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ABSTRACT 

 

 

 

The role of Src kinase in regulation of HDAC3 function 

 

 

Garam Guk 

 

Department of Medicine or Medical Science 

The Graduate School, Yonsei University  

 

(Directed by Professor Ho-Geun Yoon) 

 

Histone deacetylase 3 (HDAC3) decreases acetylation level by 

removing acetyl group from histone. HDAC3 also binds to non-histone 

proteins and consequently regulates their cellular function. It has been 

well demonstrated that HDAC3 is phosphorylated at serine 424 

increasing by casein kinase 2 (CK2), which subsequently increases its 

activity. Moreover, HDAC3 is shown to interact with Src kinase. 

Although the interaction between HDAC3 and Src is reported, it has 

been still remained uncertain whether Src phosphorylates HDAC3 and 
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affects the function of HDAC3. 

Breast cancer is one of prevalent cancer to women in the world. 

Breast cancer is grouped into four subtypes - luminal A, luminal B, 

HER2 and triple negative breast cancer (TNBC) - depending on 

molecular genomic profiles. The treatment of breast cancer is 

performed appropriately in various ways such as mastectomy, radiation 

therapy, chemotherapy, hormone therapy and targeted therapy. Based 

on understanding of molecular pathway in cancer, there has been much 

attention toward targeted therapy that has high specificity to molecules 

responsible for cancer phenotypes. But, there are a lot of relapses of 

breast cancer in spite of treating by target therapy now that breast 

cancer avoids apoptosis using other pathways and shows heterogeneity. 

In this study, it was found that HDAC3 directly interacted with Src 

by GST pull down assay and immunoprecipitation analysis. By domain 

mapping analysis, Src interacted with C-terminal domain (277-428 a.a.) 

of HDAC3 and phosphorylated tyrosine-325,328 and 331 of HDAC3. 

Importantly, overexpression of Src, but not inactive Src, increases the 

activity of HDAC3. In contrast, mutation of tyrosine residues at 325, 

328 and 331 of HDAC3 abolished the overexpression effect of Src on 

HDAC3 activity. Moreover, a proliferation of breast cancer cell 

expressing phospho-deficient mutated HDAC3 is decreased when 

compared to control. Thus, it was suggested that phosphorylation of 
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HDAC3 by Src kinase regulates the proliferation of breast cancer cell. 
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I. INTRODUCTION 

 

Histone deacetylase (HDAC) detaches acetyl group from histone, regulating 

gene expression at transcription level.
1
 HDACs are classified into four classes, 

class Ⅰ,Ⅱ, Ⅲ and Ⅳ based on zinc or NAD
+
 dependent mechanisms and 

their sequence similarity.
2
 One of them, HDAC3 is categorized into class Ⅰ 

HDAC and exhibits distinct characteristics unlike other class Ⅰ HDACs.
1
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First, it recruits other proteins as component like SMRT(Silencing mediator of 

retinoic and thyroid receptors) / NCOR (nuclear receptor co-repressor) and 

MAPK1.
3,4

 Second, it moves relatively freely from nucleus to cytoplasm.
1
 

Lastly, its catalytic domain is located comparatively closer to N-terminal 

region.
1
  

 HDAC3 can bind not only histone but transcription factors, oncogenes and 

tumor suppressors. It decreases acetylation level of target proteins so their 

expression and function are regulated in cellular level.
5
 It is reported HDAC3 

deacetylates RelA. Deacetylated RelA promotes complex formation with IB. 

Then, RelA translocates from the nucleus to the cytoplasm.
6
 HDAC3 

competes with p300, regulating acetylation level of STAT3 in B-cell 

lymphoma.
7
 In Ly3 cell, HDAC3 retains STAT3 protein in the nucleus and 

increases phosphorylation level of STAT3.
7
 

HDAC is modified through phosphorylation, acetylation, ubiqutination and 

sumoylation called post translational modification (PTM).
8
  PTM affects  

stability, location, activity and interaction of target proteins.
8
 According to the 

previous studies, HDAC3 S424 is phosphorylated by casein Kinase (CK2) and 

its activity is increased in mitosis of cell cycle.
9
 In contrast, N-terminal of 

HDAC3 is dephosphorylated by serine/threonine phosphatase (PP4) and its 

activity is decreased.
10

 These findings suggested the phosphorylation status of 

HDAC3 regulates activity.  

HDAC3 is also phosphorylated by other kinases.
11-14

 One of them, Src 

kinase, an enzyme phosphorylates tyrosine residues in substrate, is located in 

cytoplasm mainly being inactivated state.
15

 Src is activated by a number of 
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growth factor receptors such as EGFR, VEGFR and IGFR. It also switches on 

PI3K/AKT, RAS/RAF/MAPK, STAT and FAK signal pathway and 

modulates cellular processes. They are involved in regulation of cell 

survival,
16,17

 proliferation,
18

 angiogenesis
19-21

  and migration.
22,23

 Src is 

usually inactive by phosphorylation of Y530, but it can be activated by 

phosphorylation of Y419 at SH1 domain induced by conformational change 

through growth factors.
24

 

Until now, impacts of Src kinase on tumorigenesis have been studied. It has 

been reported the activity of tyrosine kinase is increased by Src in malignant 

breast cancer.
25

 The interaction between Src and EGFR promotes the 

tumorigenesis in MDA-MB-468 and MDA-MB-231 cell.
26

 A tumor 

suppressor, RUNX3 is blocked to move into nucleus. Therefore, RUNX3 

cannot function as tumor suppressor after phosphorylation by Src.
27

 

There are reports on interaction between HDAC3 and Src kinase in cancer, 

but it still remains to be further investigated. The phosphorylation of HDAC3 

by Src was discovered for the first time at membrane of keratinocyte by IP 

assay.
11

 When MDA-MB-231 was treated with hepatocyte grow factor (HGF), 

phosphorylated HDAC3 by Src is localized at membrane and phosphorylation 

of HDAC3 decreased the expression of CXCR3, promoting metastasis of 

cancer cell.
12

 

Breast cancer is the most common cancer in women throughout the world.
28

 

It is also fifth leading cause of cancer death.
28

 In 2017, it is expected that 

about 257,000 new diagnoses of breast cancer in women.
28

 In Korea, breast 

cancer is the second most prevalent cancer in women and the incidence of 
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breast cancer has steadily increased after 1999.
29

  

Breast cancer is categorized into four basic groups (luminal A, luminal B, 

HER2 and triple-negative) based on genomic profiles. First, luminal A and 

luminal B type breast cancers express estrogen receptors (ER) and/or 

progesterone receptors (PR). Approximately, from 60% to 70% of breast 

cancers are involved in luminal A and luminal B type and they may grow 

dependent on estrogen and/or progesterone. The elevated activity of 

PI3K/AKT/mTOR signaling is observed in human ER positive breast cancer.
30

  

The mutation or amplification of gene related PI3K/AKT/mTOR pathway 

drives ER positive breast cancer more proliferative.
31-34

 Unlike in other breast 

cancer subgroups, more than half of all disease recurrences in HR positive 

breast cancer occur 6 years or more after diagnosis, particularly following 5 

years of adjuvant anti-estrogen therapy.
35

 HER2 (human epidermal growth 

factor receptor 2) positive group constitutes from 15% to 20% of breast 

cancer.
36

 It is reported that HER2 receptors are more amplified on cell surface 

in HER2 positive breast cancer and numerous HER2 receptors promote 

malignant tumor phenotypes.
37

 Triple negative breast cancer (TNBC) accounts 

for from 10% to 20% of breast cancer.
38

 It lacks expression of hormone 

receptor (ER and PR) and HER2.
39

 Mutant p53 and p63 complex blocks 

anti-metastatic abilities by weakening the activity of Rab7 which is a 

molecular motor responsible for the transport of EGFR cargo to the lysosome 

for degradation in TNBC.
40-45

 TNBC patients have a higher rate of distant 

recurrence and a poorer prognosis than women with other breast cancer 

subtypes.
46,47
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Depending on subtype and grade, various methods are applied to treat 

breast cancer. Surgery, radiotherapy, chemotherapy, hormone therapy, and 

targeted therapy are used to manage the symptom. Surgery is considered as 

main therapy for breast cancer in combination with one or additional therapies. 

Radiotherapy uses high energy beam like X-ray and its aim is to minify tumor 

size before surgery. In comparison with surgery, radiotherapy has the 

advantage of being non-invasive and potentially organ preserving,
48

 however, 

it was reported that adverse effects such as dermatitis, fatigue, swelling and 

heaviness occurred.
49-51

 Chemotherapy is remedy for metastatic or recurrent 

breast cancer and uses cancer-killing drugs such as paclitaxel, 5-fluorouracil 

and Paraplatin. When paclitaxel was administered to breast cancer patients 

weekly, disease-free survival had been substantially meliorated.
52

 However, 

diverse genetic heterogeneity of cancer cell correlated tumor progression, 

worse clinical outcome and this resulted in drug resistance.
53,54

 To overcome 

hurdles, from two to four kinds of drugs have been combined to treat breast 

cancer.
55-58

 Hormone therapy inhibits cancer cells from being proliferation 

which is based upon stimulation of estrogen and progesterone. Therefore, 

hormone therapy is only effective treatment for hormone positive breast 

cancer patients. Tamoxifen,
59

 megestrol
60,61

 and fulvestrant
62,63

 have been 

widely used as anti-cancer drug in hormone therapy. It was also made the 

discovery about endocrine resistance arose by activating 

endocrine-independent growth and survival pathway resulted from genomic or 

epigenetic variation.
64

 As contribution of research on molecular pathway in 

cancer biology, novel targets for developing cancer drugs like HER2,
65
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PI3K,
66

 FGFR,
66

 cyclin D,
66,67

 CDK4,
66,67

 HSP90,
68

 BRCA1/2
69

 and 

HDAC
70-75

 have been identified. They are responsible for growth factor 

receptor, PI3K/mTOR pathway, cell cycle regulation and epigenetic 

pathway.
76

 Trastuzumab, a fully humanized monoclonal antibody, targets 

HER2 extracellular domain and Trastuzumab is effective to block PI3K, 

MAPK signaling. The synthetic lethality in BRCAness termed as BRCA1 or 

BRCA2 mutation carriers is induced by PARP inhibitor, Olaparib.
77

 

The DNA methylation status in CpG island of ESR1 promoter coding 

estrogen receptor gene induced the chromatin inactivation.
78,79

 It was 

demonstrated that interplay between DNA methylation and chromatin 

inactivation is mediated by histone modification such as ESR1 silencing 

through interaction between DNA methyltransferase 1 (DNMT1) and HDACs 

in ER negative breast cancer.
80

 The aberrant expression of HDACs contributes 

to maintain phenotypes of breast cancer. For this reason, HDACs are 

considered as one of attractive targets for breast cancer drug. HDAC inhibitors 

are divided into four groups - hydroxamates, benzamides, cyclic peptides and 

aliphatic acids - based on their chemical structure. They are also classified 

based on their specificity. It is reported that Panobinostat suppresses 

aromatase promoter and inhibits proliferation of H295R/MCF7 co-culture 

model.
73

 Entinostat (SNDX-275), one of class Ⅰ HDAC inhibitor, 

diminishes cell growth by inducing apoptosis.
74

 Tumor initiating cell (TIC) of 

triple negative breast cancer cell (TNBC) is attenuated in colony formation 

and metastatic outgrowth in treatment of a HDAC inhibitor,
75

 however, it has 

been reported that breast cancer do not respond well targeted treatment by 
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activating mechanism of therapeutic resistance. There are other limitations 

such as a burden of medical expenses and a risk of overtreatment. 

Previous studies demonstrated Src phosphorylates HDAC3 but it hasn’t 

been proven the phosphorylation sites of HDAC3 by Src.
11,12

 Furthermore, the 

effect of Src-mediated phosphorylation on HDAC3 function has to be 

explained. 

In this study, tyrosine residues of HDAC3 phosphorylated by Src were 

identified. It was found that phosphorylation status of HDAC3 affect its 

activity. Furthermore, phosphorylation status of HDAC3 by Src was involved 

in proliferation of breast cancer cell.   
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II. MATERIALS AND METHODS 

 

1. Cell culture and reagents 

Human breast cancer cells (SKBR3, BT20, MDA-MB-231) and the human 

embryonic kidney cell (HEK293FT) cell were obtained from the American 

Type Culture collection (ATCC, Manassas, VA, USA). All cells were cultured 

in DMEM (Corning, NY, USA) supplemented with 10% (v/v) heat-inactivated 

fetal bovine serum (FBS) (Hyclone, Logan, UT, USA), 1% 

penicillin/streptomycin (Hyclone, Logan, UT, USA) at 37℃ under 5% CO2. 

Transient transfection was performed using TransIT 2020 (Mirus, Madison, 

WI, USA). 

 

2. Plasmid and cloning 

Wild-type, full-length HDAC3 and its mutant constructs were generated by 

PCR and cloned into the plasmid vectors pCDNA 3.1 myc his A (Invitrogen, 

Carlsbad, CA, USA) or pCDNA3 2X flag plasmid vector. Wild-type, 

full-length c-Src and its mutant constructs were generated by PCR and cloned 

into the plasmid vectors pCDNA3 HA plasmid vector. All plasmid constructs 

were verified by DNA sequencing. 

 

3. GST fusion proteins purification and in vitro translation 

GST or GST fusion protein was purified from E.coli BL21(DE3) (Real 

Biotech Corporation, Banqiao, Taiwan) transformed with GST or GST fusion 

proteins expression plasmid. The E.coli were induced with 0.1 mM 
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isopropyl--D-thiogalactopyranoside (IPTG) (Sigma-Aldrich, St.Louis, MO, 

USA) for 72 hours at 16℃. The cells were lysed by sonication in MBP buffer 

containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.1% NP-40, 1 mM 

DETA, 1 mM DTT. Lysates were vortexed and cleared by centrifugation at 

13,000 rpm for 30 minutes at 4℃. Supernatants were purified using 

Glutathione-agarose 4 bead (Peptron, Daejeon, Korea). The purified proteins 

were resolved with SDS-PAGE to quantitate and assess purity. The same 

amount of aliquot of the protein-agarose bead complex was used in 

GST-fusion protein pull down assay. 

All in vitro translations were performed by TNT T7 quick coupled 

transcription/translation kit according to the manufacturer’s protocol. 

(Promega, San Luis Obispo, CA, USA). Plasmid DNA template, TNT T7 

quick master mixture and [
35

S]-methionine (1175.0 Ci/mol, PerkinElmer Life 

Sciences Inc., Waltham, MA, USA) were mixed and incubated at 30℃ for 90 

minutes. 

 

4. GST pull down assay 

The purified GST fusion proteins (5 g) were incubated with 

Glutathion-agarose 4 bead (Peptron) for 16 hours at 4℃ and washed three 

times with 1 ml MBP buffer. After that, GST fusion proteins incubated with 

10 l of in vitro translated products for 16 hours at 4℃. After incubation, 

mixtures were centrifuged at 2,000 rpm for 2 minutes at 4℃. The supernatants 

are removed and the pellets were washed five times with cold MBP buffer. 
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The bound proteins were eluted by heating at 100℃ for 3 minutes and 

separated by a SDS-PAGE. The SDS-PAGE gel was dried and exposed to 

X-ray film using image-intensifying screen (Kodak, Rochester, NY, USA). 

 

5. Western blot analysis 

Cells were lysed in lysis buffer (50 mM Tris-Cl (pH 7.4), 150 mM NaCl, 

0.2% triton X-100, 0.3% NP-40, 1 mM EDTA, 1 mM EGTA, 1 mM Na3VO4, 

1 mM NaF and protease inhibitor cocktail (Gendepot, Barker, TX, USA) and 

incubated for 40 minutes on ice. During incubation, lysates was briefly 

vortexed every 10 minutes and sonicated. Lysates were cleared by 

centrifugation at 13,000 rpm for 30 minutes at 4℃. The supernatants were 

collected and transferred to fresh tubes. Concentration of proteins was 

quantified by 660 nm protein assay reagent (Thermo Scientific, Rockford, IL, 

USA). Equal amount of protein extracts was used to SDS-PAGE and then 

transferred to Nitrocellulose transfer membranes (Whatman, Dassel, 

Germany). The membranes were blocked in PBS containing 0.1% (v/v) 

Tween 20 (Amresco, solon, OH, USA) and 5% (w/v) nonfat Difco™ skim 

milk (BD Biosciences, Sparks, MD, USA) or TBS containing 0.1% (v/v) 

Tween 20 (Amresco) and 3% BSA (Affymetrix, Santaclara OH, USA) and 

probed with primary antibodies. The following antibodies were used: HDAC3 

(Rabbit), HA (Rabbit), C-src (Mouse) (Santa Cruz Biotechnology Inc., Dallas, 

CA, USA), pan phospho Tyrosine conjugated HRP, Myc (Rabbit), phospho 

Y416 Src (Rabbit) (Cell signaling Technology, Danver, MA, USA), Flag 

(Mouse) -actin (Mouse) (Sigma-Aldrich). The signals were developed by 
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substrate (Thermo Scientific) according to the manufacture’s protocol. 

 

6. Immunoprecipitation 

Cells were lysed in lysis buffer as described above. After centrifugation, 

500 g of the clarified cell lysate was pre-cleared with G plus/protein 

A-agarose (Santa Cruz Biotechnology Inc.) and control IgG (Thermo 

scientific) by incubating for 1 hour. The supernatant was collected and 1 g of 

antibody was added. After overnight incubation at 4℃, 20 l of 50% slurry of 

G plus/protein A-agarose was added and the mixture was incubated for 1 hour. 

The agarose bead was centrifuged, washed four times with ice-cold lysis 

buffer, and suspended in electrophoresis sample buffer, and boiled for 3 

minutes. After that, the samples were vortexed at RT for 15 minutes and 

immunoprecipitated protein was further analyzed by Western blotting. 

 

7. Site-directed mutagenesis 

The various mutants were created by PCR. 2X Q5 master mixture (NEB, 

Ipswich, MA, USA), DNA templates, 10 pM primer were mixed for PCR 

reaction. PCR cycling conditions used in site directed mutagenesis were 17 

cycles of amplification of following reaction: denaturation at 98℃ for 10 

seconds, annealing 55℃ or 58℃ for 30 seconds, and extension at 72℃ for 5 

minutes. Amplified mixtures were treated with DpnⅠ (Agilent Technologies, 

Santaclara, CA, USA) at 37℃ for 1 hour and PCR products were used to 

transform competent E.coli (Real Biotech Corporation). All the constructs 

were confirmed by DNA sequencing.   
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8. Establishment of overexpression stable cell line 

HDAC3 WT and mutants with flag-tagged were cloned into plasmid vector 

pCDH-CMV-MCS-EF1-Puro (System Bioscience, Palo Alto, CA, USA). To 

generate lentiviral particles, cloned plasmids and lentiviral packaging 

plasmids (pSPAX2 and pMD2.G) are co-transfected into HEK293FT using 

TransIT 2020 (Mirus, Madison, WI, USA). After 48 hours incubation, 

supernatants were collected and filtered using 0.2 m pore (Sartorius stedim 

biotech, Goettingen, Germany). Polybrene (8 g/ml) is added to collected 

supernantant. Then, BT20 cell line was infected with lentivirus particles. After 

incubation with virus supernatant for 2 days, cells were selected with 1 g/ml 

of puromycin (Sigma-Aldrich).  

 

9. HDAC3 activity assay 

7 mg of protein lysates were immunoprecipitated with 70l of Flag M2 

bead (Sigma-aldrich) and prepared for HDAC3 assay sample. The activity of 

HDAC3 was measured using HDAC3 assay kit (Biovision, Milpitas, CA, 

USA). 10 uM AFC was prepared to standardize fluorescent signal. 25 l of 

Beads were added to 96 well black plate with duplicate. 2 l of HDAC3 

inhibitor (Trichostatin A) is added to the other well as background control. 

The samples were incubated at 37℃ for 10 minutes and agitated twice in 

every 5 minutes. After incubation, HDAC3 substrate was added and the 

samples were incubated at 37℃ for 30 minutes. The plate was shaken weakly 

to mix well every 5 minute. Developer was added to each well except standard 

and the samples were incubated at 37℃ for 5 minutes. The RFU was 
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measured at 380 nm and 500 nm for excitation and emission wavelength each 

using microplate reader (Flexstation 3, Molecular Devices, Union, CA, USA).  

HDAC3 activity is measured as following calculation:  

B / (30 x V) x dilution factor = U/ml  

B is the AFC amount from the standard curve. 30 is the sample/substrate 

incubation time and V is the sample volume added into the reaction well. 

 

10. Cell proliferation assay 

1 x 10
4
 - 2 x 10

4
 cells were seeded in a 6 well plate (Corning incoporated, 

Corning, NY, USA). Cells were incubated 37℃ under 5% CO2 for 3 days and 

detached every 24 hour. Cells were counted using hematocytometer.  

 

11. RNA isolation and cDNA synthesis 

Total RNA was extracted using Trizol reagent following the manufacturer’s 

protocol (Takara Bio Inc., Otsu, Shiga, Japan). The 800 l of Trizol was 

added to cells in cell culture dishes and cells were collected to tubes. The 200 

l of chloroform was added to samples and the samples were vortexed. The 

samples were incubated for 5 minutes at RT and centrifuged at 13,000 rpm for 

15 minutes at 4℃. The 400 l of supernatant was collected and transferred to 

fresh tubes. The 400 l of isopropanol was added to samples and samples 

were thoroughly inverted. The samples were incubated for 20 minutes on ice 

and centrifuged at 13,000 rpm for 10 minutes at 4℃. The supernatant was 

removed and the 1 ml of 70% ethanol was added to samples. The samples 

were centrifuged at 13,000 rpm for 5 minutes at 4℃. The supernatant was 
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removed and pellet was dried at RT. The 50 l of DEPC was added to dried 

pellet. The concentration of RNA was measured by Nanodrop1000 (Thermo 

scientific). After RNA isolation, the 3 g of total RNA was mixed with 10 pM 

oligo dT and 2.5 mM dNTP (Takara). The samples were heated for 5 minutes 

at 65℃. Then, 5X buffer, MMLV-Reverse transcriptase (Takara) and distilled 

water were added to samples. The samples were incubated to anneal at 40℃ 

for 1 hour and to transcript at 65℃ for 10 minutes in PCR cycler (BioRed, 

Hercules, CA, USA). The concentration of cDNA was normalized by GAPDH. 

Primers used in PCR were as followed. 

GAPDH : F-5’-GATGGCATGGACTGTGGTCA-3’ 

GAPDH : R-5’-GCAATGCCTCCTGCACCACC-3’ 

HDAC3 : F-5’-CCTGGCATTGACCCATAGCC-3’ 

HDAC3 : R-5’-CTCTTGGTGAAGCCTTGCATA-3’ 

Src : F-5’-TGGCAAGATCACCAGACGG-3’ 

Src : R-5’-GGCACCTTTCGTGGTCTCAC-3’ 

 

12. Statistical analysis 

Statistical significance was examined using Student’s t-tests. The 

two-sample t-test was used for two-group comparisons. Values were reported 

as mean ± standard deviations (SD). P values < 0.05 were considered 

significant. 
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III. RESULTS 

 

1. Src Kinase binds to and phosphorylates HDAC3 

According to previous studies, Src were interacted with HDAC3 at plasma 

membrane and is able to phosphorylate HDAC3. First, interaction between 

Src kinase and HDAC3 was investigated by performing GST pull down assay. 

It was found that Src kinase directly bound to HDAC3 (Fig. 1A). It was also 

checked that reciprocal interaction between Src kinase and HDAC3 by 

co-immunoprecipitation assay (Fig. 1B). Interestingly, there was a higher 

molecular weight band than we had expected when HDAC3 and Src is 

co-expressed. In general, it is well known that a higher molecular weight band 

is often seen when the target protein is posttranslationally modified such as 

phosphorylation. So, it was supposed that Src kinase may phosphorylate 

HDAC3. To verify whether a higher molecular weight band is phosphorylated 

HDAC3, western blotting was conducted using primary total phospho-tyrosine 

antibody. As a result, bands were detected horizontally on the blot, which 

signified that a higher molecular weight band was phosphorylated HDAC3 

(Fig. 1C). SrcK298M, kinase dead mutant, was expressed whether Src activity 

is required for phosphorylation of HDAC3. As a result, kinase dead Src bound 

to HDAC3 but it did not phosphorylate HDAC3 (Fig. 1D). Taken together, 

Src directly binds to and phosphorylates HDAC3. 
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Figure 1. Src binds to and phosphorylates HDAC3. (A) Src directly binds 

to HDAC3. GST HDAC3 fusion protein was extracted in E.coli and Src was 

synthesized by in vitro translation. (B) Validation of HDAC3 and Src 

interaction. Src phosphorylates HDAC3. HEK293FT cells were transiently 

transfected with the indicated sets of plasmids. Whole cell lysates were 

immunoprecipitated with anti-myc antibody, anti-HA antibody and 

subsequently immunoblotted with indicated antibodies. (C) Slow moving band 

was identified as phosphorylated HDAC3. The vertical dot line indicates a 

repositioned gel lane from the same blot. The arrow indicates a higher 

molecular band. (D) Kinase dead SrcK298M binds to HDAC3 but fails to 

phosphorylate HDAC3. HEK293FT cells were transiently transfected with the 

indicated sets of plasmids. Whole cell lysates were immunoprecipitated with 

anti-myc antibody and subsequently immunoblotted with indicated antibodies. 
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2. The c-terminal region of HDAC3 (277-428 a.a.) is phosphorylated by 

Src kinase 

Until now, the studies on domain of HDAC3 have been performed and the 

function of domain in HDAC3 is obvious, however the function of c-terminal 

region of HDAC3 has to be more elucidated. Lately, it is reported that 

c-terminal region of HDAC3 interacts with SMRT through Ins(1,4,5,6)P4 

binding site.
81

 Serine 424 was discovered as phosphorylation site in HDAC3 by 

CK2, which regulates the activity of HDAC3.
10

 From previous studies, it was 

postulated that c-terminal region of HDAC3 may contribute as an essential hub 

for phosphorylation site by other kinases. So, it was examined which domain of 

HDAC3 is phosphorylated by Src kinase. Full length of HDAC3 was divided 

into three domains upon its function and the number of tyrosine residue (Fig. 

2A). By domain mapping analysis, a higher molecular weight band was 

detected near 25kDa when HDAC3 (277-428 a.a.) and Src kinase were 

co-expressed (Fig. 2B). So, it was concluded that phosphorylation site by Src 

kinase is located in C-terminal region of HDAC3.     
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Figure 2. C-terminal region of HDAC3 is phosphorylated by Src. (A) The 

image shows design for domain mapping of HDAC3. HDAC3 full length was 

divided into three regions. (B) HDAC3 (277-428 a.a.) was key domain which 

is phosphorylated by Src. HEK293FT cells were transiently transfected with 

the indicated sets of plasmids. Whole cell lysates were immunoprecipitated 

with anti-myc antibody and subsequently immunoblotted with indicated 

antibodies. Arrow indicates a higher molecular weight band. 
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3. Three tyrosine sites (Y325, Y328, Y331) of HDAC3 are identified as 

phosphorylation sites by Src kinase  

Based on a result of figure 2A, phosphorylation sites of HDAC3 by Src may 

be between 277 and 428 amino acids. To identify manifest phosphorylation site 

of HDAC3 by Src kinase, publicly available program, Netphos 3.1a, was 

exploited. This program can display the predicted phosphorylation sites by 

kinases. Interestingly, it was found that potential phosphorylation score of only 

two tyrosine sites (Y325 and Y331) in HDAC3 were over threshold (Fig 3A, 

table 1). So, it was examined whether these two sites are phosphorylation sites 

by Src kinase. To do this, these sites were mutated into phospho-deficient form 

(from tyrosine to alanine). Contrary to our expectation, HDAC3 Y325A, 

Y331A even 2YA (phospho-deficient mutant form of Y325 and Y331) were 

phosphorylated by Src kinase (Fig. 3B). It suggested that Y328 may be another 

candidate for phosphorylation site because this site also shows comparatively 

high phosphorylation potential score (Fig. 3A). Remarkably, the 

phosphorylation of HDAC3 by Src kinase was attenuated by mutation of three 

tyrosine sites (Y325, Y328 and Y331) (Fig. 3C). Therefore, tyrosine 325, 328 

and 331 are essential sites for HDAC3 phosphorylation by Src.   
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Figure 3. Three tyrosine sites (Y325, Y328, Y331) of HDAC3 are 

phosphorylated by Src. (A) The predicted phosphorylation sites by Src are 

located at HDAC3 C-terminal region. Src-mediated phosphorylation sites of 

HDAC3 were analyzed using NetPhos 3.1a program. The value of threshold is 

0.5 and the box indicates tyrosine phosphorylation sites which can be 

phosphorylated by Src. (B) The tyrosine residue 325 and 331 are insufficient for 

blocking phosphorylation. HEK293FT cells were transiently transfected with 

the indicated sets of plasmids. Whole cell lysates were immunoprecipitated with 

anti-myc antibody and subsequently immunoblotted with indicated antibodies. 

(C) Phospho-deficient three tyrosine sites (Y325A, Y328A, Y331A – 3YA) 

impair phosphorylation of HDAC3. HEK293FT cells were transiently 

transfected with the indicated sets of plasmids. Whole cell lysates were 

immunoprecipitated with anti-myc antibody and subsequently immunoblotted 

with indicated antibodies. 
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Table 1. Tyrosine residues at c-terminal region of HDAC3 (277-428 a.a.) 

and their potential phosphorylation score by Src kinase 

Tyrosine site Amino acid sequence Score Possibility 

282 ECVEYVKSF 0.452   

298 GGGGYTVRN 0.406 
 

309 RCWTYETSL 0.372 
 

325 EELPYSEYF 0.537 Yes 

328 PYSEYFEYF 0.481 
 

331 EYFEYFAPD 0.507 Yes 

354 NSRQYLDQI 0.338 
 

387 DLLTYDRTD 0.335 
 

404 PEENYSRPE 0.438 
 

414 PNEFYDGDH 0.351   
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4. Src kinase increases the activity of HDAC3 

There is a positive correlation between phosphorylation level of HDAC3 and 

its activity.
10

 It was hypothesized that the phosphorylation of HDAC3 by Src 

can also regulate the activity of HDAC3 like CK2 manner. First, the activity of 

wild type HDAC3 is checked (Fig. 4A). It was expected that phospho-defective 

HDAC3 (HDAC3 3YA) shows lower activity than wild type HDAC3. Against 

our prediction, the activity of phospho-defective HDAC3 is higher than the wild 

type HDAC3 (Fig. 4B). It was speculated that unknown other PTMs may 

countervail phospho-defective effects and maintain activity as a level of wild 

type HDAC3. To confirm the role of Src kinase in regulating activity of 

HDAC3, wild type HDAC3 and wild type Src kinase were co-expressed and the 

activity was analyzed. When wild type HDAC3 and wild type Src kinase are 

co-expressed, the activity of HDAC3 is increased (Fig. 4C). However, wild type 

Src fails to increase phospho-defective HDAC3 (3YA), indicating that Src 

activates HDAC3 by phosphorylating Y325, Y328 and Y331 of HDAC3. To 

assure the effect of Src kinase in regulation of HDAC3 function, the HDAC3 

activity is examined in condition which kinase dead mutant Src (SrcK298M) 

and wild type HDAC3 are co-expressed. As expect, wild type Src, but not 

kinase dead mutant Src, increases HDAC3 activity (Fig. 4D). Taken together, 

the activity of HDAC3 is increased by Src. 
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Figure 4. Src increases the activity of HDAC3. (A) Validation of HDAC3 

activity using HDAC3 assay kit. HEK293FT cells were transiently transfected 

with the indicated sets of plasmids. Whole cell lysates were immunoprecipitated 

with flag M2 beads. They were prepared for sample of HDAC3 assay. Error 

bars, SD (n=3) *P<0.05. (B) The activity of wild type HDAC3 does not show 

notable difference with phospho-deficient HDAC3 (3YA). HEK293FT cells 

were transiently transfected with the indicated sets of plasmids. Whole cell 

lysates were immunoprecipitated with flag M2 beads. They were prepared for 

sample of HDAC3 assay. (C) Phospho-deficient mutant HDAC3 (3YA) blocks 

enhancement of HDAC3 activity mediated by Src kinase. HEK293FT cells 

were transiently transfected with the indicated sets of plasmids. Whole cell 

lysates were immunoprecipitated with flag M2 beads. They were prepared for 

sample of HDAC3 assay. Error bars, SD (n=3) *P<0.05. (D) Kinase dead Src 

cannot increase HDAC3 activity. HEK293FT cells were transiently transfected 

with the indicated sets of plasmids. Whole cell lysates were immunoprecipitated 

with flag M2 beads. They were prepared for sample of HDAC3 assay. Error 

bars, SD (n=3) **P<0.005. 
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5. Src-mediated phosphorylation of HDAC3 regulates cancer cell 

proliferation 

Src is upregulated in various cancers like breast cancers and promotes 

proliferation of cancer cells. HDAC inhibitors are used as cancer drugs in breast 

cancer and the efficacy of HDAC inhibitors is proved.
73-75,82

 Based on these 

reports, It was hypothesized that HDAC3 phosphorylation sites by Src may 

affect cancer cell proliferation. First, endogenous gene expression level of 

HDAC3 and Src was checked in breast cancer cells (SKBR3, BT20 and 

MDA-MB-231). It was confirmed that SKBR3, one of HER2 subtype breast 

cancer cell, maintained high phosphorylation level of Src. (Fig. 5A) It was also 

checked that protein and mRNA expression of Src was higher than the others. 

(Fig. 5A,B) On the other hand, protein and mRNA expression of HDAC3 was 

broadly similar among three breast cancer cell. (Fig. 5A,B)  It was required 

that the stable overexpression of HDAC3 to magnify proliferation effect by 

phosphorylated HDAC3. Hence, SKBR3, BT20 and MDA-MB-231 were 

created to stable overexpression cell line. It was found that the cells expressing 

mutant HDAC3 (3YA) were inhibited to be proliferated in SKBR3 (Fig. 5C) but 

not in BT20 and MDA-MB-231 (Fig. 5 D,E), suggesting a functional effect of 

Src-mediated HDAC3 phosphorylation on breast cancer cell proliferation. It 

was observed that the growth rate of breast cancer cells shows a distinct 

difference depending on the subtype of breast cancer cells.  
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Figure 5. Src-mediated phosphorylation of HDAC3 increases the growth of 

breast cancer. (A) Endogenous activated Src in SKBR3 is higher than in BT20 

and MDA-MB-231. Cells were harvested at 48 hours after cell seeding. 

Phosphorylated Src, total Src and HDAC3 protein level was analyzed by 

western blot. (B) The mRNA expression level of Src in SKBR3 is higher than in 

others. Cells were harvested at 48 hours after cell seeding. RNA was isolated 

from three breast cancer cell (SKBR3, BT20 and MDA-MB-231). After RNA 

isolation, cDNA was synthesized to analyze mRNA expression level by 

RT-PCR. (C, D, E) The growth rate of cell expressing phospho-deficient mutant 

of HDAC3 is lower than HDAC3 WT in SKBR3. SKBR3, BT20 and 

MDA-MB-231 stable cells were seeded at 6 well plate and incubated for 72 

hours. After 48 hours, cells were supplemented with new media. Error bars, SD  

**P<0.005 (n=4).  
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IV. DISCUSSION 
 

Histone deacetylase 3 (HDAC3) is an enzyme that catalyze the removal of 

acetyl groups from the lysine residues of both histone and non-histone proteins. 

Until now, it has been demonstrated that the activity of HDAC3 is increased 

phosphorylation by CK2 in a phosphorylation-dependent manner. In this study, 

it was found that other kinases, Src increases the activity of HDAC3 by 

phosphorylating tyrosine residues of HDAC3. 

HDAC3 has been researched on various fields. HDAC3 was reported that it 

was major regulator in medullary thymic epithelial cells (mTEC) development. 

HDAC3 is considered as a switch in mTEC differentiation through NF-B 

mediated pathway.
83

 In the aspects of circadian rhythm, HDAC3 plays a role in 

regulating transcription of E-box which is related to circadian clock gene.
84

 

HDAC3 augmented the stability of BMAL1 and increased the complex of 

BMAL1 and CLOCK in a day, however, CRY1 which is accumulated by 

BMAL1-CLOCK complex competed BMAL1 and inhibited BMAL1-CLOCK 

complex in a night.
84

 Therefore, HDAC3 controlled circadian rhythm in distinct 

two phases.
84

 HDAC3 was highlighted as a regulator of white adipose tissue 

browning. In liver specific HDAC3 knockout mouse model, acetylation level of 

enhancer in Pparg and Ucp1 gene is increased.
85

 This promoted activation of de 

novo fatty acid synthesis and -oxidation and white adipose tissues are turned 

into browning like adipose tissue.
85

 On behalf of nerve system, HDAC3 

performed a pivotal role on pathology of Huntington disease. Huntington 

disease is result from amplified CAG repeats in the huntingtin (HTT) gene, 
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causing to induce mutant huntingtin (mHTT) protein that consists of redundant 

glutamine residue.
86,87

 HDAC3 stimulated expansions of CAG repeats in human 

cell.
88,89

 The HDAC3 selective inhibitor alleviated Huntington disease by 

preventing aggregation of defective Huntington protein.
90

 Regarding 

cardiovascular disease, HDAC3 results in enhancing recruitment of 

mineralocorticoid receptor (MR) and polymerase 2 on target gene promoter 

including glucocorticoid-induced leucine zipper (GILZ) and serum and 

glucocorticoid-regulated kinase 1 (SGK-1) which are component of modulating 

kidney function.
91

 HDAC3 was also introduced as a regulator of MCP1 and 

target of allergic skin inflammation under triphasic cutaneous reaction.
92

 

Monocyte chemoattractant protein 1 (MCP1) was induced by HDAC3 and Lyn 

which is RTK in c-Src family.
92

 It was mediated by recruitment of SP1 and 

c-Jun on MCP1 promoter. Finally, induction of MCP1 released histamine and 

showed angiogenesis which are marker of allergic skin inflammation.
92

 

Not only physiological function of HDAC3, cellular function of HDAC3 has 

been researched. Altered expression of HDAC3 in various cancers affects a 

gene expression which is related to cell cycle,
93

 apoptosis
94

 and metastasis.
12,95

 

HDAC3 regulates the stability of cyclin A by decreasing acetylation level in S 

phase and this process inhibits G2/M transition by blocking proteasomal 

degradation.
93

 HDAC3 prevents p53 from binding the promoter of PUMA. Thus, 

HDAC3 blocks p53 mediated apoptosis.
94

 When the acetylation level of 

transcription factor forkhead box O3 (FoxO3) is lowered by HDAC3, 

transcriptional activity of FoxO3 is decreased.
95

 Downstream of FoxO3, Dicer 

that suppresses metastasis is reduced and results in being more aggressive breast 
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cancer.
95

 HDAC3-PPARγ direct association on the E-cadherin promoter 

demonstrated inverse correlation in activity of PPARγ in prostate cancer. 
96

 This 

repressive activity of PPARγ induced by HDAC3 downregulates E-cadherin, 

promoting invasiveness and being aggressive prostate cancer.
96

  

Recently, the role of c-terminal region of HDAC3 has been gradually 

clarified. It was notable that inositol tetraphosphate (IP4) bound to tyrosine 

residues at C-terminal region of HDAC3.
81

 Surprisingly, the phosphorylation 

sites by Src kinase which was found in this study were included in IP4 binding 

sites.
81

 IP4 also contributed to increase the activity of HDAC3.
81

 Moreover, 

phosphatidylinositol metabolism and formation of IP4 were associated with Src 

kinase.
97-99

 Based on these reports, it was needed to study more precise 

molecular mechanism on regulation of HDAC3 activity at its C-terminal 

domain.  

The connection with HDAC3 and Src may be considered in aspect of 

physiological effect. It was reported that the expression level of HDAC3 is 

periodically changed in circadian rhythm, regulating the hepatic lipid 

metabolism.
100

 IP4 level was changed dependent on cell cycle. It was confirmed 

association of HDAC3 and Src from this study, it was speculated that HDAC3 

and Src may be associated in regulating circadian rhythm and cell cycle. 

It was interested that HDAC3s were detected at different molecular weight 

dependent on mutation. It was suggested that other PTM may affect the activity 

of HDAC3 at c-terminal region mediating other proteins. It was also considered 

that conformational change of mutant HDAC3 may affect.   

It was confirmed that the phosphorylation status of HDAC3 by Src is 



36 

 

essential for cancer cell growth. Recently, HDAC inhibitors have been 

highlighted as cancer drugs. A pan HDAC inhibitor, Panobinostat, and 

aromatase inhibitors inhibited proliferation of aromatase resistant breast cancer 

cell, regulating cell cycle and inducing apoptosis.
101

 It is reported that 

combination of SNDX-275, a class I HDAC3 inhibitor, and Herceptin increases 

the efficacy in Herceptin resistant patients switching off Erbb3 and Akt 

signaling pathway.
82

 According to previous study, the elevation of activated Src 

kinase was confirmed in Herceptin resistant breast cancer cell and patients.
102

 

Src kinase was considered as key modulator retaining Herceptin resistance. It 

was hypothesized that the HDAC3 phosphorylation by Src kinase can be 

involved in Herceptin resistance pathway and potentially molecular target for 

cancer therapies. Molecular mechanism of HDAC3 and Src in proliferation of 

cancer cell is needed to be further studied. 
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V. CONCLUSION 

 

Src kinase phosphorylates HDAC3 and increases the activity of HDAC3. The 

results showed Src was one of kinase that bound to HDAC3. By domain 

mapping analysis, Src phosphorylated HDAC3 at C-terminal (277-428 a.a.) 

Interestingly, it was identified three tyrosine sites (Y325, Y328 and Y331) were 

critical for HDAC3 phosphorylation by Src. It was also found out these noble 

sites are involved in increase of HDAC3 activity by phosphorylation. Finally, 

the association between HDAC3 and Src expedited cancer cell proliferation. 

Taken our findings together, noble phosphorylation sites that were discovered 

may be promising target for cancer therapy under more concrete investigation. 
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ABSTRACT (IN KOREAN) 

 

 

타이로신 인산화 효소 c-Src 단백질에 의한 

 HDAC3 기능 조절 연구 

 

 

<지도교수 윤 호 근 > 

 

 

연세대학교 의과대학 의과학과 

 

국 가 람 

 

 

히스톤 탈아세틸화 효소 3(HDAC3)는 히스톤에 있는 

아세틸기를 제거하여 아세틸화 수준을 감소시킨다. HDAC3는 

히스톤 뿐만 아니라 다른 여러 단백질들과 결합하며 세포 

기능을 조절한다. Casein kinase 2(CK2)에 의해 HDAC3 424번 

세린 잔기의 인산화가 이뤄지고 HDAC3의 활성이 증가되는 

것이 잘 알려져 있다. CK2뿐만 아니라 타이로신 인산화 
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단백질인 Src이 HDAC3와 결합하여 인산화 한다는 것이 

보고되었다. 하지만 Src에 의한 HDAC3를 인산화 자리가 

규명되지 않았으며 HDAC3의 활성을 조절에 대한 연구도 

진행되지 않았다.  

유방암은 전 세계적으로 여성들에게 발병률이 높은 암이다. 

유방암은 단백질의 발현 형태에 따라 크게 luminal A, luminal B, 

HER2 및 triple negative breast cancer (TNBC)의 네 가지 

아형으로 분류된다. 현재까지 시행되는 유방암 치료는 유방 

절제술, 방사선 요법, 화학 요법, 호르몬 요법 및 표적 치료가 

있으며 아형에 따라 다양한 방법으로 적절하게 수행되고 있다. 

암에서의 분자 경로에 대한 이해를 바탕으로 암에서 발현이 

높은 단백질에 대한 높은 특이성을 가진 표적 치료에 많은 

관심을 가져 이를 토대로 치료방법이 발전 되었다. 하지만 암 

의 치료과정에서 암세포의 이질성에 따라 항암제에 저항성을 

갖는 암세포가 생긴다. 저항성을 지닌 암세포는 성장에 

관여하는 여러 신호 전달 경로를 활성화하고 세포 사멸을 

피하는 기전으로 증식하여 표적 치료 요법으로 치료가 쉽지 

않다. 또한 치료 후에도 재발이 많이 일어난다고 보고되었다. 

본 연구에서는 Src과 HDAC3의 직접적인 결합을 GST pull 

down assay와 면역침강법을 통해 제시하였다. 또한 domain 
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mapping을 통해 Src이 HDAC3 카르복실기 

말단부위(277-428번 아미노산) 와의 결합하여 3개의 타이로신 

잔기(325번, 328번 331번 아미노산)를 인산화한다는 것을 

밝혔다. 또한 Src과 HDAC3가 함께 고발현 될 때 HDAC3 

활성이 증가되지만 HDAC3 325번, 328번, 331번의 타이로신 

잔기가 알라닌으로 치환될 때 Src을 고발현 하여도 HDAC3의 

활성이 증가하지 않는 것을 확인하였다. 또한 kinase 기능을 

못하는 Src이 고발현 되어도 HDAC3의 활성이 증가되지 

않는다는 것을 확인하였다. 이를 통해 Src이 HDAC3의 활성을 

증가시키는 것을 확인하였다. 또한 유방암세포에서 인산화 

일어날 수 없는 돌연변이 HDAC3가 stable expression 될 때 

대조군에 비해서 증식 속도가 뚜렷하게 낮아졌다. 이를 통해 

HDAC3와 Src의 발현이 유방암세포 증식에 영향을 주는 것을 

확인할 수 있었다.  

 

 

 

 

핵심되는 말 : 탈아세틸화효소, 유방암 , 타이로신 인산화, 

     HDAC3, Src 


