subject Chronological
age subgroups

N Mean ± SD p value N Mean ± SD p value N Mean ± SD p value

Alive 20-39 125,149 0.00 ± 1.65 - 97,771 0.00 ± 1.87 - 222,920 0.00 ± 1.75 -

40-49 104,011 −0.01 ± 1.77 - 65,572 0.00 ± 2.00 - 169,583 −0.01 ± 1.86 -

50-59 53,618 −0.03 ± 1.73 - 49,006 −0.01 ± 1.95 - 102,624 −0.02 ± 1.84 -

≥60 24,793 −0.06 ± 1.57 - 24,914 −0.03 ± 1.72 - 49,707 −0.05 ± 1.65 -

Total 307,571 −0.01 ± 1.70 - 237,263 −0.01 ± 1.91 - 544,834 −0.01 ± 1.79 -

Deceased by cancer 20-39 296 −0.03 ± 1.84 0.722(1) 210 0.30 ± 2.37 0.021(1) 506 0.1 ± 2.08 0.183(1)

40-49 948 0.20 ± 1.77 <0.001(1) 324 0.11 ± 2.02 0.319(1) 1,272 0.18 ± 1.83 <0.001(1)

50-59 1,700 0.34 ± 1.73 <0.001(1) 652 0.19 ± 1.93 0.008(1) 2,352 0.3 ± 1.79 <0.001(1)

≥60 2,272 0.15 ± 1.48 <0.001(1) 848 0.10 ± 1.75 0.039(1) 3,120 0.14 ± 1.56 <0.001(1)

Total 5,216 0.21 ± 1.64 <0.001(1) 2,034 0.15 ± 1.92 <0.001(1) 7,250 0.20 ± 1.72 <0.001(1)

Deceased by non-cancerous
disease

20-39 253 0.16 ± 2.09 0.258(2) 83 0.76 ± 2.60 0.024(2) 336 0.31 ± 2.24 0.024(2)

40-49 655 0.74 ± 1.96 <0.001(2) 142 0.77 ± 2.41 <0.001(2) 797 0.75 ± 2.05 <0.001(2)

50-59 990 0.83 ± 1.99 <0.001(2) 423 0.89 ± 2.38 <0.001(2) 1,413 0.85 ± 2.11 <0.001(2)

≥60 2,163 0.52 ± 1.67 <0.001(2) 1,147 0.57 ± 1.87 <0.001(2) 3,310 0.53 ± 1.74 <0.001(2)

Total 4,061 0.61 ± 1.83 <0.001(2) 1,795 0.67 ± 2.08 <0.001(2) 5,856 0.63 ± 1.91 <0.001(2)

Deceased by cancer and
non-cancerous disease

20-39 549 0.06 ± 1.96 0.423(3) 293 0.43 ± 2.44 <0.001(3) 842 0.19 ± 2.14 0.020(3)

40-49 1,603 0.42 ± 1.87 <0.001(3) 466 0.31 ± 2.17 0.001(3) 2,069 0.40 ± 1.94 <0.001(3)

50-59 2,690 0.52 ± 1.84 <0.001(3) 1,075 0.47 ± 2.14 <0.001(3) 3,765 0.51 ± 1.93 <0.001(3)

≥60 4,435 0.33 ± 1.58 <0.001(3) 1,995 0.37 ± 1.83 <0.001(3) 6,430 0.34 ± 1.66 <0.001(3)

Total 9,277 0.39 ± 1.74 <0.001(3) 3,829 0.39 ± 2.02 <0.001(3) 13,106 0.39 ± 1.82 <0.001(3)

AgeDiff biological age – chronological age
p value(1) computed using two sample t test, between alive subjects and deceased subjects by cancer
p value(2) computed using two sample t test, between alive subjects and deceased subjects by non-cancerous disease
p value(3) computed using two sample t test, between alive subjects and deceased subjects by cancer and non-cancerous disease

Table 3 Distribution of deceased or alive subjects according to
gender and subgroups of AgeDiff

Subject Subgroup Alive, N (%) Deceased, N (%) p value

Men AgeDiff < 2 277,136 (97.25) 7,851 (2.75) <0.0001

2 ≤ AgeDiff < 5 29,008 (95.69) 1,305 (4.31)

AgeDiff≥ 5 1,427 (92.18) 121 (7.82)

AgeDiff≤ 0 144,255 (97.50) 3,698 (2.50) <0.0001

AgeDiff > 0 154,204 (96.66) 5,333 (3.34)

Women AgeDiff < 2 205,097 (98.51) 3,101 (1.49) <0.0001

2 ≤ AgeDiff < 5 29,812 (97.89) 644 (2.11)

AgeDiff≥ 5 2,354 (96.55) 84 (3.45)

AgeDiff≤ 0 117,270 (98.61) 1,653 (1.39) <0.0001

AgeDiff > 0 114,291 (98.20) 2,091 (1.80)

Total AgeDiff < 2 482,233 (97.78) 10,952 (2.22) <0.0001

2 ≤ AgeDiff < 5 58,820 (96.79) 1,949 (3.21)

AgeDiff≥ 5 3,781 (94.86) 205 (5.14)

AgeDiff≤ 0 261,525 (97.99) 5,351 (2.01) <0.0001

AgeDiff > 0 268,495 (97.31) 7,424 (2.69)

AgeDiff biological age – chronological age
p value computed using linear trend test
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was computed to be larger than chronological age by
1 year (i.e. AgeDiff increased by 1), the mortality was
increased by 17.3% (OR = 1.173, 95% CIs = 1.158-1.189,
p value < 0.001, Additional file 1: Table S4). In women,
the mortality was increased by 13.0% (OR = 1.130, 95%
CIs = 1.110 - 1.150, p value < 0.001, Additional file 1:
Table S4). The effect of AgeDiff on mortality was more
evident in deceased subjects whose cause of death was
non-cancerous disease, compared to cancer: OR = 1.263
for non-cancerous disease and OR = 1.083 for cancer.
Table 2 shows that averages of AgeDiff were different

according to baseline chronological age subgroups. For
this reason, Cox proportional hazards regression models
were fitted separately for each baseline chronological age
subgroup using AgeDiff as the continuous covariate
(Table 4, Additional file 1: Tables S5, and S6). The haz-
ard ratio in the people whose baseline chronological age
was within 50–59 years was increased by 17% in per unit
time as AgeDiff increased by 1 year, regardless of the
event type: the hazard ratio was larger when death oc-
curred by non-cancerous disease, compared to cancer
(HR = 1.30 vs. HR = 1.10, adjusted by baseline chrono-
logical age and gender). The hazard ratio in the oldest
chronological age subgroup (baseline chronological age ≥
60 years) was slightly less than in the people whose
baseline chronological age was within 50–59 years (HR
= 1.14 vs. HR = 1.17). Except in the 20–39 years sub-
group and event of death by cancer, all hazard ratios
were statistically significant (p values < 0.001, Table 4).
Figure 1 shows the distribution of hazard ratios for
each baseline chronological age subgroup separated by
gender and cause of death (means and 95% confidence
intervals). In men, hazard ratios gradually increased as
baseline chronological age increased from 20 years to
59 years, and decreased slightly in the oldest subjects
(baseline chronological age ≥ 60). This increasing ten-
dency was more distinct when the cause of death was
non-cancerous disease, rather than cancer. Hazard ra-
tio was largest in the subjects whose baseline chrono-
logical age was within 50–59 years (HR = 1.34, 95%
CIs = 1.29 - 1.39), and smallest in the 20–39 years

subgroup (HR = 1.10, 95% CIs = 1.02 - 1.18) (Additional
file 1: Table S5). In women, however, no distinct pattern of
increase or decrease in hazard ratio was observed across
all baseline chronological age subgroups (Additional file 1:
Table S6).
When AgeDiff was categorized into 3 subgroups, such

as AgeDiff < 2, 2 ≤AgeDiff < 5, and AgeDiff ≥ 5, hazard ra-
tios became larger as AgeDiff increased across all the
chronological age subgroups and gender. For example, the
estimated hazard ratio in the subgroup 2 ≤AgeDiff < 5
was increased by 77% compared to the base subgroup
(AgeDiff < 2) in men whose baseline chronological age
was within 50–59 years (HR = 1.77, 95% CIs = 1.60 - 1.96,
Additional file 1: Table S7). The largest hazard ratio was
observed in men in the subgroup AgeDiff ≥ 5, whose base-
line chronological age was within 50–59 years (HR = 4.79,
95% CIs = 3.66 - 6.27, Additional file 1: Table S7). Similar
results were found even if the cause of death was sepa-
rated by cancer or non-cancerous disease; however, the in-
crement pattern of hazard ratios was more obvious when
the cause of death was non-cancerous disease, rather than
cancer (data not shown).
Kaplan-Meier analysis was performed, and survival

curves were plotted to compare survival probabilities of
3 subgroups defined by AgeDiff by considering gender,
event type, or baseline chronological age subgroup
(Fig. 2, Additional file 1: Figures S2, S3, S4, and S5). The
survival probabilities were significantly different among
the 3 subgroups: in the base subgroup (AgeDiff < 2),
95.2% men survived over 15 years, whereas 92.4% and
86.5% men in the subgroup of 2 ≤AgeDiff < 5 and Age-
Diff ≥ 5 survived over 15 years, respectively (log rank
test, p value < 0.001, Fig. 2). In women, the difference of
survival probabilities was smaller than men, but still sig-
nificant (log rank test, p value < 0.001, Fig. 2). The differ-
ence of survival probabilities among the 3 subgroups of
AgeDiff was more obvious when subjects were within
50–59 years chronological age subgroup: in the base sub-
group (AgeDiff < 2), 93.4% men survived over 15 years,
whereas only 69.7% men in the subgroup of AgeDiff ≥ 5
survived. In women whose baseline chronological age was

Table 4 Hazard ratios for total subjects (men and women) according to baseline chronological age subgroups and cause of death

Death by cancer Death by non-cancerous disease Death by cancer and non-cancerous disease

Chronological age subgroups HR (95% CIs) HR (95% CIs) HR (95% CIs)

20-39 1.04 (0.99-1.10) 1.13 (1.06-1.20) 1.08 (1.04-1.12)

40-49 1.06 (1.03-1.09) 1.26 (1.21-1.31) 1.13 (1.11-1.16)

50-59 1.10 (1.08-1.13) 1.30 (1.26-1.34) 1.17 (1.15-1.19)

≥60 1.07 (1.05-1.09) 1.22 (1.20-1.25) 1.14 (1.13-1.16)

Total 1.08 (1.07-1.10) 1.25 (1.23-1.27) 1.15 (1.14-1.16)

All results were computed using Cox proportional hazards regression analysis adjusted by baseline chronological age and gender
HR hazard ratio, CIs confidence intervals
p values < 0.001 for all baseline chronological age subgroups and event types except in the 20–39 years subgroup when the cause of death was cancer
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within 50–59 years, survival probabilities at 15 years
dropped from 97.1% to 88.2% (log rank test, p value
< 0.001, Fig. 2). Even if the cause of death was sepa-
rated, survival probabilities among the 3 subgroups of
AgeDiff remained significantly different, except in the case
that women and the cause of death was cancer (log rank
test, p value = 0.234, Additional file 1: Figure S2). The
difference of survival probabilities was obvious across
all baseline chronological age subgroups (20–39, 40–49,

50–59, and ≥ 60 years) and gender when the event was
death by non-cancerous disease (log rank test, p value
< 0.002, Additional file 1: Figure S5).

Discussion
In the current study, we suggested that biological age
could be used as a useful index to predict a person’s risk
of death in the future. 15 variables were selected as bio-
markers to compute biological age, as was described in

Fig. 1 Distribution of hazard ratios according to subgroups of baseline chronological age, gender, and cause of death. Means and 95% confidence
intervals are plotted. a Distribution of hazard ratios when the cause of death was cancer. b Distribution of hazard ratios when the cause of death was
non-cancerous disease. c Distribution of hazard ratios when the cause of death was cancer and non-cancerous disease

Fig. 2 Kaplan-Meier survival plots when the cause of death included both cancer and non-cancerous disease. Blue (1), red (2), and green (3)
curves are for the subjects in the AgeDiff < 2, 2 ≤ AgeDiff < 5, and AgeDiff≥ 5 subgroups, respectively: AgeDiff = biological age - chronological
age; STIME = survival time (years); Log rank test p value < 0.001 for all cases; a survival plots for men; b survival plots for women; c survival plots
for men and women; d survival plots for men whose baseline chronological age was within 50–59 years; e survival plots for women whose baseline
chronological age was within 50–59 years; f survival plots for men and women whose baseline chronological age was within 50–59 years
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the Methods section. Subjects’ biological ages were com-
puted, using a PCA-based statistical algorithm. For the
study purpose, cohort data for a total of 557,940 Koreans
of 20–93 years old from MSMS was used (maximum
follow-up time was 17 years). Some similar studies have
been conducted [17, 20–23, 28], in which several hun-
dreds to near ten thousand subjects have been used to
compute biological ages by applying multiple linear re-
gression, principal component analysis, or the algorithm
suggested by Klemera and Doubal [15]. Then, using the
same data, Cox proportional hazards regression models
were constructed to estimate the effect of biological age
on mortality in the future. The data size and follow-up
time used in our study surpasses these previous studies.
In addition, of particular importance, we have success-
fully validated biological age as a useful index for mor-
tality in the future using an independently generated
data set, which is different from the data set used to
construct a model for computing biological age.
The finding AgeDiff was significantly greater in the de-

ceased subjects implies that biological age might be
functioning as a latent marker for mortality. Meanwhile,
the increasing pattern of AgeDiff slightly declined in the
oldest subgroup (baseline chronological age ≥ 60 years),
which implies that the influence of biological age on the
mortality diminished as people became over 60 years
old. Otherwise, the biomarkers used to compute bio-
logical age did not have sufficient impact on the mortal-
ity in the oldest subjects analyzed. In the current study,
the 15 biomarkers used to compute biological age have 2
types of relationship with chronological age: 11 bio-
markers, including WC, SBP, DBP, G-GTP, BUN, LDL,
TG, FBS, ESR, BMI, and BFP, showed a positive correl-
ation with chronological age, and 4 biomarkers, such as
FEV1, HDL, BMP, and AGR, showed a negative correl-
ation with chronological age. A positive correlation
means that a larger value is observed in the biomarker
as age increases. A negative correlation means the con-
verse. As the correlation was an overall estimation over
entire chronological age ranges, age-specific correlation
within some specified age range, such as chronological
age ≥ 60 could be different.
In the MSMS data, 4 biomarkers, G-GTP, HDL, TG,

and FBS, showed an opposite trend in deceased men:
smaller values of G-GTP, TG, and FBS, and larger value
of HDL were observed in the deceased subjects whose
baseline chronological age ≥ 60 compared to the people
of 50–59 years subgroup, which might act as diminish-
ing factors for computing biological age. In women,
smaller values of G-GTP, ESR, and BMI were observed
in deceased people whose baseline chronological age ≥
60 compared to the people of 50–59 years subgroup
(data not shown). As such, it is conjectured that if differ-
ent sets of biomarkers were used to compute biological

age, monotonically increasing pattern of AgeDiff could
be possible as the baseline chronological age becomes
larger; in any case, the influence of biological age on
mortality is clear in the elderly.
In addition to these results, another interesting finding

is that AgeDiff was computed to be larger when the
cause of death was from non-cancerous disease, com-
pared to cancer (p values < 0.001, data not shown),
which could be explained by the type of biomarkers used
to compute biological age in this study. The majority of
biomarkers were associated with metabolic syndrome,
WC, SBP, DBP, HDL, TG, and FBS, or physical strength,
FEV1, BFP, and BMP, but not, or little, related to cancer.
Cancer-related biomarkers were only G-GTP and AGR
[29, 30]. Meanwhile, the pattern of average AgeDiffs sep-
arated by baseline chronological age subgroup and/or
cause of death was different between men and women.
One possible explanation is that there may exist a some-
what different mechanism of senescence in men and
women to influence mortality; otherwise, a biased result
might be induced due to the small number of deceased
female subjects, compared to men. In fact, the variances
of AgeDiff in the deceased women were larger than the
deceased men.
In the clinical research, chronological ages were usu-

ally categorized into several subgroups: for instance, less
than 30 years, 30–60 years, and more than 60 years. In a
similar way, biological age could be categorized into sev-
eral subgroups; however, instead of categorizing bio-
logical age directly, the age increment, AgeDiff, was
categorized into 2 or 3 subgroups, because biological age
is not ‘real’, only computed as a value proxy for individ-
ual aging. As such, AgeDiff could be used to assess the
absolute effect of biological age on mortality, adjusted by
baseline chronological age. The ratios of deceased sub-
jects relative to alive subjects significantly increased as
AgeDiff became larger, which implies that people
whose biological age was computed to be larger than
their baseline chronological age were at a higher risk of
mortality. The increased pattern was more apparent
when the cause of death was non-cancerous disease
(data not shown).
For different hazard ratios according to chronological

age subgroups, gender, and cause of death, we could
make some conjectures: 1) the biomarkers used to com-
pute biological age were appropriate to assess mortality
for middle to early old-aged subjects, but not for rela-
tively younger (20–39 years) subjects, 2) there is an in-
trinsically different influencing mechanism of biological
age on mortality between men and women, 3) current
biomarkers have a relatively stronger relationship with
non-cancerous disease, compared to cancer. For verifica-
tion of these conjectures, a different set of biomarkers
should be identified and analyzed for a mortality study
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jointly considering gender, chronological age, and/or
cause of death.
Additional file 1: Figures S3, S4, and S5 show different

decreasing patterns of survival probabilities of subjects
in the different subgroups of AgeDiff, separated by base-
line chronological age subgroups, gender, and cause of
death. When the event was defined as death by cancer,
no conspicuous difference of survival probabilities were
shown in some of the baseline chronological age sub-
groups of men or women (p value > 0.2, Additional file
1: Figure S4). On the other hand, significant decreases in
survival probability were observed for subgroup Age-
Diff ≥ 5 when the cause of death was non-cancerous dis-
ease (p value < 0.002, Additional file 1: Figure S5). For
instance, survival probability at 15 years was 61.7% in
men whose baseline chronological age ≥ 60 when their
biological age were computed as 5 years more than their
chronological age. However, the survival probabilities of
the subjects in AgeDiff < 2 and 2 ≤AgeDiff < 5 subgroups
were 87.6% and 76.7%, respectively, significantly larger
than 61.7% (log rank test, p value < 0.001). These results
imply that biological age could influence mortality at
discrete levels, as well as in a continuous way.
In spite of the large study population and successful val-

idation of biological age on the mortality in this study,
there are limitations in this study and some improvements
remain necessary. The proportions of total variance ex-
plained by the PCA models were about 50%, which is low
compared to the usual case. In general, the proportion
goes beyond 67% of total variance. For instance, Cho et al.
reported that 66.9% of total variance had been explained
by three components of which eigen values greater than
1.0 [16]. Meanwhile, Bai et al. reported that four compo-
nents with eigen values ≥ 1.0 had explained 55.6% of total
variance in a study based on healthy people in China [31].
In the cases when the first principal component was
used alone, the proportion varied from 20.4% to 57.6%
[7, 9, 10, 14, 19]. Another consideration is that different
biomarkers should be identified and analyzed to assess
their influence on mortality. The biomarkers used in our
study were selected mainly based on the statistical correl-
ation with the baseline chronological age. As such, it is
possible that different biomarkers may explain questions
that remain following our study. Finally, different algo-
rithms should be additionally considered to compute
biological age as some researchers insisted that the algo-
rithm developed by Klemera and Doubal [15] was superior
to the other algorithms in estimating biological age used
here [16, 22, 28]. Despite these shortcomings, the current
study remains valid as we provide strong evidence
that biological age influenced mortality and could be
used as a useful index to predict future risk of death
by analyzing the effect of biological age on the mor-
tality in a manifold of ways.

Conclusions
In the current study, we suggest that biological age could
be used as a useful index to predict future risk of death
using a very large cohort data. Larger hazard ratios were
observed in middle to old-aged people compared to youn-
ger people, which implies that biological age might be
more strongly functioning as a latent marker for mortality
in the senior age group. Meanwhile, larger hazard ratios
were more obvious in men and when the cause of death
was non-cancerous disease. However, considering the lim-
itations and possible bias in this study, further research
should be conducted in order to confirm the validity of
biological age as a predictive marker for mortality.
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