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I. Abstract

Development of Bioinformatics Platform for Analyzing

MS-based Protein Identification and Quantification

Jin-Young Cho

Department of Integrated OMICS
for Biomedical Science of World Class University

The Graduate School

Yonsei University

Approximately 2.9 billion long base-pair human reference genome sequences are
known to encode some 20,000 representative proteins. However, 3,000 proteins, i.e.,
about 15% of all proteins, have no or very weak proteomic evidence and still missing,
termed missing protein. Missing proteins may be present in rare samples at very low
abundance or with only temporary expression, causing some problems in their detection
for protein profiling. In particular, some technical limitations cause those missing
proteins remain unassigned. For example, current mass spectrometry (MS) techniques
have detection limits and high error rates for complex biological samples. Insufficient
proteome coverage of a reference sequence database (DB) and a spectral library also major
issues. Thus, the development of a better search strategy that results in greater sensitivity
and more accurate in search of missing proteins is necessary. To this end, we used a new

1



strategy, which combines a reference spectral library searching and a simulated spectral
library (simSPL) searching to identify missing proteins. We built the human iRefSPL,
which contains the original human reference spectral library and additional peptide
sequence-spectrum match entries from other species. We also built the human simSPL,
which contains simulated spectra of 173,907 human tryptic peptides by MassAnalyzer

(version 2.3.1).

To prove the enhanced analytical performance of the combination of human
iRefSPL and simSPL method, called “Combo-Spec Search method”, for the identification
of missing proteins, we attempted to re-analyze the placental tissue dataset (PXD000754).
Each experiment data was analyzed by PeptideProphet, and the results were combined by
iProphet. For the quality control, we applied class-specific false-discovery rate (FDR)
filtering method.  All results were filtered at less than 1% FDR in peptide and protein
level. The quality controlled results were cross-checked with the neXtProt DB (2014-09-
19 release). The two spectral libraries, iRefSPL and simSPL were designed to have no
overlapped proteome coverage. They showed complementary in spectral library
searching and significantly increased the number of matches. From this trial, 12 missing
proteins were newly identified, which passed the criterion—Least two of 7 or more length
amino acid peptides or one of 9 or more lengths amino acid peptide with one or more unique
sequence. Thus, the use of the iRefSPL and simSPL combination can be helped to
identify peptides that had not been detected by conventional sequence DB searches with

improved sensitivity and low error rate.

We developed a new analytical software, called Epsilon-Q. This software is
designed to support Combo-Spec Search and label-free quantification method. Epsilon-

Q supports standard MS data format and connects with SpectraST to match spectrum-to-

2



spectrum. Epsilon-Q automatically performs three operations: raw MS data indexing,
multiple spectral library searching and calculating sum of precursor ion peak intensities for
user input datasets. By using the multi-threading function, Epsilon-Q can performs
multiple spectral library searching and parsing the results. With user friendly graphical
interface, Epsilon-Q has shown a good performance to identify and quantify proteins.
Especially, for low abundance proteins in biological samples, Epsilon-Q has outperformed
other sequence DB search engines. Thus, we anticipate that Epsilon-Q software helps
users to get improved detectability in identifying proteins and to perform comparative

analysis of biological samples.

Keyword: Bottom-up Proteomic Approach, Chromosome-centric Human Proteome
Project, Combo-Spec Search method, Epsilon-Q, Label-free Quantification, Mass
Spectrometry, Missing Protein, Protein Identification, Proteomics, Sequence Database
Search, Spectral Library



I1. Introduction

A bottom-up proteomic approach is commonly used to identify proteins by mass
spectrometry (MS) analysis coupled with high-pressure liquid chromatography (HPLC)
(Aebersold, et al., 2003; Chait, 2006). The proteins are extracted from the samples and
digested by a protease(s) (e.g., trypsin) to produce a peptide mixture. The mixture is
subsequently injected into the reverse-phase HPLC. While the peptides passed through
the column, it is separated by its physicochemical properties (i.e. hydrophobicity, charge,
and molecular size). The molecular ions of each peptide are then introduced into the mass
spectrometer.  The ions are fragmented, frequently by collision-induced dissociation
(CID), and their mass-to-charge ratio (m/z) and intensity are recorded in subsequent
MS/MS spectra. The MS/MS spectra are used as a query to identify the peptides and

subsequently the proteins in the sample (see figure 1).

Two MS data Analytical Methods for Protein Identification

Sequence database (DB) searching (Steen, et al., 2004; Zhang, et al., 2014) is the
most widely used method for MS-based proteomics (Craig, et al., 2004; Eng, et al., 1994;
Geer, et al., 2004; Liu, et al., 2004; Perkins, et al., 1999; Tabb, et al., 2007). Sequence-
to-spectrum matching in the method is performed by automated sequence DB search tools
such as SEQUEST (Eng, et al., 1994), MASCOT (Perkins, et al., 1999), X TANDEM
(Fenyo, et al., 2003), MyriMatch (Tabb, et al., 2007) and MS-GF+ (Kim, et al., 2014) (see

figure 2A). However, in this approach, only m/z values are used to sequence-spectrum



matching and any other spectral information, such as residue-specific effects in cleavage
and variable fragment mass peak intensities, are ignored. It may cause low sensitivity and
potential errors in the handling of low-quality experimental spectra, especially those
contaminated by any polymer or other noise peaks (Yen, et al., 2011) (see red box of figure

2A).

Spectral libraries have been used for the MS-based identification of small
molecules since the 1980s (Lam, et al., 2011; Stein, et al., 1994). Spectral library
searching takes all of the spectral features into accounts, such as peak intensities, the natural
loss of fragments, and various unknown fragments that are specific to certain peptides (see
figure 2B). Thus, spectral library searching shows greater sensitivity and better matching
of results than sequence DB searching (Craig, et al., 2006; Lam, et al., 2007). Yates et al.
(vates, et al., 1998) suggested that this approach could be used for the identification of
peptides and proteins. Spectral library searching was recently reported to outperform
sequence DB searching (Hu, et al., 2013; Lam, et al., 2008; Zhang, et al., 2011). Spectral
library search algorithms and software, such as SpectraST (2007)(Lam, et al., 2007),
X!Hunter (2006)(Craig, et al., 2006), and BiblioSpec (2006)(Frewen, et al., 2006), were
released at around the same time and are now widely used in this approach. The National
Institute of Standards and Technology (NIST) now provides reference spectral libraries for
humans and eight other species. The PeptideAtlas, developed by the Institute for Systems
Biology (ISB), provides almost 61 million human peptide spectra and various spectral
libraries of individual human organisms (e.g., the brain, heart, kidney, liver, and

plasma)(Desiere, et al., 2005).



Limitations of Spectral Library Searching

To build a spectral library, the accumulation of data is essentially, which is
depending on high-quality tandem MS spectra with high-scored peptide sequence
assignment by stringent quality control criteria. It promises reliability of spectral library,
but this is also one of reasons why the spectral library has low proteome coverage and
slowly increasing data accumulation rate than sequence DB (Hu, et al., 2011). Usually,
peptide spectral library has lower proteome coverage than protein sequence DB (see figure
3). Several strategies have been proposed to expand the proteome coverage of the
reference spectral library by including the predicted spectra of unobserved peptides (Yen,
etal., 2011; Yen, et al., 2009). For example, it has been suggested that the fragmentation
patterns of a peptide in MS can be predicted by its sequence and physicochemical properties
(Zhang, 2004; 2005). The CID spectra of similar peptides show extremely similar
intensity patterns, which implies that the MS spectra of a peptide can be predicted by the
neighbor-based approach based on its sequence (Ji, et al., 2013). Information-driven
semi-empirical spectra of the reference spectral library were also demonstrated to be useful

for the detection of novel phosphorylated peptides (Hu, et al., 2011; Suni, et al., 2015a).
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Figure 1. Mass spectrometry-based bottom-up proteomic approach. To detect proteins
by this approach, each protein is digested by a protease(s) (e.g., trypsin) to produce a
peptide mixture. The peptides are then injected into mass spectrometer and detected for

their m/z value. Using the m/z values and analytical software, we can identify protein

sequences in target sample.
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1. Introduction

Approximately 2.9 billion long base-pair human reference genome sequences are
now known to encode some 20,000 representative proteins (Maher, 2012). By inference,
many proteins are not only directly encoded by a genome sequence but also diversified by
the additional processing such as the post-transcriptional and post-translational
modification. The direct analysis of cell and tissue protein expression is, therefore,
necessary to collect a list of parts (Dhingra, et al., 2005; Gygi, et al., 1999). The
Chromosome-centric Human Proteome Project (C-HPP) consortium was founded to map
and annotate all of the proteins that are encoded by genes on each of the chromosomes
found in humans (Paik, et al., 2012a; Paik, et al., 2012b). A total of 25 C-HPP working
groups from 20 nations integrate proteomics data into a genomic framework and annotate
human proteins using a range of unique and often rare clinical samples. All of the
currently available techniques are used to improve our understanding of complex human
biological systems and disease states. However, despite the efforts of the teams, about
3,000 proteins still have no clear proteomic evidence (supported by mass spectrometry [MS]
or antibody detection). These proteins have been colloquially termed “missing proteins”

(Lane, et al., 2014; Paik, et al., 2012a; Paik, et al., 2012b).

A bottom-up proteomic approach is commonly used to identify proteins by MS
analysis coupled with high-pressure liquid chromatography (HPLC) (Aebersold, et al.,
2003; Chait, 2006). The proteins are extracted from the samples and digested by a
protease(s) (e.g., trypsin) to produce a peptide mixture. The mixture is subsequently

injected into the reverse-phase HPLC. While the peptides passed through the column, it

11



is separated by its physicochemical properties (i.e. hydrophobicity, charge, and molecular
size). The molecular ions of each peptide are then introduced into the mass spectrometer.
The ions are fragmented, frequently by collision-induced dissociation (CID), and their
mass-to-charge ratio (m/z) and intensity are recorded in subsequent MS/MS spectra. The
MS/MS spectra are used as a query to identify the peptides and subsequently the proteins

in the sample.

Sequence database (DB) searching (Steen, et al., 2004; Zhang, et al., 2014) is the
most widely used method for MS-based proteomics (Craig, et al., 2004; Eng, et al., 1994;
Geer, et al., 2004; Liu, et al., 2004; Perkins, et al., 1999; Tabb, et al., 2007). Sequence-
to-spectrum matching in the method is performed by automated sequence DB search tools
such as SEQUEST (Eng, et al., 1994), MASCOT (Perkins, et al., 1999), X TANDEM
(Fenyo, et al., 2003), MyriMatch (Tabb, et al., 2007) and MS-GF+ (Kim, et al., 2014).
However, in this approach, only m/z values are used to sequence-spectrum matching and
any other spectral information, such as residue-specific effects in cleavage and variable
fragment mass peak intensities, are ignored. It may cause low sensitivity and potential
errors in the handling of low-quality experimental spectra, especially those contaminated

by any polymer or other noise peaks (Yen, et al., 2011).

Spectral libraries have been used for the MS-based identification of small
molecules since the 1980s (Lam, et al., 2011; Stein, et al., 1994). Spectral library
searching takes all of the spectral features into accounts, such as peak intensities, the natural
loss of fragments, and various unknown fragments that are specific to certain peptides.
Thus, spectral library searching shows greater sensitivity and better matching of results
than sequence DB searching (Craig, et al., 2006; Lam, et al., 2007). Yates et al. (Yates, et

al., 1998) suggested that this approach could be used for the identification of peptides and
12



proteins. Spectral library searching was recently reported to outperform sequence DB
searching (Hu, et al., 2013; Lam, et al., 2008; Zhang, et al., 2011). Spectral library search
algorithms and software, such as SpectraST (2007)(Lam, et al., 2007), X!Hunter
(2006)(Craig, et al., 2006), and BiblioSpec (2006)(Frewen, et al., 2006), were released at
around the same time and are now widely used in this approach. The National Institute
of Standards and Technology (NIST) now provides reference spectral libraries for humans
and eight other species. The PeptideAtlas, developed by the Institute for Systems Biology
(I1SB), provides almost 61 million human peptide spectra and various spectral libraries of
individual human organisms (e.g., the brain, heart, kidney, liver, and plasma)(Desiere, et

al., 2005).

To build a spectral library, the accumulation of data depends on high-quality
tandem MS spectra with high-scored peptide sequence assignment by stringent quality
control criteria. It promises reliability of spectral library, but this is why the spectral
library has low proteome coverage and slowly increasing data accumulation rate than
sequence DB (Hu, et al., 2011). Several strategies have been proposed to expand the
proteome coverage of the reference spectral library by including the predicted spectra of
unobserved peptides (Yen, et al., 2011; Yen, et al., 2009). For example, it has been
suggested that the fragmentation patterns of a peptide in MS can be predicted by its
sequence and physicochemical properties (Zhang, 2004; 2005). The CID spectra of
similar peptides show extremely similar intensity patterns, which implies that the MS
spectra of a peptide can be predicted by the neighbor-based approach based on its sequence
(Ji, et al., 2013). Information-driven semi-empirical spectra of the reference spectral
library were also demonstrated to be useful for the detection of novel phosphorylated

peptides (Hu, et al., 2011; Suni, et al., 2015a).

13



In this study, we describe a new strategy, which uses a combination of multiple
spectral libraries (e.g., a reference spectral library and a simSPL) for spectrum-spectrum
matching to identify the proteins of interest in cell or tissues. We demonstrate that,
compared with conventional sequence DB searching methods, the method can provide
improved sensitivity and lower error rate to identify missing proteins by extended proteome

coverage.
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2. Materials and Methods

2.1. Datasets

The datasets, which used in this study, were obtained from the ProteomeXchange
database (PXD). First, we obtained dataset files that generated by 48 purified human
recombinant proteins mixture (UPS, Sigma-Aldrich, St. Louse, MO. USA) in spiked into
the biological sample (published by Ahrné et al., PXD000331)(Ahrne, et al., 2013). We
used the dataset, called the UPS dataset, to evaluate the performance and effectiveness of
our approach. Second, we used the MS dataset obtained from human placental tissue that
was previously analyzed by Lee et al. (PXD000754)(Lee, et al., 2013).  This dataset was
generated using various protein enrichment techniques (ThermoFisher LTQ Orbitrap) and
MS for the comprehensive proteomic analysis of human placental tissue. We used this
dataset to re-analyze and evaluate our new method for the search for novel peptides that
are possibly derived from missing proteins. The more detailed metadata of the datasets is

in table 1.

2.2. Integration of human reference spectral library (iRefSPL)

The reference spectral libraries were obtained from PeptideAtlas (1SB) and the
NIST public library repository. We selected the libraries that contained the only CID-
fragmented ion spectra, as listed in table 2. All obtained human reference spectral
libraries were combined as a consensus spectral library (human refSPL). Proteome

coverage of the original human refSPL was expanded by extracting peptide-spectrum
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match (PSM) entries from other species spectral libraries. Because each PSM entries of
spectral libraries from PeptideAtlas and NIST has already been validated, we did not put a
limit on the maximum sequence length. Thus, the PSM entries from the non-human
spectral library were selected by the human tryptic peptide list. The peptide list contains
minimum 7 amino acids with a maximum of 2 missed cleavage sites, generated from the
SwissProt human protein sequence DB (2015-04). All impure spectra were removed or
marked by SpectraST software (Version 5.0, Build 201408281759-6544:6594M by Henry
Lam). All of the selected PSM entries were added to human refSPL to build a human

iRefSPL.

2.3. Generation of simulated spectral library (sSimSPL)

We obtained 41,061 protein sequences from neXtProt (2014-09-19). We
compiled a tryptic peptide list of the proteins, as mentioned above, with a length of 7 to 35
amino acids, and a maximum of 2 missed cleavage sites. Total 2,227,896 sequences were
selected for the simulation of their MS/MS spectrum. MassAnalyzer (version 2.3.1) was
used to simulate MS/MS spectrum of the selected peptides. The simulation parameters
were: Orbitrap instrument profile; CID fragmentation mode; isolation width, 2.5; resolution,
800; collision energy (V), 35; and activation time, 30 ms. We considered two charge
states: +2 and +3 precursors. We added two types of modification into the simulated
spectra: carbamidomethylation at cysteine residues for fixed modifications and oxidation
at methionine residues for variable modifications. The predicted spectra were converted
to the *.splib format by SpectraST (Hu, et al., 2013). All PSM entries which already

included in iRefSPL were removed. The simulated spectral library was called the “human
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simSPL”.

2.4. Protein identification and data analysis

All MS data files were converted into “mgf” and “mzXML” formats by msconvert
(Build date: June 17, 2013). Three protein sequence DB search engines were used for
sequence DB searching: Mascot Server (version 2.2.07, Matrixscience), X!Tandem
(2013.06.15.1 — LabKey, Insilicos, ISB), and Comet (version 2014.02 rev. 2, University of
Washington). The sequence DB search parameters were: trypsin for protein digestion,
carbamidomethylation at cysteine residues (+57 Da) for fixed modifications, oxidation at
methionine (+16 Da) for variable modifications, a maximum of two missed cleavages, 5
ppm MS tolerance, and 0.6 Da MS/MS tolerance. Two charge states, 2+ and 3+, were
considered. To filter the false discovery rate (FDR), reversed protein sequences were
included in the target sequence DB using the TOPPAS DecoyDatabase builder (version
1.11.1)(Junker, et al., 2012). SpectraST was used for spectral library build and searching.
All results were excluded which had lower F-value than 0.45. To estimate the FDR, we
generated an equal-size artificial decoy library and appended it to the target spectral library
following the method described by Lam et al. (Lam, et al., 2010). Each experiment result
was analyzed by PeptideProphet (Keller, et al., 2002) and all the results were combined by
iProphet (built in Trans-Proteome Pipeline version 4.8.0 PHILAE, Build 201411201551-
6764)(Shteynberg, et al., 2011) with default parameters. We used decoy hits and non-
parametric model to pin down the negative frequency. We determined two peptide
probability thresholds by class-specific FDR filtering (Nesvizhskii, 2014).  Each

threshold was determined in separate FDR estimation in two classes (resulted peptide hits
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by iRefSPL as a class | and by simSPL as a class II). The FDR of each class was limited

less than 1%.
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3. Results

3.1. Construction of the integrated reference spectral library (iRefSPL)
which contains peptide spectrum matches from humans and eight non-

human species

We designed a method that uses two spectral libraries to expand proteome
coverage for spectral library searching and detect additional peptides (Figure 1). To
expand the proteome coverage of human reference spectral library, we prepared an
integrated reference spectral library, called the iRefSPL. The library was built by
combining the original human reference spectral library and PSM entries obtained from the
other species spectral libraries. The rationale for this approach was provided by a
previous report indicating a close correlation between the peptide fragmentation pattern
and the sequence, the state of charge, and modifications (Zhang, 2004; 2005). We
expected that the proteome coverage of the spectral library of interest could be expanded
by the additional PSM entries and it may not incurring false-positive problem. To
estimate the dependence of the fragmentation pattern on the physicochemical properties of
the peptide (e.g., sequence, charge state, and modification) through various spectral
libraries, we selected common PSM entries from the NIST human reference spectral library
and eight other species spectral libraries. A total of 77,056 PSM pairs were collected to
compare its similarity through various spectral libraries. The similarity of the PSM pairs
was estimated by the dot scoring method (Lam, et al., 2007). Table 3 outlines the
distributions of PSM pairs as expressed by their dot scores. Many PSM pairs tend to show

close to dot score of 1, suggesting that peptide fragmentation and peak intensity patterns

19



were highly correlated to their sequence, charge and modification state. Based on the
result, we extracted total 51,374 PSM entries from 13 non-human spectral libraries to
expand proteome coverage of human refSPL (see table 4). We added the PSM entries,
obtained from the 13 non-human species spectral libraries, into the human refSPL to

produce human iRefSPL.

To test the effectiveness of added PSM entries, we analyzed placental tissue
dataset using both human iRefSPL and human refSPL (called Combo-Spec Search method).
Figure 2A shows a prediction model in which the estimated sensitivity and error rate of
both the human iRefSPL and the human refSPL. The two results did not differ
significantly. By using the human iRefSPL, more peptides were identified, especially in
low error rate (<= 0.0005), then human refSPL (Figure 2B). The results suggest that PSM
entries that extracted from other spectral libraries can be used to expand proteome coverage

of the human refSPL without any false-positive problems.

3.2. Comparison of various search methods in sensitivity over error

rate and time to processing large MS dataset

We examined the performance of Combo-Spec Search method compared to other
conventional approaches in identifying additional peptides with low error rate by using the
UPS dataset. Three protein sequence DB search engines (Mascot, X!Tandem, and Comet)
and original reference UPS spectral library were used as conventional approaches. The
FASTA sequence DB and the reference spectral library of the UPS standard protein mix
(UPS refSPL) were obtained from the NIST (released, 2011-05-24). We did not prepared

iRefSPL for UPS dataset analysis in this test because the original refSPL from NIST for
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UPS dataset analysis has already sufficient proteome coverage (about 85% of the sequences
of all of the 48 standard proteins). Thus, we used the refSPL of UPS dataset rather than

build additional iRefSPL.

We compared correct matches number through different error rates by refSPL only
and three each sequence DB search engines. As we expected that the matches by refSPL
only (see top second bar in Figure 3A) shows more increased than the matches that obtained

by each single sequence search engine (below three bars in Figure 3A).

The top first bar in Figure 3A shows the effectiveness of the simSPL. The refSPL
had 85% of proteome coverage to UPS data, so we build simSPL with the 15% of gaps for
complete coverage. We built simSPL which had about 15% of proteome coverage and no
overlap with refSPL because the simSPL shows better positive/negative number of sibling
peptide distribution in refSPL-simSPL combination than complete proteome coverage

version of simSPL (Figure 4).

We suggest that spectral library searching by using the refSPL and simSPL should
be performed independently because the libraries has different characteristics. RefSPL
has observed spectra and simSPL has simulated spectra.  This difference can be occurred
different accuracy in spectrum-to-spectrum matching. Usually, refSPL searching shows
more accuracy than simSPL searching. So we applied class-specific FDR control before

those result integration (figure 5).

In less 1% FDR, we detected 427 different peptides by use of the only refSPL.
However, using the combination of simSPL and refSPL, we detected 33 more novel
different peptides. The result shows that combination of both refSPL and simSPL

(refSPL-simSPL combination method) can more detect peptides in the low error rate than
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other conventional methods (refSPL only, single or multiple sequence DB searching). It
is known that the use of a combination of multiple search engines would produce highly
improved identification rates (Shteynberg, et al., 2013).  As known that, the combination
of three sequence DB search engines (Multiple DB Search) show significantly increased
matches in low error rate (<= 0.0005). To evaluate the sensitivities of both two multiple
search strategies (by Multiple DB Search and Combo-Spec Search method), we depicted
the relation of sensitivity and error rate. Figure 3B shows that the Combo-Spec Search
method shows little more good sensitivity than Multiple DB Search, but it is not
significantly different. Both two methods show good sensitivity in various probability
thresholds. However, Combo-Spec Search method shows lower error rates than Multiple
DB Search in extremely low probability threshold (<= 0.2). This result shows that
Combo-Spec Search method has more effective restriction power for errors than Multiple

DB Search.

Combo-Spec Search method has shown more reduced time to process MS dataset
than other sequence DB search engines (figure 6). The MS dataset (PXD000603) is
consisted of 24 raw files and about 41.2GB of size. Because Combo-Spec Search is based
on spectrum-to-spectrum matching, it shows less spending time than other sequence DB

search engines.

3.3.  Application of the Combo-Spec Search method to identify missing

proteins

To test the performance of the human Combo-Spec Search method in identifying

missing proteins, we attempted to re-analyze the human placental tissue dataset

22



(PXD000754)(Lee, et al., 2013). The dataset was re-analyzed independently by Combo-
Spec Search method coupled with SpectraST and the results were combined using iProphet

(Figure 7).

The combined results were filtered at an FDR of less than 1% at the protein level.
All combined matched results were classified into two groups (matched by human iRefSPL
and human simSPL) and separately applied probabilistic threshold (0.8299 for iRefSPL
group and 0.9303 for simSPL group) to satisfy less than 1% FDR in peptide level in each
group. Figure 8 shows the statistics of the dataset. A total of 4,104 proteins were
identified, which was slightly fewer (135) than the previous result of 4,239 proteins (Lee,
et al., 2013). It may have been due to the use of CID spectra only in this study various
types of the spectrum (CID, higher-energy collisional dissociation, and electron-transfer
dissociation) were used in the previous study. The human iRefSPL and simSPL, used in
this study, can only support CID type spectra for spectral library searching. By using the
multiple sequence DB search engines (Mascot, X!Tandem and Comet), total 3,607 proteins
were identified at FDR of less than 1% at the protein level. When the two results that
were generated by Multiple DB Search Method and Combo-Spec Search method were
compared, the Combo-Spec Search method shows the higher rate of protein identification
than the former. When the previous search results (4,239 proteins) were applied to the
old version of neXtProt DB (2012-10-07 release), 42 proteins were found to be newly
identified missing proteins (Lee, et al., 2013). However, when was applied neXtProt DB
(2014-09-19 release) to the Combo-Spec Search Method, 12 proteins were newly found as
missing proteins (see table 5 and figure 9). The 12 missing proteins passed our consensus
criterion—Least two of 7 or more length peptides or one of 9 or more length peptide with

one or more unique sequence. By using the Multiple DB Search Method, there are no
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newly identified missing proteins.

The three of all proteins were identified by simSPL. The unique peptides of
three proteins were not included in any reference spectral libraries. It is implying that
simSPL is complementary to iRefSPL in terms of novel peptide searches. Thus, the use
of both iRefSPL and simSPL shows the synergetic effect to identify known and novel
peptides from large datasets with high sensitivity and low error rate. It identified peptides
that had not been detected by some conventional sequence DB search engines in the
previous study. By using the Combo-Spec Search method, we can detect 12 missing
proteins from the previously published dataset. It suggests that the method can be useful

to re-analyze other previously published data sets and detect additional missing proteins.
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4. Discussion

Although the rigorous protein search analyzes were carried out on MS data
produced under the instrument’s optimal performance conditions, it is inevitable that some
proteins will remain undetected. It is why we need to develop a better search strategy that
provides greater sensitivity and more accurate analysis in the search for missing proteins.
Yates et al., suggested that spectral library searching can be a solution to overcome
limitations of sequence DB searching (Yates, et al., 1998). According to recent studies,
this method outperforms sequence DB searching (Hu, et al., 2013; Lam, et al., 2008; Zhang,
et al., 2011). Based on the results, we designed the new method, called “Combo-Spec
Search method”. This study demonstrates that the application of Combo-Spec Search
method to a previously analyzed dataset (Lee, et al.,, 2013) can provide additional
opportunities to identify missing proteins that have never been detected by sequence DB
searches.  Usually, original reference spectral libraries have insufficient proteome
coverage (30-40%) compared to the sequence DB. We suggest that combination of
multiple spectral libraries with different proteome coverage could be one solution to
overcome the limitation. The improved performance of the Combo-Spec Search method
in the identification of missing proteins is due to its expanded proteome coverage. We
have shown that Combo-Spec Search method detects more PSMs than other sequence DB
search engines and multiple DB search approach. The promising results indicate that it
would also be worth reanalyzing already reported datasets deposited in the
ProteomeXchange repository in the hope of detecting additional missing proteins. Using
the method, we can newly detect 12 missing proteins. There are two olfactory receptors

in the 12 missing proteins. It is the exceptional result when considering the sample type
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used in this study. We made thorough search again through the currently updated
PeptideAtals, but we were not able to find any pieces of evidence for the two olfactory
receptors are false-positive matches. However, we do not exclude a possibility of the SNP
or any modifications because our newly built spectral libraries (iRefSPL and simSPL) do
not contain such rare modification types and SNP. It would be possible to re-examine this
issue along with the newly identified 12 missing proteins when the upgraded version of
iRefSPL and simSPL that introduces artificial modifications and SNP are available in the
future. There are some useful public spectral library and mass spectral data repositories
(PeptideAtlas, NIST Peptide Library and GPMdb). The repositories are updated certain
intervals (e.g., quarterly or yearly). Using the latest data, we can get more expanded and
sophisticated spectral library to be used in the Combo-Spec Search method. Finally, we
propose that the Combo-Spec Search method could serve as a common practice in the
search for missing proteins and thus could replace the conventional sequence DB search

approach.
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Table 1. Metadata of SUBJECT I study datasets

tissue profiling
(PXD000754)

Repository PRIDE
Announce Date 2014-08-08
Instrument LTQ Orbitrap Velos
UPS Contribution 3 raw files (technical replicate)
(PXD000331) Size Total 25,927 spectra (MS2)
The .raw data submitted to PRIDE
Description correspond to replicate DDA LC-MS/MS
analysis of the UPS2
Repository PRIDE
Announce Date 2015-05-26
Human Placental Instrument LTQ Orbitrap

Contribution

47 raw files (fractions)

Size

Total 266,148 spectra (MS2)

Description

Profilling normal human placantal
proteomes using LTQ-OrbiTrap
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Table 2.

List of the reference spectral libraries used in SUBJECT | study.

Fragmentation

Total number

iRy / Instrument Sl lpElE of spectra
Human (Brain) CID / lontrap 2013-08 620,813
Human (Kidney) CID / lontrap 2013-08 938,113
Human (Liver) CID / lontrap 2013-08 1,845,053
Human (Plasma) CID / lontrap 2013-08 30,513,825
Human (Urine) CID / lontrap 2013-08 425,579
Human (Others) CID / lontrap 2013-08 29,592,772
Human (all) CID / lontrap 2013-08 61,124,407
Human (phospho) CID / lontrap 2013-07 18,066
Human (SEMI phospho) CID / lontrap 2013-07 35,099
Mouse CID / lontrap 2013-02 4,001,770
ISB | Mouse (phospho) CID / lontrap 2013-07 51,420
Drosophila (phospho) CID / lontrap 2013-07 16,177
C. elegans CID / lontrap 2013-09 1,371,627
C. elegans (phospho) CID / lontrap 2013-07 9,225
Yeast (phospho) CID / lontrap 2013-07 18,412
Leptospira interrogans CID / lontrap 2013-08 248,430
Cow CID / lontrap 2011-12 196,791
Honey Bee CID / lontrap 2013-09 4,102,541
Mtuberculosis CID / lontrap 2013-07 1,134,715
Pig CID / lontrap 2011-08 1,511,129
Rat CID / lontrap 2013-11 2,926,833
Human CID / lontrap 2014-05 340,356
Mouse CID / lontrap 2013-05 149,442
Drosophila CID / lontrap 2012-04 78,966
C. elegans CID / lontrap 2011-05 67,470
NIST | Yeast CID / lontrap 2012-04 50,907
E.coli CID / lontrap 2013-05 62,383
Rat CID / lontrap 2013-05 61,707
Chicken CID / lontrap 2011-05 3,125
Zebrafish CID / lontrap 2015-01 28,952
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Table 3. Similarity of common PSM pairs in humans and eight other non-human species*
(Caenorhabditis elegans, chicken, Drosophila, Escherichia coli, mouse, rat, yeast, and

zebrafish) provided by NIST).

Zebrafish

v
S _
@ los-07 92 296 4 4946 2284 49 839
o [0.7-0.6 19 2 58 2 812 435 n 151
Z Jos-05 1 3 0 0 67 4 1 9
Z [05-04 0 2 0 1 4 0 0 2
& l0.4-03 0 0 0 0 1 0 0 0
E 03-0.2 0 0 0 0 0 0 0 0
n [0.2-0.1 0 4] 0 0 0 0 0 0

0.1-0 0 0 0 0 0 0 0 0
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Table 4. Number of extracted PSM entries from non-human species spectral libraries

using the human whole tryptic peptide list.

Library Total # of spectra Extracted # of spectra

Mouse

Mouse (phospho)

Drosophila (phospho)

C. elegans

C. elegans (phospho)

Yeast (phospho)

Leptospira interrogans

Cow

Honey Bee

Mtuberculosis

Pig

Rat

Mouse

Drosophila

C. elegans

Yeast

NIST - 451,163 15,520
E.coli

Rat

Chicken

Zebrafish

ISB

902,068 35,854
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Table 5. List of identified missing proteins in this study.

Chr Protein Accession (Gene name) Coz/c;;)age ;—gt,\jls P;?;Ei'n PE

Peptide Sequence / Charge Length PSMs P;'?;Ee dot V;;Je “ﬂgg;;d

1 Q5VVM6 (CCDC30) 2.9 3 0.8953 2
DHFLIAC160DLLQRENSELETKVLK /2 23 3 0.8953 0.758  0.622 iRefSPL

3 Q8NGV6 (OR5H6) 6.8 2 0.987 2
AVSTCGAHLLSVSLYYGPLTFK /3 22 2 0.987 0.898 0.783 iRefSPL

6  Q8IZF3 (GPR115) 2 88 0.9773 2
QVNGLVLSVVLPER /3 14 88 0.9919 0.891 0.722 iRefSPL

7 Q8WXK1 (ASB15) 2 5 0.9955 2
KGSYDMVSTLIK /3 12 5 0.9955  0.939 0.571 iRefSPL

9  Q8NE28 (STKLD1) 3.7 3 0.8783 2
SI\//léMVPASITDM147LLEGNVASILEVMQ o5 3 08783 0713 0.607 iRefSPL

11 Q6IEU7 (OR5M10) 3.5 11 0.9987 2
DVILAIQQMwu7IR / 2 10 11 0.9987 0.757  0.613 simSPL

13 075343 (GUCY1B2) 21 2 0.9949 2
DQEALQAAFLKMK /3 13 2 0.9949 0.908 0.698 iRefSPL

18  Q9H2F9 (CCDC68) 51 5 0.9721 2
DLQLLEM147/NKENEVLKIK /3 17 5 0.9721 0.749  0.608 iRefSPL

19  C9J6K1 (C190rf81) 7.1 8 0.9683 4
RMu7LEALGAEPNEEA/ 3 14 8 0.9683 0.852  0.545 iRefSPL

19  Q96RP8 (KCNA7Y) 3.1 3 0.9957 2
GLQILGQTLRASM147R / 3 14 3 0.9957 0.816  0.623 simSPL

20  Q8N687 (DEFB125) 10.3 4 0.9243 2
NKLSCCISIISHEYTR / 2 16 4 0.9243 0.837 0.697 iRefSPL

21 P57055 (RIPPLY3) 2.9 18 0.979 2
MEPEAAAGAR /2 10 18 0.979 0.653  0.552 simSPL

31



Reference Human protein
Spectral Library (I1SB, NIST) sequence
< <
= <
I- .. Spectra
digestion l
Converter

PSM entries
extraction [T l

Tryptic peptides
i Remove

H./ overlapped
Extracted PSM

entries

entries

. . Simulated
Integrated Reference Combine Analysis Spectral Library

Spectral Library (iProphet) (simSPL)
(iRefSPL)

Spectral library
search

Spectral library Results

search
—-__/_

Figure 1. Workflow for building the integrated spectral library and multiple search
results approach. Using the human tryptic peptide list, additional PSM entries were
obtained from the other spectral libraries to expand the proteome coverage of the human
reference spectral library called iRefSPL. We also constructed simSPL to identify novel
peptides that were not covered by the iRefSPL search. In practice, the two spectral libraries
were used independently in spectrum-spectrum matching and all results were combined

later using iProphet.
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Figure 2. Comparison of the spectral library search results with iRefSPL and refSPL.

(A) Comparison of each sensitivity and error rate model of iRefSPL and refSPL.

(B)

Comparison of the number of spectrum-spectrum matches through different error rates.
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Figure 3. Comparison of spectral library searching with refSPL and simSPL and
conventional methods for the UPS dataset analysis. (A) Comparison of matches between
combination of the refSPL and simSPL, refSPL only and three sequence search engines.
(B) Comparison of the sensitivity and error rates of the refSPL-simSPL combination and

multiple sequence DB searching.
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Figure 4. Comparison of two simSPL effect with different proteome coverages in

Combo-Spec Search method.
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Figure 5. Class-Specific FDR control.
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The two groups of results which were processed

by iRefSPL and simSPL show different true-false frequencies.
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Figure 6. Speed of Combo-Spec Search. Combo-Spec Search shows less time to

process large datasets than other sequence DB search engines.
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Figure 7.  Workflow showing the human placental tissue dataset (PXD000754) analysis

obtained by searching three spectral libraries and integrating the results using iProphet.
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Figure 8. Statistics of Human placental tissue dataset.
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Figure 9. The spectrum view and matched peaks of the newly identified missing proteins
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1. Introduction

Mass spectrometry (MS) is a widely used proteome analytical tool for biomedical
science. Proteins in sample mixtures can be detected and quantified by MS-coupled high
performance liquid chromatography (HPLC) in a high-throughput approach. Because of
rapid advances in MS instruments, experimental methods, and computing power, low-
abundance proteins present in biological and clinical samples can now be detected and
guantified with high levels of accuracy in a short time (Craig, et al., 2004; Eng, et al., 1994;
Liu, et al., 2004; Perkins, et al., 1999). Because proteins are macromolecule, they are
fragmented into peptides by enzyme digestion (Aebersold, et al., 2003; Chait, 2006) before
analysis by mass spectrometry. A bottom-up proteomic approach makes it possible to
analyze these peptides by MS. Many peptides derive from a single protein and can be
separated by HPLC coupled with MS. This technique is called “shotgun proteomics”

(Washburn, et al., 2001; Wolters, et al., 2001).

Protein sequence database (DB) searching is a widely-used method for matching
and assigning peptide sequences to mass spectra. SEQUEST (Eng, et al., 1994),
X!Tandem (Fenyo, et al., 2003), Comet (Eng, et al., 2013), Mascot (Perkins, et al., 1999)
and MS-GF+ (Kim, et al., 2014) are widely used sequence DB search tools. These tools
produce proteolytic peptide lists and calculate fragment ion m/z values according to
specific charge states and modifications using a reference protein sequence DB. Mass
spectra can usually be analyzed by a sequence DB search method by preparing an
appropriate sequence DB and inputting suitable parameters (Steen, et al., 2004; Zhang, et

al.,, 2014). However, a large and complicated input dataset, sequence DB and
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modification of multiple variable options can cause extended processing times. In
particular, false-positive errors may arise because these methods only use m/z values in

sequence-to-spectrum matching (Yen, et al., 2011).

An alternative sequencing method is spectral library searching (Yates, et al., 1998).
Peptide spectral libraries contain curated, annotated, and unique peptide sequences for
tandem mass spectrum pairing. The peptide-to-spectrum matches (PSMs) are used as a
template to identify peptide sequences in experimental spectra. Because this method uses
curated PSMs for spectrum-to-spectrum matching, it provides more sensitive and accurate
results in a given time than sequence DB searching method (Craig, et al., 2006; Lam, et al.,
2007; Yen, et al., 2011). Some peptide spectral libraries are publicly available. The
National Institute of Standards and Technology (NIST) and PeptideAtlas, operated by the
Institute for Systems Biology (ISB), are representative public peptide spectral library
providers. Some researchers and laboratories build customized peptide libraries for their
studies (Lam, 2011; Lam, etal., 2008). These peptide libraries, built by different institutes
and researchers, are generated with custom criteria and false-positive entries. Because of
this, merging spectral libraries from different sources can cause an increase in the FDR
(Deutsch, etal., 2015b).  For this reason, it is recommended that spectral library searching
be independently performed, and thus FDR can be estimated for that peptide library. In
addition, peptide spectral libraries only contain known peptides, so this method has
limitations if used to find novel and previously unobserved peptide sequences (Yen, et al.,
2011; Yen, et al., 2009). To overcome such limitations, we previously designed the
Combo-Spec Search method, using public or lab-based curated spectral libraries and
simulated spectral libraries (sSimSPLs) to fill gaps in proteome coverage (Cho, et al., 2015).

This method provides improved sensitivity and expended proteome coverage, however,
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two or more spectral libraries are needed to conduct a search for a single MS dataset. It

is, therefore, a cumbersome and tedious task compared to the sequence DB search method.

Quantitative comparison of proteome expression is a challenging issue in disease-
related proteome research and biomarker discovery. The label-free quantitation method
is particularly suitable for quantitative analyses by MS (James, 1997). This method
directly uses the peak signal intensity of the extracted ion chromatogram (XIC) or the
spectral count to estimate peptide or protein abundance. In general, the peak intensity is
influenced by peptide ionization efficiencies and chemical environments, indicating that
the sensitivity of mass spectrometry varies between peptides. Hence, we can overcome
the limitations of the labeling method, which requires a complex sample pre-processing
step and limits the number of samples in each experiment (Bantscheff, et al., 2007; Chelius,

et al., 2002; Lill, 2003; Wang, et al., 2003).

Spectral counting is used to determine protein abundance, based on the number of
spectra matched to its peptides. Even though it is conceptually simple, spectral counting
must be sensitive enough to estimate the relative protein abundance ratio over a large
dynamic range. However, it sometimes generates false estimates for low-abundance
proteins because spectral counting assigns an equivalent value of 1 for each spectrum of a
peptide (Fu, et al., 2008; Ishihama, et al., 2005; Liu, et al., 2004; Old, et al., 2005). The
XIC allows comparison of the peak areas between peptides. This process is simple, and
shows linearity in comparing peptide or protein abundance. Recently, several studies
have demonstrated that the XICs of selected peptide ions correlate well with protein
abundance in large or complex biological samples.  However, the selection and
differentiation of peptide peak areas from neighboring peaks are often difficult. Therefore,

this problem must be resolved for successful quantitative analyses using XIC (Chelius, et
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al., 2002).

In this study, we have developed a new software package called Epsilon-Q, which
supports Combo-Spec Search and label-free quantification methods. This software
supports standard MS data formats. Epsilon-Q allows automatic indexing, multiple spectral
library searching and calculation of the sum of precursor ion peak intensities for user-
generated datasets. Epsilon-Q also supports multi-thread processing, which enables to
multiple data files to be processed concurrently. We set Epsilon-Q system by combining
this automatic interface software with Combo-Spec Search method and analyzed controlled
datasets with various degrees of biological complexity. With a user-friendly graphical
interface, Epsilon-Q system demonstrates good performance in the identification and
guantitative analysis of proteins. We anticipate that Epsilon-Q system will help users to
achieve improved detectability when identifying proteins, and perform comparative

analyses of biological samples.
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2. Materials and Methods

2.1. Benchmark Datasets

To evaluate the performance of Epsilon-Q system, datasets containing known
ratios and dynamic quantitative ranges are required. The universal proteomics standard
(UPS) (Sigma-Aldrich, St. Louse, MO. USA) is a standard protein mixture containing 48
purified human recombinant proteins. UPS1 is composed of 5 pmol of each of the 48
proteins. UPS2 contains the same proteins as UPS1, however, the amount of each protein
ranges from 0.5 fmol to 50 pmol. We obtained three UPS1 and UPS2 datasets from the

ProteomeXchange repository (Table 1).

2.2. Peptide and Protein Identification

Raw MS data files were converted to .mgf and .mzML formats for each search
engine using MSConvertGUI (ProteoWizard)(Chambers, et al., 2012). For Epsilon-Q,
the conversion parameters were as follows: 32-bit binary encoding precision, and “peak
picking” filter. We prepared protein sequence DBs which included the 48 UPS proteins
and E.coli proteins.  All sequence DBs were obtained from UniProt DB. To perform the
sequence DB searches, we used Mascot server v2.5, X!Tandem (2013.06.15.1 — LabKey,
Insilicos, ISB) and Andromeda, built-in to MaxQuant (Cox, et al., 2008) v1.5.2.8. The
sequence spectral library search parameters used were: trypsin for protein digestion,

carbamidomethylation at cysteine residues for fixed modifications, oxidation at methionine
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and acetylation at protein N-terminal residues for variable modifications, a maximum of
two missed cleavages, 5 ppm MS tolerance, and 0.6 Da MS/MS tolerance. Two charge
states, 2+ and 3+, were considered. Peptide spectral libraries for UPS, E.coli and yeast
cell lysate were obtained from the NIST peptide library repository. We built simSPLs for
UPS, E.coli and yeast proteins using protein sequence DBs, as described previously.
Tryptic peptides 7 to 45 amino acids in length, and with a maximum of 2 missed cleavage
sites, were prepared. MassAnalyzer (Zhang, 2004; 2005) (version 2.3.1) was used to
simulate the MS/MS spectra of the selected peptides using the following simulation
parameters: Orbitrap Velos instrument profile with CID fragmentation mode, isolation
width of 2.5, resolution of 800, collision energy (V) of 35, and activation time of 30 ms.
We considered three charge states, 2+ to 4+, precursors, and added additional spectra which
had two types of modification by the semi-empirical modification method (Hu, et al., 2011,
Suni, et al., 2015b): carbamidomethylation at cysteine residues for fixed modifications, and
oxidation at methionine residues for variable modifications. The simulated spectra were
converted to the *.splib format using SpectraST (Lam, et al., 2007), and all peptide-to-
spectrum matches already included in the reference spectral library (refSPL; composed of
annotated experimental spectra or publicly available spectral libraries) were removed.
Spectral library searches were performed using SpectraST v5.0.  All results were filtered

to achieve a false-positive error rate of less than 1% for each peptide and protein.

2.3. Statistical Estimation and Result Integration

The results of each search were analyzed using PeptideProphet and

ProteinProphet (built in Trans-Proteome Pipeline version 4.8.0)(Deutsch, et al., 2015a)
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with default parameters. We used decoy hits and a non-parametric model to determine
the negative frequency, and determined two-peptide probability thresholds by class-
specific FDR filtering (Nesvizhskii, 2014). Each threshold was established by separate
FDR estimations in two classes. Peptide and protein hit probability score thresholds were
determined by FDR estimation. All protein and peptide hits were filtered and parsed by

the predetermined thresholds.

2.4. Quantification and Removal of Outliers

Peptide hits having a higher probabilistic score than the threshold were selected
to calculate the sum of the precursor peak intensities. Using the precursor peak
information, nearby peaks were scanned to find the maximum peak. Based on the
maximum peak information, Epsilon-Q sequentially scans precursor peak groups and
isotopic peaks. All candidate peaks detected were grouped into a feature. These
precursor peaks groups were then used to calculate the peptide abundance indexes, as the
sum of the peak intensities. For each protein, peptide abundance ratios were calculated
using sample pairs and estimated outliers.  The outlier detection was performed by median

absolute deviation (MAD)(Rousseeuw, et al., 1993).
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3. Results

3.1. Epsilon-Q Workflow

Epsilon-Q supports searches of multiple peptide spectral libraries for user-
generated mass spectrum datasets (Figure 1) that have been used in the “Combo-Spec
Search” method. This is designed to overcome a lack of proteome coverage in a peptide
spectral library. If a user wishes to find specific sequences which are not included in a
public spectral library, simSPL searching may provide a way to detect those sequences.
Because the use of multiple spectral libraries generates duplicate results in each mass
spectral dataset, refining these searches can be a time-consuming and cumbersome task.
To improve the efficiency of this process, Epsilon-Q is designed to support multi-thread
functional to process results in parallel.  Each result is statistically evaluated by
PeptideProphet and ProteinProphet, and filtered by its FDR. After the results are combined,
the sum of the intensities of the precursor ion group is calculated for each peptide.
Epsilon-Q calculates peptide abundance ratios and detects outliers for each protein. The
sums of peptide abundances are calculated without the outliers, as protein abundance

indexes. The results are saved as a text-based file (csv format).

3.2. SIimSPL Builder Features and Workflow

SimSPL Builder supports features for building simSPLs to overcome the lack of

proteome coverage in peptide spectral libraries. First, using a protein sequence DB
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(FASTA format), SimSPL Builder creates a tryptic peptide list. In the next step,
MassAnalyzer is used to simulate a tandem mass spectrum for a given peptide set.
MassAnalyzer provides various MS instrument profiles, such as LTQ, Q-TOF, Orbitrap,
and Q Exactive. SimSPL Builder converts the simulated tandem mass spectrum to splib
format, so it can be used SpectraST. SimSPL Builder also provides as interface to add semi-

empirical modifications and decoy generation to false-positive estimates (Figure 2).

3.3. Precursor lon Peak Detection

Epsilon-Q sequentially processes all the candidate peaks around the peak of
maximum intensity.  Figure 3 shows the precursor peak detection workflow in Epsilon-Q.
First, Epsilon-Q roughly scans the local peaks to find the peak with the maximum intensity,
higher than a given threshold (m/z and time window). ~ After the selection of the maximum
peak, two-way candidate peak detection is performed. Precursor peaks are detected along
the retention time axis, and isotope peaks are detected along the m/z axis (Figure 3B).
Isotope peak detection is based on the m/z threshold and the lower and upper isolation
window offset.  This offset is automatically determined by Epsilon-Q based on the raw
MS data files (Figure 3C). The scan time ranges used to find precursor peaks are
determined based on the extracted ion peak width-at-half-height.  This process is

performed for each assigned precursor peak and all detected isotopic peaks (Figure 3D).

3.4. Estimation of Peptide and Protein Detection Performance by
Epsilon-Q
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The sensitivity of Epsilon-Q for protein and peptide detection was tested using the
UPS1 in yeast datasets (Lamus, C et al., PXD001819(Ramus, et al., 2016)). The datasets
were composed of UPS1 sets that were spiked at different concentrations into yeast cell
lysate. Figure 4 shows the Epsilon-Q detection performance, as compared with three
popular sequence DB search engines. At the protein level, Epsilon-Q yielded more
identified proteins than other methods, particularly those present at low concentrations
(Figure 4A). For samples containing 5 fmol of each protein, Epsilon-Q shows more
distinct peptide sequences compared with other tools (Figure 4B). Figure 5 shows
sequence-to-spectrum matches by Epsilon-Q at a concentration of 5 fmol. Peptides
having novel sequences for each protein were not detected by any of the other search
engines (X!Tandem, Mascot, or MaxQuant). These results show that Epsilon-Q has
advantages over other search engines in the detection of peptides and proteins, especially

those present at low concentrations.

3.5. Estimation of Quantitative Performance by Epsilon-Q

To estimate the quantitative performance of Epsilon-Q, we prepared a UPS2
analysis dataset [PXD000331(Ahrne, et al., 2013)] which was generated by conducting
three duplicate analyses of a UPS2 sample. MaxQuant is one of most widely used tools
for label-free quantitative analyses. It uses a protein sequence DB search engine, called
Andromeda. Therefore, analytical processes such as peptide and protein sequencing and
quantification are conducted in a non-stop manner. By comparing the results of these two
applications, we estimated the analytical performance of Epsilon-Q. MaxQuant identified

a total of 32 protein pairs from the UPS2 dataset, with good matches to the expected

56



abundance ratios (Figure 6A, upper panel). Epsilon-Q identified 42 protein pairs; 10 more
protein pairs than MaxQuant.  Although there are some matches with expected ratios for
low abundance proteins, most of them were not identified by MaxQuant (Figure 6B, lower
panel). Both Epsilon-Q and MaxQuant show a good linearity (more than 0.99) for
common 32 identified proteins with no significant difference. However, for replicated
experiments of complex protein mixture, the difference between them was increased (see
Figure 7). MaxQuant shows excellent matches with expected protein ratios but the
number of quantifiable protein pairs seems declined (Figure 7, upper panel). Epsilon-Q
shows more deviations of calculated protein abundance ratios than MaxQuant but it has
much higher identified protein pairs (Figure 7, lower panel). These results demonstrate
that Epsilon-Q exhibits results comparable with MaxQuant, but better detectability for low

abundance proteins.

We also evaluated the quantitative reproducibility of Epsilon-Q using three
replicated UPS2 samples that were spiked into Drosophila and Mycoplasma cell lysates
[PXDO000331(Ahrne, et al., 2013)]. The protein abundances were calculated by summing
the peptide peak abundances assigned to each protein.  The correlation of each replicative
pair was estimated by linear regression. Figure 8 shows that the R? values for the pair
correlations were between 0.97 and 0.99, indicating good quantitative reproducibility over
a wide range of background complexities. Using equal amounts of the UPS1 and UPS2
samples independently spiked into E.coli cell lysate [PXD000602(Krey, et al., 2014)], we
estimated the quantitative performance of Epsilon-Q over a dynamic abundance range of
proteins. The protein ratios were calculated using the UPS1 sample as a control.  Figure
9 shows the log ratios calculated by Epsilon-Q against the log of the true ratios. The

results indicate that ratios of low abundance proteins tend to be less accurate, but the
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abundance ratios calculated by Epsilon-Q generally show good linearity with their true

ratios.

3.6. Epsilon-Q Interface

Epsilon-Q system includes two sub-tools: “SimSPL Builder” and “Combo-Spec
Search”. SimSPL Builder generates customized simSPL based on protein sequences.
Users can generate simSPL step-by-step for use in Combo-Spec Search, or force one step
to use a specific feature, such as merging two libraries or generating decoys (Figure 10A).
Combo-Spec Search provides an interface to multiple spectral library searching (Figure

10B). All results are output to a text-based file (csv format).
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4. Discussion

Spectral library searching has been shown to have better sensitivity than sequence
DB searching methods. However, each spectral library has limited proteome coverage
and using combined library increases the false-positive rate. Hence, we recommend that
each spectral library search and FDR control should be performed independently. These
limitations make hard to sequence whole proteins and the processing throughput of large
data sets using spectral library search methods. Thus, Epsilon-Q system was designed to
overcome some of these limitations.  Using Epsilon-Q system, users can perform multiple
spectral library searching. For the sequencing of novel and missing proteins, use of a
customized simSPL can also improve searches of spectral libraries. Epsilon-Q provides
not only the SimSPL Builder tool, which builds simSPLs, but also the Combo-Spec Search

tool to support multiple spectral library searching.

In this study, we demonstrated that Epsilon-Q system exhibits greater detectability
for peptides and proteins than other sequence DB-based searching tools. For those
proteins identified, Epsilon-Q automatically calculates their abundance index based on the
sum of their precursor ion intensities. Based on the maximum precursor peak and the
peak-shape model (FWHM), Epsilon-Q detects a group of precursor peaks for each peptide
and sums their intensities. Furthermore, Epsilon-Q shows good quantitative
reproducibility and linearity performance for a variety of complex standard datasets. In
conclusion, Epsilon-Q is an efficient tool for comparative proteome analysis based on

multiple spectral libraries and label-free quantification. This software is implemented in
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the C# language and is compatible with Windows operating systems with .NET framework

4.0 installed.
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Table 1.

List of datasets used in SUBJECT II study.

. PXID
Dataset Instrument Groups Replicates (PXID)
UPS2 only Two replicates
UPS2 UPS2 (spiked in Three
protein mix | LTQ Orbitrap Drosophila) replicates (Zﬁﬁgogf §|1
in I‘i"lﬁerf”t Velos UPS2 (spiked in Three 2013)
cell lysates Leptospira) replicates
UPS2 (spiked in Three
Mycoplasma) replicates
st ang UPS1 (spiked in | S fractionsin
an i
UPS2 | LTQ Orbitrap Fcol) replicates | FXDO00G02
protein mix Velos Six fractions (Kr%,lit)al.,
in E coli UPS2 (spiked in ix fractions in
E.coli) eacr_l four
' replicates
Three
UPSLin | LTQ Orbitrap | UPSL in Yeast cell rep"gf‘rt]gs for (E?n?fsot?ﬁ
Yeast Velos lysate abundance 2016)
group
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Figure 1. Epsilon-Q Workflow. Epsilon-Q supports SpectraST for spectral library
searching. All processing steps, such as spectral library searching, statistical estimation,

combining results, and protein abundance calculations, are automatically performed by

Epsilon-Q.
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Figure 6. Comparison of the quantitative analytical performances of Epsilon-Q and
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MaxQuant. (B) Quantitative correlation of 32 common identified proteins by Epsilon-Q

and MaxQuant.
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Figure 7. Comparison of quantitative analytical performance for complex MS data sets
between Epsilon-Q and MaxQuant. UPS2 sample spiked into Drosophila cell lysates and
UPS2 spiked into Mycoplasma cell lysates were used in this test (Ahrné, E et al.,
PXDO000331(Ahrne, etal., 2013)). Each data set contains three replicate samples. Forty
eight UPS protein abundance ratios were calculated from total 15 pairs of 6 experiments

by Epsilon-Q and MaxQuant. The expected ratio is 0.
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Figure 8.  Scatter plots of replicative experimental pairs to evaluate analytical
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Conclusions

Although the rigorous protein search analyzes were carried out on MS data
produced under the instrument’s optimal performance conditions, it is inevitable that some
proteins will remain undetected. It is why we need to develop a better search strategy and
analytical software that provides greater sensitivity and more accurate analysis in the search
for missing proteins.  Spectral library searching shows better sensitivity than sequence
DB searching method. However, each spectral library has limited proteome coverage (30-
40%) and some false-positive rate. We suggest that combination of multiple spectral
libraries with different proteome coverage called Combo-Spec Search method could be one
solution to avoid the limitation. This study demonstrates that the application of Combo-
Spec Search method to a previously analyzed dataset (Lee, et al., 2013) can present
additional opportunities to identify missing proteins that have never been detected by

sequence DB searches.

We also develop the new analytical software called Epsilon-Q. Using the
Epsilon-Q, users can perform multiple spectral library searching. Especially, for novel
and missing proteins sequencing, using customized simSPL could be a complement to
further remedy imperfections of spectral libraries. Epsilon-Q provides SimSPL Builder
which builds simSPL. Epsilon-Q also provide Combo-Spec Search tool to support
multiple spectral library searching. Here we demonstrated that Epsilon-Q shows more
improved detectability for peptides and proteins that other sequence DB-based searching
tools. For identified proteins, Epsilon-Q automatically calculates its abundance index based

on the sum of precursor ion intensities. In this study, Epsilon-Q shows good quantitative
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reproducibility and linearity performance for variety complex of standard datasets. In
summary, Epsilon-Q is an efficient tool for comparative proteome analysis based on

multiple spectral libraries and label-free quantification. This software is executable on

Windows operating system.
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