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Abstract 

Spatial scan statistics proposed by Kulldorff are widely used as a technique 

to detect geographical disease clusters for different types of data such as Bernoulli, 

Poisson, ordinal, normal, and survival. The spatial scan statistic for ordinal data 

can be used to detect clusters indicating areas with high rates of more serious 

stages compared with the surrounding areas.  

However, it has been pointed out that the Poisson-based spatial scan statistic 

tends to detect the most likely cluster much larger than the true cluster by 

absorbing insignificant neighbors with non-elevated risk. We suspect that the 

spatial scan statistic for ordinal data might also have the similar undesirable 

phenomena. Tango (2008) proposed to modify the spatial scan statistic using a 

restricted likelihood ratio for scanning only the regions with elevated risk. The 

method worked well for preventing over-detection but was evaluated only in the 

Poisson model. 

In this paper, we propose to apply a restricted likelihood ratio into two spatial 

scan statistics to circumvent such a phenomenon in ordinal outcome data. 

Through a simulation study we compare the performance of the proposed methods 

with original spatial scan statistics. We calculate sensitivity, positive predicted 
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value (PPV), usual power and bivariate power distribution as performance 

measures.  

The simulation study results show that the proposed spatial scan statistics 

with a restricted likelihood ratio have a reasonable or better performance 

compared with original ones. The original methods for ordinal data tend to detect 

larger clusters than the true cluster, and our approach seems to reduce the 

undesirable property. We illustrate the proposed methods using a real data set of 

the 2014 Health Screening Program of Korea with the diagnosis results of normal, 

caution, suspected disease, and diagnosed with disease as an ordinal outcome. 

 

 

Keywords: Spatial scan statistics; ordinal data; cluster detection; restricted 

likelihood ratio 
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1.  Introduction  

For geographical surveillance, spatial scan statistics are widely used to detect 

spatial disease clustering in different types of data such as Bernoulli (Kulldorff 

and Nagarwalla, 1995), Poisson (Kulldorff, 1997), ordinal (Jung et al., 2007), 

survival (Huang et al., 2007), normal (Kulldorff et al., 2009), and multinomial 

(Jung et al., 2010). The method proposed by Kulldorff (1997) is based on the 

likelihood ratio test to find the area with the maximum value of test statistics as a 

most likely cluster. The spatial scan statistics as a cluster detection tool have been 

applied in various fields in order to identify geographical patterns with high or 

low rates for a range of diseases such as the study for birth defects (Ozdenerol et 

al., 2005), detecting high-risk areas for leprosy in Bangladesh (Fischer et al., 

2008), as well as identifying spatial cluster for cancer incidence, prevalence, and 

mortality (Michelozzi et al., 2002; Gregorio et al., 2006; Alvares et al., 2009; 

Amin et al., 2014).  

Even though the spatial scan statistics are commonly utilized, it has been 

known that this approach detects a much larger cluster within insignificant regions. 

Through a simulation study Tango (2007) pointed out that the Poisson-based 

spatial scan statistic proposed by Kulldorff (1997) tends to detect an 

unrealistically larger cluster than the expected true cluster by absorbing adjacent 
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regions with irrelevant risks. Furthermore, in the case of detecting irregular 

shaped clusters, the spatial scan statistic using the circular scanning window has 

difficulty and thus the over-detection phenomenon can occur (Tango and 

Takahashi, 2005). To resolve the undesirable trend, Tango (2008) proposed a 

Poisson-based spatial scan statistic by modifying the likelihood ratio. The Monte 

Carlo simulation study showed that the proposed spatial scan statistic worked well 

for preventing such undesirable phenomena in detecting the true cluster compared 

with the original spatial scan statistic.  

In this paper, we focus on spatial cluster detection for ordinal data. In the 

medical field, ordinal scaled data are often obtained in nature such as cancer stage 

or grade. At this time, we are interested in geographical cluster detection of high 

rates of more severe categories (e.g., later stage or higher grade). There are two 

spatial scan statistics for ordinal outcome data. One spatial scan statistic was 

proposed by Jung et al. (2007). They assumed the alternative hypothesis based on 

likelihood ratio ordering (LRO) and thus showed that their method had good 

performances to detect spatial clusters for ordinal data. However, this approach 

has somewhat restricted probabilities, which are higher when the disease 

categories are more serious. Therefore, Jung and Lee (2011) developed another 

spatial scan statistic to alleviate order restriction based on stochastic ordering 
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(STO) as an alternative hypothesis. Thus, in the case that the true area (hot spot) 

has a stochastic-based hypothesis, Jung and Lee (2011) showed that the STO-

based method performs better than the LRO-based method. But, we suspect that 

two proposed spatial scan statistics for ordinal data also tend to find a larger 

cluster than the true cluster.  

The purpose of this study is to propose two modified spatial scan statistics 

using a restricted likelihood ratio to circumvent the over-detection problem in 

ordinal outcome data. In our simulation study, we assume both irregular and 

circular shaped true clusters and compute the performances, including sensitivity, 

PPV, usual power, and bivariate power distribution in order to evaluate the 

proposed spatial scan statistics compared with original spatial scan statistics. In 

chapter 2, we briefly review two spatial scan statistics for ordinal data and 

propose spatial scan statistics with a restricted likelihood ratio. In chapter 3, we 

conduct a Monte Carlo simulation study and evaluate the performance of the 

proposed approach to compare with the original methods. We illustrate the 

application to real data examples in chapter 4 and present discussion and 

conclusion of our study in chapter 5. 
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2.  Methods 

The spatial scan statistic is based on the likelihood ratio test. We first 

construct a large number of scanning windows of different sizes at each region on 

the whole study area as a candidate cluster. We compute the likelihood ratio test 

statistic for each candidate and the scanning window with the maximum value of 

the likelihood ratio test statistics is defined as the most likely cluster. Circular and 

elliptical shaped scanning windows are mostly used, as well as a flexible shape. . 

In this section, we simply review two approaches and propose spatial scan 

statistics with a restricted likelihood ratio to avoid over-detection phenomena. And 

then, we explain how to conduct statistical inference. 

 

2.1  Likelihood ratio ordering-based approach 

Suppose that a study area is composed of I sub-regions and the ordinal 

outcome variable has K categories. Let 𝑐𝑖𝑖 be the number of cases in the i-th 

region and the k-th category, where i = 1,…, I and k = 1,…, K. Since the 

categories are ordinal scale in nature, for example, a larger k reflects a more 

severe disease stage. The null hypothesis that there is no clustering can be 

expressed as 𝐻0 ∶  𝑝𝑘 = 𝑞𝑘, for all k = 1,…, K and all scanning windows z. In 
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other words, the probability of being in category k within the scanning window is 

equal to the probability of being in category k outside the scanning window. Note 

that ∑ 𝑝𝑘𝑘 = 1 and ∑ 𝑞𝑘𝑘 = 1. By Jung et al. (2007), an alternative hypothesis 

was considered as follows 

 𝐻𝑎 ∶  
𝑝1
𝑞1
≤
𝑝2
𝑞2

≤ ⋯ ≤
𝑝𝐾
𝑞𝐾

,       for some 𝑧 (1) 

with at least one inequality being strict. This type of order restriction is called by 

likelihood ratio ordering (LRO) according to Dykstra et al. (1995).  

For the ordinal model, the likelihood function is written as 

 
L(Z, 𝑝1, … , 𝑝𝐾, 𝑞1, … , 𝑞𝐾) =  ���𝑝𝑘

𝑐𝑖𝑖

𝑖∈𝑍

�𝑞𝑘
𝑐𝑖𝑖

𝑖∉𝑍

�
𝑘

, (2) 

where 𝑝𝑘 is the unknown probability that an observation within the scanning 

window z belongs to category k and 𝑞𝑘 is also the unknown probability that an 

observation outside the scanning window z belongs to category k. The likelihood 

ratio test statistic can be expressed as 

 
λ =

max
𝑍,𝐻𝑎

 L(Z, 𝑝1, … , 𝑝𝐾, 𝑞1, … , 𝑞𝐾)

max
𝑍,𝐻0

 L(Z, 𝑝1, … , 𝑝𝐾, 𝑞1, … , 𝑞𝐾) =  
max
𝑍

 𝐿(𝑍)

𝐿0
, (3) 

with  
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𝐿0 =  ��𝑝̂0𝑘

𝑐𝑖𝑖

𝑖𝑘

= ��
𝐶𝑘
𝐶 �

∑ 𝑐𝑖𝑖𝑖

𝑘

=  ��
𝐶𝑘
𝐶 �

𝐶𝑘

𝑘

, (4) 

where 𝐶𝑘 (= ∑ 𝑐𝑖𝑖𝑖 ) is the sum of observation in category k, C (= ∑ ∑ 𝑐𝑖𝑖𝑖𝑘 ) is 

the total number of observations in the whole study area and 𝑝̂0𝑘 (= 𝑞�0𝑘) =

𝐶𝑘/𝐶  is MLE of 𝑝𝑘 (= 𝑞𝑘) under the null hypothesis, and with 

 𝐿(𝑍) =  ��𝑝̂𝑘
𝑐𝑖𝑖

𝑖∈𝑍

�𝑞�𝑘
𝑐𝑖𝑖

𝑖∉𝑍𝑘

, (5) 

where 𝑝̂𝑘 and 𝑞�𝑘 are the MLEs of 𝑝𝑘 and 𝑞𝑘 under the alternative hypothesis 

(1). For 𝑝̂𝑘 and 𝑞�𝑘, Dykstra et al. (1995) proved the mathematical expressions, 

and both can be explicitly calculated using the ‘Pool-Adjacent-Violators’ 

algorithm as described by Barlow et al. (1972). Jung et al. (2007) explained the 

details of how to obtain the MLEs under the LRO-based alternative hypothesis. 

According to Jung and Lee (2011), although an alternative hypothesis of 

LRO (1) surely ensures that clusters are detected when an area has more serious 

disease stages than the adjacent area, it does not incorporate all situations in which 

the probabilities of more severe disease categories are higher. For instance, with 

four disease categories, an area which has the probabilities of 0.15, 0.15, 0.45, and 

0.25 seems to have high rates of a worse disease outcome compared with an area 

with probabilities of 0.25 for all four categories. However, the spatial scan statistic 
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based on the LRO approach tends to fail to detect such an area as a cluster. 

 

2.2  Stochastic ordering-based approach 

Jung and Lee (2011) proposed an alternative hypothesis to the LRO 

hypothesis (1). The considered alternative hypothesis is 

 
𝐻𝑎 ∶  �𝑝𝑘

𝑗

𝑘=1

≤ �𝑞𝑘

𝑗

𝑘=1

, for all j = 1, …, K and some 𝑧 (6) 

with at least one strict inequality. This order restriction is called stochastic 

ordering (STO) by Robertson and Wright (1981). Compared with the LRO 

hypothesis (1), the STO hypothesis can include more general situations in which 

the higher the rate, the more severe the disease categories. The LRO hypothesis is 

a special case of the STO hypothesis.  

Even though the likelihood ratio test statistic is the same as equation (3), the 

MLEs of 𝑝𝑘 and 𝑞𝑘 are attained under the alternative hypothesis (6) and thus 

they are used to calculate the value of the test statistic. Note that 𝑝�𝑘 and 𝑞�𝑘 are 

the MLEs of 𝑝𝑘  and 𝑞𝑘  under the STO hypothesis, respectively, c (=

∑ ∑ 𝑐𝑖𝑖𝑖∈𝑍𝑘 ) is the total number of cases inside the scanning window z, and the 

total number of cases in the whole study area is C (= ∑ ∑ 𝑐𝑖𝑖𝑖𝑘 ). According to 
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Robertson and Wright (1981), 𝑝�𝑘 and 𝑞�𝑘 can be obtained as 

 (p� ,q�)=wEw(h|B), (7) 

where w = (c𝑝̅1, c𝑝̅2, … , c𝑝̅𝐾, (𝐶 − 𝑐)𝑞�1, (𝐶 − 𝑐)𝑞�2, … , (𝐶 − 𝑐)𝑞�𝐾) with 

𝑝̅𝑘 =  ∑ 𝑐𝑖𝑖/𝑐𝑖∈𝑍  and 𝑞�𝑘 =  ∑ 𝑐𝑖𝑖/(𝐶 − 𝑐)𝑖∉𝑍  for k = 1, …, K, 

ℎ𝑘 =

⎩
⎨

⎧𝐶−1 +
𝐶 − 𝑐
𝑐𝑐

𝑞�𝑘
𝑝̅𝑘

,                               𝑘 = 1,2, … , 𝐾,                    

𝐶−1 +
𝑐

(𝐶 − 𝑐)𝐶
𝑞�𝑘 − 𝐾
𝑝̅𝑘 − 𝐾

,                𝑘 = 𝐾 + 1,𝐾 + 2, … ,2 𝐾
  

and 

𝐁 = {𝐱 ∈ 𝑅2𝐾; 𝑥1 ≥ 𝑥2 ≥ ⋯ ≥ 𝑥𝐾, 𝑥𝐾+1 ≤ 𝑥𝐾+2 ≤ ⋯ ≤ 𝑥2𝐾}. 

In equation (7) Ew(h|B) denotes the weighted least square projection of h 

onto 𝐁. For each category k, both 𝑝̅𝑘  and 𝑞�𝑘  are assumed to have positive 

values and, in practice, it could happen that 𝑝̅𝑘 = 0 or 𝑞�𝑘 = 0 for some k. 

Dykstra et al. (1996) discussed that those coordinates can be set as a very small 

positive number.  

The most likely cluster can be detected from the maximum value of the 

logarithm of the likelihood ratio test statistic (3) based on the STO and it can be 

expressed as 
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log 𝜆 =  max

𝑍
���𝑐𝑖𝑖𝑙𝑙𝑙𝑝�𝑘

𝑖∈𝑍

+ �𝑐𝑖𝑖𝑙𝑙𝑙𝑞�𝑘
𝑖∉𝑍

�
𝑘

− 𝐿0. (8) 

 

2.3  Restricted likelihood ratio test statistics 

To circumvent or rescale the over-detected phenomenon, Tango (2008) 

proposed a Poisson-based restricted likelihood ratio test statistic by taking each 

individual region’s risk into account. The proposed scan statistic detects only the 

regions with elevated risk by modifying the likelihood ratio. Individual region’s 

risk is obtained from the p-value of the statistical test under the assumption of 

Poisson distribution (Tango, 2008).  

We apply the restricted likelihood ratio test to two scan statistics for ordinal 

outcome data. The concept of the restricted likelihood ratio is to use the indicator 

function on the significance of each region as a screening criterion. For instance, 

given the pre-specified significance level (𝛼1) for the individual region, the 

restricted likelihood scan statistic for LRO is considered as  

 λ𝑟𝑟 = max
𝑍

���𝑝̂𝑘
𝑐𝑖𝑖

𝑖∈𝑍

�𝑞�𝑘
𝑐𝑖𝑖

𝑖∉𝑍𝑘

����
𝐶𝑘
𝐶
�
𝐶𝑘

𝑘

�
−1

�𝐼(𝑝-𝑣𝑣𝑣𝑣𝑣𝑖 < 𝛼1)
𝑖∈𝑍

, (9) 

where the 𝑝-𝑣𝑣𝑣𝑣𝑣𝑖 is the p-value of the Pearson chi-square test for 𝐻𝑖0 ∶  p𝒊 =
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p𝟎 . An STO-based scan statistic with a restricted likelihood ratio can be 

considered using 𝑝�𝑘 and 𝑞�𝑘 instead of 𝑝̂𝑘 and 𝑞�𝑘. Introducing 𝐼�𝑝-𝑣𝑣𝑣𝑣𝑣𝑖 <

𝛼1� as a screening criterion for the ordinal scan statistics does not mean that we 

are performing multiple hypothesis tests. 

For the ordinal outcome, we calculate the 𝑝-𝑣𝑣𝑣𝑣𝑣𝑖 from the Pearson chi-

square (𝜒2) test to compare the proportions of cases in each response category at 

each region with the whole study area. The Pearson chi-square test is 

 
χ2 =  �

(𝑂𝑖 − 𝐸𝑖)2

𝐸𝑖

𝐾

𝑖=1

, (10) 

which has asymptotically a chi-square distribution with (K-1) degrees of freedom. 

Under the null hypothesis, the expected frequencies are found by multiplying each 

region size (𝑐𝑖)  by the proportions specified in the whole study area 

(𝑝̂10, 𝑝̂20, … , 𝑝̂𝐾0). If the screening level of 𝛼1 is equal to 1, the proposed spatial 

scan statistic is equivalent to the original scan statistic. Even though χ2 cannot 

completely reflect the ordinal scale, it is possible to distinguish the distinct 

regions compared with the whole area and thus the ordinal scan statistic is 

conclusively able to detect clusters.  
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2.4  Statistical inference 

When the most likely cluster having the maximum value of the likelihood 

ratio test statistics is detected, we need to conduct a statistical test. Since it is hard 

to find an asymptotic distribution of the test statistic, we can evaluate statistical 

significance by using Monte Carlo hypothesis testing (Dwass, 1957). First, we 

generate a large number of random data sets under the null hypothesis. Then, the 

maximum value of the test statistic is calculated for each data set. The upper 5% 

of the calculated maximum test statistics can be a critical value under a 

significance level of 0.05. We are able to assess the significance of the test statistic 

for the most likely cluster based on the critical value. In order to calculate Monte 

Carlo based p-values, the p-value can be expressed by p = R/(#sim + 1) where 

R is the rank of the test statistic from the original data set and #sim is the number 

of generated data sets. Generally, the p-value can be calculated with 99, 999, and 

9,999 replications as the number of random data sets under the null hypothesis. 
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3.  Simulation study 

3.1  Simulation data and setting 

In order to compare the performances between the original and the proposed 

spatial scan statistics in both the LRO and the STO hypotheses, we performed a 

simulation study under several scenarios. The area of Seoul in South Korea is 

considered as an entire study area, which consists of 25 districts at the “Si-gun-gu” 

level (city-county-district). All districts are geographically represented by a 

centroid coordinate. We assumed six different true cluster models with 3, 5, and 7 

districts in a circular or irregular shaped true cluster. According to the number of 

districts in the true cluster, we set 140, 280, and 440 cases in the true cluster and 

1200, 1400, and 1600 cases in the whole study area. Table 1 and Figure 1, 

respectively, provide the details of the six true cluster models. 

Table 1. Detailed information for simulated cluster models A-F.  

Cluster 
model 

Number of districts in 
true cluster 

Number of cases in 
true cluster Total number of cases 

A 3 140 1200 
B 3 140 1200 
C 5 280 1400 
D 5 280 1400 
E 7 440 1600 
F 7 440 1600 
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Cluster model A (circular) Cluster model B (irregular) 

  
Cluster model C (circular) Cluster model D (irregular) 

  
Cluster model E (circular) Cluster model F (irregular) 

 

 Figure 1. True cluster models A-F in the whole study area of Seoul. 
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While we assumed four disease categories, we considered three different null 

hypotheses and four alternative hypotheses which have the LRO and the STO 

hypotheses in each null hypothesis in equal parts. In other words, for all true 

cluster models, we assumed two different alternative LRO hypotheses and two 

different alternative STO hypotheses against each of three null hypotheses (see 

Table 2). Assumed null hypotheses are based on the general situation in ordinal 

level diseases. Although Jung and Lee (2011) compared two spatial scan statistics 

for ordinal data based only on the STO hypothesis, we evaluated the performances 

based on both the STO and the LRO hypotheses.  

Table 2. The scenario details of assumed hypotheses.  

Null hypothesis Alternative hypothesis 

𝐻0 ∶ 𝑝 = 𝑞
= (0.25,0.25,0.25,0.25) 

𝐻1𝑎 ∶ p = (0.20, 0.10, 0.40, 0.30) 
𝐻1𝑏 ∶ p = (0.15, 0.15, 0.45, 0.25) 
𝐻1𝑐 ∶ p = (0.10, 0.20, 0.30, 0.40) 
𝐻1𝑑 ∶ p = (0.05, 0.25, 0.25, 0.45) 

𝐻0 ∶ 𝑝 = 𝑞
= (0.30,0.20,0.30,0.20) 

𝐻1𝑎 ∶ p = (0.25, 0.05, 0.45, 0.25) 
𝐻1𝑏 ∶ p = (0.25, 0.05, 0.50, 020) 
𝐻1𝑐 ∶ p = (0.15, 0.20, 0.30, 0.35) 
𝐻1𝑑 ∶ p = (0.10, 0.15, 0.25, 0.50) 

𝐻0 ∶ 𝑝 = 𝑞
= (0.40,0.20,0.20,0.20) 

𝐻1𝑎 ∶ p = (0.35, 0.05, 0.35, 0.25) 
𝐻1𝑏 ∶ p = (0.35, 0.05, 0.40, 0.20) 
𝐻1𝑐 ∶ p = (0.25, 0.15, 0.25, 0.35) 
𝐻1𝑑 ∶ p = (0.10, 0.10, 0.40, 0.40) 

𝐻1𝑎, 𝐻1𝑏: STO-based alternative hypotheses and 𝐻1𝑐, 𝐻1𝑑: LRO-based alternative hypotheses 

 

 



15 

 

First, we generated 10,000 random data sets under each null hypothesis to 

estimate the critical values at a significance level of 0.05. The 500 highest values 

of the test statistics in the STO and the LRO methods were the critical values in 

each model. Also, we generated 1,000 random data sets for 12 different 

hypotheses in each true cluster model and searched for clusters with high rates of 

high categories with a circular scanning window. The significance levels (𝛼1) 

assumed were 0.10, 0.20, and 0.40. Based on the critical value at the level of 

𝛼0 = 0.05, we computed the number of rejected data sets out of 1000 which is the 

estimated power of the tests. To assess the accuracy of detected cluster locations 

and sizes, we considered sensitivity and the positive predicted value (PPV) as  

 Sensitivity =
𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑡𝑡𝑡
𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖𝑖 𝑡ℎ𝑒 𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 

 (11) 

 PPV =
𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
. (12) 

We calculated the average of proportions only for rejected data sets at a 

significance level of 0.05 in both sensitivity and the PPV. A larger value of these 

measures means that the method is more precise for detecting the true cluster. For 

example, a lower value of PPV means that the method tends to detect larger 

clusters than true clusters. In case of a lower sensitivity, the method may miss 

more regions in detecting the true cluster.  
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3.2  Bivariate power distribution   

Because the usual power estimates rejected data sets under the null 

hypothesis of no clustering, it does not reflect the precision of correctly detecting 

a cluster when data sets are rejected. Tango and Takahashi (2005) proposed a 

bivariate power distribution based on Monte Carlo simulations in order to 

compare the power performance of spatial scan statistics. The bivariate power 

distribution of 𝑃(𝑙, 𝑠), which is defined by the length l of the significant clusters 

and the number of s of the regions identified out of the assumed 𝑠∗ regions in a 

true cluster, can be expressed by  

 𝑃(𝑙, 𝑠) =
#{𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ℎ𝑎𝑎𝑎 𝑙𝑙𝑙𝑙𝑙ℎ 𝑙 𝑎𝑎𝑎 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠 𝑡𝑡𝑡𝑡 𝑟𝑟𝑟𝑟𝑟𝑟𝑟}

𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓 𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
 (13) 

where 1 ≤ 𝑙, 0 ≤ 𝑠 ≤ min{𝑙, 𝑠∗}. When we are interested in the power of exact 

detection, the probability of exact detection is estimated as 𝑃(𝑠∗, 𝑠∗). The usual 

power can be defined as the sum of 𝑃(𝑙, 𝑠): 

 𝑃(+, +) = ��𝑃(𝑙, 𝑠)
0≤𝑠1≤𝑙

. (14) 

The bivariate power distribution can be a good measure to compare the 

performance of power in terms of the over-detection problem. For instance, if the 

number of regions in true cluster is 3, 𝑃(𝑙 > 3, 𝑠 ≥ 3) might be over-detected 
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because those cases include the regions with non-elevated risk. We can identify 

the accuracy of cluster detection from the bivariate power distribution. For each 

simulation with the use of 1,000 replications at significance levels of 0.05, we 

presented the power distribution 𝑃(𝑙, 𝑠) × 1000  for a more intuitive 

understanding. 

 

3.3  Results  

Tables 3 through 5 show the estimated power, sensitivity, and PPV in each 

cluster model with different hypotheses for the original and our proposed methods 

using the STO-based and the LRO-based methods. Also, the bivariate power 

distribution 𝑃(𝑙, 𝑠) × 1000 in one scenario for each model is shown in Tables 6 

through 11 as an example. The rest of the simulation results showed the same 

pattern and thus we omitted those results due to the limited space. 

As we expected, in the case of the original spatial scan statistics, the STO-

based method seems to perform better when compared with the LRO-based 

method under the STO hypothesis, while both methods have similar capacities of 

sensitivity, PPV and usual power under the LRO hypothesis. In particular, when 

the true cluster is of an irregular shape in the cluster models B (see Table 3), D 
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(see Table 4) and F (see Table 5), the STO-based scan statistic showed higher 

values of power and sensitivity than the LRO-based approach under the STO 

hypothesis. However, there are some cases where the STO-based approach had a 

lower PPV than the LRO-based approach, even though there was a slight 

discrepancy. The overall pattern showed similar results to Jung and Lee (2011).  

Moreover, the original spatial scan statistics tended to detect larger clusters 

than the true cluster in both STO-based and LRO-based approaches. As we see the 

PPV in Table 5, the original scan statistics always have lower PPV than the 

restricted scan statistics regardless of their conditions, in particular, in the case of 

the irregular true cluster in cluster models B, D, and F. This can be interpreted that 

the original spatial scan statistics seem to over-detect. For more details, we can 

identify the over-detected phenomena from the bivariate power distribution in 

Tables 6 through 11. Although the original methods showed relatively higher 

powers, the estimated bivariate power distribution had a long tail which is an 

undesirable phenomenon of over-detection. For example, in Table 6, there are 

many cases in the original spatial scan statistic to include four or more regions in 

the detected cluster, while the true cluster consists of only three regions. In the 

case of an irregular shaped true cluster in Table 7, specifically, the original spatial 

scan statistics detected spatial clusters including between 4 and 13 regions.  
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Compared with the original spatial scan statistics, our proposed spatial scan 

statistics with a restricted likelihood ratio seem to alleviate the undesirable 

property. Even if our restricted spatial scan statistics tends to have lower 

sensitivity and power, we can resolve this by adjusting the screening value (𝛼1). 

We find that sensitivity and power increase as the screening value increases, but 

the PPV is still higher in the restricted methods. Even though our proposed 

method tends to overlook some true regions when the screening value is very low, 

it scans only the regions with elevated risk.  
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Table 3. The estimated power of STO-based and LRO-based methods in cluster models A - F. 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

A 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 100.00 86.40 96.00 99.50 100.00 74.60 90.90 98.00 
P=(0.15,0.15,0.45,0.25) 100.00 92.60 98.00 99.40 100.00 87.30 94.20 98.40 
P=(0.10,0.20,0.30,0.40) 100.00 86.60 93.80 99.10 100.00 97.80 99.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 96.50 99.40 100.00 100.00 86.10 95.00 99.40 
P=(0.25,0.05,0.50,0.20) 100.00 99.90 100.00 100.00 100.00 90.20 96.40 99.40 
P=(0.15,0.20,0.30,0.35) 100.00 70.20 80.70 94.10 100.00 85.70 92.70 99.10 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 100.00 100.00 100.00 100.00 91.50 96.70 99.70 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 100.00 95.10 98.10 99.80 
P=(0.25,0.15,0.25,0.35) 100.00 77.40 89.50 96.20 100.00 90.40 96.50 99.40 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

B 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 96.30 87.40 94.70 95.50 86.00 69.50 80.50 85.40 
P=(0.15,0.15,0.45,0.25) 97.50 93.80 97.90 97.50 85.20 85.10 89.40 84.70 
P=(0.10,0.20,0.30,0.40) 97.50 88.00 92.90 94.80 99.80 97.90 99.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 97.60 99.90 100.00 85.90 73.70 80.80 76.60 
P=(0.25,0.05,0.50,0.20) 100.00 100.00 100.00 100.00 92.70 90.10 92.00 91.60 
P=(0.15,0.20,0.30,0.35) 99.40 74.70 79.60 82.80 95.50 86.70 92.90 94.80 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 99.50 100.00 100.00 85.10 76.90 82.50 80.70 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 86.10 77.80 82.20 75.90 
P=(0.25,0.15,0.25,0.35) 83.50 62.20 69.40 71.60 96.70 82.70 91.80 94.20 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 3. The estimated power of STO-based and LRO-based methods in cluster models A - F. (Continued) 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

C 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 100.00 99.70 100.00 100.00 100.00 98.80 99.90 100.00 
P=(0.15,0.15,0.45,0.25) 100.00 100.00 100.00 100.00 100.00 99.10 99.90 100.00 
P=(0.10,0.20,0.30,0.40) 100.00 99.70 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 100.00 100.00 100.00 100.00 99.30 100.00 100.00 
P=(0.25,0.05,0.50,0.20) 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 
P=(0.15,0.20,0.30,0.35) 100.00 97.90 99.60 100.00 100.00 99.50 100.00 100.00 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.25,0.15,0.25,0.35) 100.00 98.10 99.50 100.00 100.00 99.70 100.00 100.00 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

D 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 100.00 99.30 100.00 100.00 100.00 95.70 98.90 99.70 
P=(0.15,0.15,0.45,0.25) 100.00 99.40 99.80 100.00 100.00 97.20 98.60 99.50 
P=(0.10,0.20,0.30,0.40) 100.00 99.60 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 100.00 100.00 100.00 100.00 99.30 99.70 100.00 
P=(0.25,0.05,0.50,0.20) 100.00 100.00 100.00 100.00 100.00 99.30 99.90 100.00 
P=(0.15,0.20,0.30,0.35) 100.00 94.40 99.40 99.70 100.00 98.80 99.90 100.00 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 100.00 100.00 100.00 100.00 98.20 99.70 100.00 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.25,0.15,0.25,0.35) 100.00 94.50 98.60 99.50 100.00 99.00 99.80 100.00 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 3. The estimated power of STO-based and LRO-based methods in cluster models A - F. (Continued) 

 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

E 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 100.00 100.00 100.00 100.00 100.00 99.10 99.60 100.00 
P=(0.15,0.15,0.45,0.25) 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00 
P=(0.10,0.20,0.30,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 
P=(0.25,0.05,0.50,0.20) 100.00 100.00 100.00 100.00 100.00 99.90 100.00 100.00 
P=(0.15,0.20,0.30,0.35) 100.00 98.60 99.70 100.00 100.00 99.70 100.00 100.00 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 100.00 100.00 100.00 100.00 99.80 100.00 100.00 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 100.00 99.90 99.90 100.00 
P=(0.25,0.15,0.25,0.35) 100.00 97.80 99.70 100.00 100.00 99.70 100.00 100.00 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

F 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 100.00 99.80 99.90 100.00 100.00 98.50 99.50 99.80 
P=(0.15,0.15,0.45,0.25) 100.00 99.40 99.40 100.00 100.00 98.40 99.50 100.00 
P=(0.10,0.20,0.30,0.40) 100.00 99.80 100.00 100.00 100.00 100.00 100.00 100.00 
P=(0.05,0.25,0.25,0.45) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 100.00 99.90 100.00 100.00 100.00 98.70 99.70 100.00 
P=(0.25,0.05,0.50,0.20) 100.00 100.00 100.00 100.00 100.00 99.70 100.00 100.00 
P=(0.15,0.20,0.30,0.35) 100.00 95.90 98.70 99.90 100.00 99.10 99.70 100.00 
P=(0.10,0.15,0.25,0.50) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 100.00 100.00 100.00 100.00 100.00 99.60 100.00 100.00 
P=(0.35,0.05,0.40,0.20) 100.00 100.00 100.00 100.00 100.00 99.40 100.00 100.00 
P=(0.25,0.15,0.25,0.35) 100.00 100.00 100.00 100.00 100.00 99.40 100.00 100.00 
P=(0.10,0.10,0.40,0.40) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
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Table 4. The estimated sensitivity of STO-based and LRO-based methods in cluster models A - F. 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

A 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 98.33 64.62 81.28 93.63 97.83 67.74 82.54 93.50 
P=(0.15,0.15,0.45,0.25) 97.43 67.13 80.92 92.45 96.00 68.19 81.71 91.50 
P=(0.10,0.20,0.30,0.40) 97.77 63.32 79.03 92.77 97.80 63.26 78.89 93.07 
P=(0.05,0.25,0.25,0.45) 99.83 96.17 99.03 99.77 99.87 96.33 99.07 99.80 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 98.83 72.71 88.53 97.57 96.57 73.98 87.72 95.07 
P=(0.25,0.05,0.50,0.20) 98.80 82.48 92.00 97.97 96.37 83.63 90.63 95.64 
P=(0.15,0.20,0.30,0.35) 95.53 56.51 72.49 86.89 96.10 54.18 69.15 85.20 
P=(0.10,0.15,0.25,0.50) 99.80 98.73 99.53 99.73 99.80 98.73 99.53 99.73 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 98.90 81.17 93.43 98.17 96.67 81.35 92.24 95.65 
P=(0.35,0.05,0.40,0.20) 99.40 91.03 96.53 99.07 97.53 89.27 94.70 97.09 
P=(0.25,0.15,0.25,0.35) 95.67 61.46 76.91 88.60 95.80 58.92 74.65 87.49 
P=(0.10,0.10,0.40,0.40) 99.93 99.93 99.93 99.93 99.93 99.93 99.93 99.93 

B 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 82.66 54.50 61.21 66.67 82.52 53.62 58.72 64.56 
P=(0.15,0.15,0.45,0.25) 80.89 56.43 61.59 67.11 80.79 54.80 59.62 65.01 
P=(0.10,0.20,0.30,0.40) 87.38 51.67 58.16 66.21 87.68 55.77 64.34 72.70 
P=(0.05,0.25,0.25,0.45) 91.80 89.07 90.40 91.20 93.73 92.67 94.63 94.03 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 88.27 58.81 67.63 73.43 85.37 53.82 58.58 65.75 
P=(0.25,0.05,0.50,0.20) 83.97 67.90 72.97 75.53 81.70 58.86 62.72 67.79 
P=(0.15,0.20,0.30,0.35) 80.92 51.41 56.37 63.29 79.86 51.75 57.23 64.17 
P=(0.10,0.15,0.25,0.50) 92.73 88.13 87.93 87.37 90.50 91.10 91.13 91.20 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 84.20 66.16 73.70 77.93 83.86 55.44 59.72 65.96 
P=(0.35,0.05,0.40,0.20) 90.13 77.83 83.53 84.50 84.67 54.93 59.85 64.87 
P=(0.25,0.15,0.25,0.35) 84.55 48.12 55.04 62.43 85.59 48.00 55.66 61.89 
P=(0.10,0.10,0.40,0.40) 98.43 99.23 99.23 99.03 99.23 99.87 99.83 99.70 
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Table 4. The estimated sensitivity of STO-based and LRO-based methods in cluster models A - F. (Continued) 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

C 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 97.92 67.04 82.76 93.56 96.70 64.92 80.98 92.02 
P=(0.15,0.15,0.45,0.25) 98.26 67.30 80.82 92.64 97.44 64.00 77.84 91.04 
P=(0.10,0.20,0.30,0.40) 98.40 68.00 82.72 94.08 98.40 69.76 83.56 94.34 
P=(0.05,0.25,0.25,0.45) 99.74 94.38 98.44 99.64 99.74 94.72 98.48 99.64 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 98.94 77.92 90.32 96.98 97.30 73.43 87.74 95.10 
P=(0.25,0.05,0.50,0.20) 99.14 84.26 93.94 98.40 97.40 80.32 91.46 96.38 
P=(0.15,0.20,0.30,0.35) 97.12 56.63 73.82 88.00 97.24 58.15 75.20 88.98 
P=(0.10,0.15,0.25,0.50) 99.92 98.26 99.20 99.82 99.92 98.30 99.20 99.84 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 98.68 82.76 92.72 97.66 96.38 78.74 89.52 95.18 
P=(0.35,0.05,0.40,0.20) 98.94 87.84 94.88 97.94 96.14 84.38 92.00 95.24 
P=(0.25,0.15,0.25,0.35) 97.20 55.88 70.57 85.78 97.20 58.44 72.78 86.90 
P=(0.10,0.10,0.40,0.40) 99.98 99.94 99.98 99.98 99.98 99.94 99.98 99.98 

D 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 76.40 53.90 60.42 63.28 77.16 49.63 57.01 61.00 
P=(0.15,0.15,0.45,0.25) 84.10 53.02 58.36 64.10 81.28 50.45 54.83 60.96 
P=(0.10,0.20,0.30,0.40) 78.26 54.78 60.32 63.42 78.78 58.72 63.36 66.44 
P=(0.05,0.25,0.25,0.45) 80.48 80.46 79.92 79.08 83.08 86.48 86.14 84.00 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 77.58 62.96 67.20 68.34 77.96 53.64 57.97 61.24 
P=(0.25,0.05,0.50,0.20) 78.56 66.18 67.92 69.34 79.34 56.92 60.46 63.56 
P=(0.15,0.20,0.30,0.35) 77.28 46.25 53.82 60.54 77.76 49.33 57.76 63.74 
P=(0.10,0.15,0.25,0.50) 91.66 89.74 89.62 89.20 93.80 93.14 93.22 92.68 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 79.10 66.22 69.12 69.74 79.06 55.03 59.16 61.50 
P=(0.35,0.05,0.40,0.20) 98.94 87.84 94.88 97.94 96.14 84.38 92.00 95.24 
P=(0.25,0.15,0.25,0.35) 80.48 46.86 54.22 60.02 80.58 49.68 57.21 62.10 
P=(0.10,0.10,0.40,0.40) 93.56 97.42 96.82 96.24 96.18 98.50 98.40 97.92 
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Table 4. The estimated sensitivity of STO-based and LRO-based in cluster models A - F. (Continued) 

 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

E 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 99.19 57.93 73.11 89.47 98.97 53.41 70.08 87.51 
P=(0.15,0.15,0.45,0.25) 99.10 58.21 71.40 86.36 98.46 55.60 69.11 84.60 
P=(0.10,0.20,0.30,0.40) 99.19 58.09 72.36 87.90 99.19 61.70 75.07 88.90 
P=(0.05,0.25,0.25,0.45) 99.87 93.63 98.07 99.67 99.89 94.07 98.21 99.69 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 99.57 69.87 84.97 95.34 98.50 62.26 80.09 92.89 
P=(0.25,0.05,0.50,0.20) 99.67 76.21 88.96 97.60 98.79 69.53 85.54 96.13 
P=(0.15,0.20,0.30,0.35) 98.67 47.62 62.26 80.99 98.76 50.34 64.57 82.13 
P=(0.10,0.15,0.25,0.50) 99.94 97.16 98.79 99.79 99.94 97.26 98.83 99.79 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 99.60 75.74 88.16 96.74 98.07 69.50 84.34 94.71 
P=(0.35,0.05,0.40,0.20) 99.83 83.80 93.11 98.14 98.44 75.75 89.02 96.03 
P=(0.25,0.15,0.25,0.35) 98.47 46.33 60.21 77.79 98.47 50.29 63.79 79.66 
P=(0.10,0.10,0.40,0.40) 99.99 99.89 99.94 99.97 99.99 99.89 99.94 99.97 

F 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 77.37 48.34 57.67 62.96 76.01 42.64 48.79 56.01 
P=(0.15,0.15,0.45,0.25) 78.23 45.56 53.31 60.14 74.67 41.87 48.20 55.26 
P=(0.10,0.20,0.30,0.40) 75.80 48.41 56.61 62.96 77.50 54.26 63.73 69.31 
P=(0.05,0.25,0.25,0.45) 85.69 86.13 87.70 87.03 88.41 88.79 90.47 90.80 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 75.74 60.60 67.93 70.43 71.94 46.40 50.87 56.06 
P=(0.25,0.05,0.50,0.20) 82.30 65.54 72.29 74.37 76.24 49.29 53.26 57.81 
P=(0.15,0.20,0.30,0.35) 71.70 40.01 48.05 54.10 72.56 43.68 52.83 58.39 
P=(0.10,0.15,0.25,0.50) 90.49 90.44 91.07 90.61 92.03 93.10 93.50 93.29 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 78.10 65.17 71.59 73.91 73.07 46.26 51.86 56.89 
P=(0.35,0.05,0.40,0.20) 81.50 72.87 76.74 77.90 72.71 50.34 53.47 58.80 
P=(0.25,0.15,0.25,0.35) 81.50 72.87 76.74 77.90 72.71 50.34 53.47 58.80 
P=(0.10,0.10,0.40,0.40) 97.44 98.96 98.64 98.34 98.43 99.50 99.39 99.14 
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Table 5. The estimated PPV of STO-based and LRO-based methods in cluster models A - F. 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

A 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 91.46 98.02 97.58 95.40 91.52 98.11 97.62 95.60 
P=(0.15,0.15,0.45,0.25) 90.60 97.40 97.29 95.56 90.94 97.73 97.28 95.74 
P=(0.10,0.20,0.30,0.40) 93.23 98.69 98.22 96.22 93.71 99.00 98.41 96.71 
P=(0.05,0.25,0.25,0.45) 98.72 99.55 99.12 98.71 98.96 99.73 99.28 98.96 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 98.83 72.71 88.53 97.57 90.71 98.05 97.91 95.73 
P=(0.25,0.05,0.50,0.20) 93.31 97.99 97.67 96.14 90.54 97.72 97.09 95.79 
P=(0.15,0.20,0.30,0.35) 92.20 97.97 97.41 96.50 92.39 98.58 98.01 96.59 
P=(0.10,0.15,0.25,0.50) 90.97 97.88 97.57 96.08 98.74 99.56 99.35 98.86 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 94.45 97.93 97.88 96.86 92.29 98.82 98.07 96.33 
P=(0.35,0.05,0.40,0.20) 89.82 97.97 97.22 95.51 89.98 98.31 97.54 95.34 
P=(0.25,0.15,0.25,0.35) 89.63 97.29 96.94 95.24 90.42 98.28 97.73 95.98 
P=(0.10,0.10,0.40,0.40) 99.29 99.52 99.38 99.25 99.66 99.60 99.61 99.61 

B 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 76.10 96.87 95.17 91.13 76.46 97.06 94.78 91.40 
P=(0.15,0.15,0.45,0.25) 77.60 96.72 95.19 91.18 76.26 97.34 95.83 90.49 
P=(0.10,0.20,0.30,0.40) 73.61 97.68 95.65 90.82 73.89 98.53 96.48 91.76 
P=(0.05,0.25,0.25,0.45) 80.39 98.04 96.35 92.38 80.55 98.30 96.67 92.82 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 70.89 97.65 96.12 91.36 73.10 96.45 94.36 88.90 
P=(0.25,0.05,0.50,0.20) 71.82 97.49 95.75 92.37 77.60 97.17 95.51 91.56 
P=(0.15,0.20,0.30,0.35) 74.89 96.39 94.62 90.56 77.40 97.74 96.23 92.66 
P=(0.10,0.15,0.25,0.50) 82.02 97.80 96.30 93.40 84.08 98.22 96.81 94.05 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 78.59 97.41 95.99 92.06 75.47 96.97 95.34 89.64 
P=(0.35,0.05,0.40,0.20) 73.57 96.79 94.24 90.10 74.26 96.22 94.39 89.17 
P=(0.25,0.15,0.25,0.35) 73.00 96.61 93.97 89.17 73.83 98.16 96.07 91.32 
P=(0.10,0.10,0.40,0.40) 82.04 98.50 97.04 94.06 82.29 98.70 97.29 94.35 
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Table 5. The estimated PPV of STO-based and LRO-based methods in cluster models A - F. (Continued) 

Continued 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

C 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 94.91 98.90 98.62 98.07 98.18 99.63 99.50 99.12 
P=(0.15,0.15,0.45,0.25) 92.39 98.78 98.43 97.74 98.32 99.23 99.13 98.99 
P=(0.10,0.20,0.30,0.40) 98.87 99.63 99.60 99.35 98.93 99.74 99.66 99.41 
P=(0.05,0.25,0.25,0.45) 99.62 99.76 99.81 99.72 99.86 99.97 99.93 99.89 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 91.26 98.63 98.63 98.06 97.78 99.67 99.58 99.09 
P=(0.25,0.05,0.50,0.20) 80.19 98.17 97.83 96.57 97.64 99.12 98.94 98.68 
P=(0.15,0.20,0.30,0.35) 98.63 99.52 99.54 99.18 98.75 99.81 99.76 99.33 
P=(0.10,0.15,0.25,0.50) 99.80 99.83 99.81 99.81 99.85 99.93 99.91 99.90 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 82.19 98.43 97.48 96.05 98.29 99.57 99.43 98.98 
P=(0.35,0.05,0.40,0.20) 60.35 97.42 96.61 94.38 97.78 99.26 99.12 98.55 
P=(0.25,0.15,0.25,0.35) 97.84 99.35 99.17 98.83 97.98 99.67 99.52 99.10 
P=(0.10,0.10,0.40,0.40) 99.95 99.90 99.88 99.88 99.98 99.98 99.97 99.97 

D 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 80.08 98.57 98.19 96.69 78.54 99.13 98.60 96.88 
P=(0.15,0.15,0.45,0.25) 72.27 98.33 97.87 94.78 74.50 99.25 98.30 95.26 
P=(0.10,0.20,0.30,0.40) 80.06 99.10 99.04 97.24 80.04 99.44 99.23 97.39 
P=(0.05,0.25,0.25,0.45) 86.53 99.84 99.61 98.57 86.87 99.89 99.64 98.63 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 80.84 98.49 97.77 96.25 77.64 99.26 98.73 96.69 
P=(0.25,0.05,0.50,0.20) 79.29 97.72 97.23 94.30 77.16 99.01 98.19 95.52 
P=(0.15,0.20,0.30,0.35) 78.33 98.97 98.50 96.61 78.64 99.17 98.81 97.15 
P=(0.10,0.15,0.25,0.50) 74.70 99.55 99.05 95.43 74.98 99.70 99.15 95.68 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 79.06 98.33 97.67 95.41 76.48 99.11 98.48 95.44 
P=(0.35,0.05,0.40,0.20) 60.35 97.42 96.61 94.38 97.78 99.26 99.12 98.55 
P=(0.25,0.15,0.25,0.35) 76.11 99.14 98.63 96.31 76.49 99.38 98.85 96.64 
P=(0.10,0.10,0.40,0.40) 94.79 99.72 99.64 99.43 94.92 99.93 99.89 99.70 
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Table 5. The estimated PPV of STO-based and LRO-based methods in cluster models A - F. (Continued) 

 

Cluster 
model 

Null 
hypothesis 

Alternative 
Hypothesis 

STO  LRO 
Original (%) Restricted (%) Original (%) Restricted (%) 

 0.1 0.2 0.4  0.1 0.2 0.4 

E 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 90.97 98.53 98.13 97.14 98.32 99.41 99.30 99.04 
P=(0.15,0.15,0.45,0.25) 89.38 98.42 97.69 96.41 97.76 99.31 99.10 98.48 
P=(0.10,0.20,0.30,0.40) 99.04 99.75 99.32 99.30 99.05 99.86 99.43 99.38 
P=(0.05,0.25,0.25,0.45) 99.88 99.89 99.87 99.87 99.89 99.91 99.89 99.88 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 77.79 98.20 97.62 95.88 97.92 99.61 99.32 98.94 
P=(0.25,0.05,0.50,0.20) 52.47 97.03 96.14 92.91 98.25 99.17 99.09 99.00 
P=(0.15,0.20,0.30,0.35) 98.51 99.27 98.88 98.51 98.58 99.43 98.99 98.62 
P=(0.10,0.15,0.25,0.50) 99.96 99.92 99.87 99.90 99.95 99.93 99.88 99.93 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 60.11 97.72 96.49 94.07 97.80 99.48 99.28 98.92 
P=(0.35,0.05,0.40,0.20) 41.18 95.13 92.85 87.65 97.14 99.13 98.75 98.19 
P=(0.25,0.15,0.25,0.35) 98.16 99.35 98.80 98.20 98.16 99.42 98.92 98.25 
P=(0.10,0.10,0.40,0.40) 99.98 99.94 99.94 99.98 99.99 100.00 99.99 99.99 

F 

p=q 
=(0.25,0.25,0.25,0.25) 

P=(0.20,0.10,0.40,0.30) 77.42 98.42 97.14 93.03 77.15 99.16 97.73 93.92 
P=(0.15,0.15,0.45,0.25) 77.11 97.72 96.95 92.74 78.85 99.04 97.98 94.59 
P=(0.10,0.20,0.30,0.40) 80.06 99.32 98.26 94.40 80.34 99.43 98.34 94.66 
P=(0.05,0.25,0.25,0.45) 82.26 98.47 96.72 92.83 82.61 98.58 96.91 93.06 

p=q 
=(0.30,0.20,0.30,0.20) 

P=(0.25,0.05,0.45,0.25) 81.51 98.12 96.55 92.86 80.43 98.86 97.33 94.12 
P=(0.25,0.05,0.50,0.20) 73.67 96.30 94.16 88.57 77.40 98.23 96.41 92.23 
P=(0.15,0.20,0.30,0.35) 80.75 99.46 98.64 95.95 81.11 99.57 98.80 96.11 
P=(0.10,0.15,0.25,0.50) 78.06 95.98 92.65 87.51 78.33 96.11 92.84 87.80 

p=q 
=(0.40,0.20,0.20,0.20) 

P=(0.35,0.05,0.35,0.25) 78.64 96.60 94.76 90.61 79.63 98.46 97.13 93.62 
P=(0.35,0.05,0.40,0.20) 74.58 95.73 93.32 87.08 79.47 97.88 96.27 92.28 
P=(0.25,0.15,0.25,0.35) 74.58 95.73 93.32 87.08 79.47 97.88 96.27 92.28 
P=(0.10,0.10,0.40,0.40) 82.83 95.72 93.36 89.28 82.88 95.78 93.39 89.27 
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Table 6. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed STO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.25,0.25,0.25,0.25)  and 
 𝐻1: 𝑝 = (0.20, 0.10, 40, 0.30) under the STO hypothesis in cluster model A 
(circular). 

STO-based original scan statistic 

 

STO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0 1 2 3 0 1 2 3 
1 0 9 0 0 0.10 1 1 316 0 0 
2 0 0 30 0 2 0 7 245 0 
3 0 1 0 747 3 0 3 14 258 
4 0 0 0 95 4 0 0 3 16 
5 0 0 0 51 5 0 0 0 1 
6 0 0 0 31 usual power = 0.864 
7 0 0 0 9 0.20 1 0 186 0 0 
8 0 0 0 5 2 0 3 142 0 
9 0 0 0 2 3 0 2 10 561 

10 0 0 0 4 4 0 1 3 43 
11 0 0 0 1 5 0 0 0 6 
12 0 0 0 2 6 0 0 0 1 
13 0 0 0 4 7 0 0 0 2 
14 0 0 0 1 usual power = 0.960 
15 0 0 0 3 0.40 1 0 60 0 0 
16 0 0 0 3 2 0 0 55 0 
17 0 0 0 0 3 0 3 3 744 
18 0 0 0 0 4 0 1 0 84 
19 0 0 0 0 5 0 1 0 25 
20 0 0 0 0 6 0 0 0 13 
21 0 0 0 2 7 0 1 0 5 

usual power = 1.000  usual power = 0.995 
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Table 7. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed LRO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.30,0.20,0.30,0.20)  and 
 𝐻1: 𝑝 = (0.15,0.20,0.30,0.35) under the LRO hypothesis in cluster model B 
(irregular). 

LRO-based original scan statistic 

 

LRO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0 1 2 3 0 1 2 3 
1 0 98 0 0 0.10 1 0 401 0 0 

2 0 5 296 0 2 0 18 395 0 

3 0 1 35 0 3 0 0 19 20 

4 0 0 28 284 4 0 0 3 11 

5 0 0 9 34 usual power =0.867 
6 0 0 1 67 0.20 1 0 300 0 0 

7 0 0 0 24 2 0 20 511 0 

8 0 0 0 28 3 0 2 32 18 

9 0 0 0 18 4 0 1 3 40 

10 0 0 0 11 5 0 0 0 2 

11 0 0 0 7 usual power = 0.929 
12 0 0 0 5 0.40 1 0 199 0 0 

13 0 0 0 4  2 0 20 524 0 
usual power = 0.955  3 1 0 44 11 

      4 0 0 10 116 

      5 0 0 0 17 

      6 0 0 0 5 

      7 0 0 0 1 

       usual power = 0.948 
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Table 8. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed LRO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.30,0.20,0.30,0.20)  and 
 𝐻1: 𝑝 = (0.15,0.20,0.30,0.35) under the LRO hypothesis in cluster model C 
(circular).  

LRO-based original scan statistic 

 

LRO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0 1 2 3 4 5 0 1 2 3 4 5 
1 0 0 0 0 0 0 0.10 1 0 88 0 0 0 0 

2 0 0 1 0 0 0 2 0 0 255 0 0 0 

3 0 0 0 11 0 0 3 0 0 3 349 0 0 

4 0 0 0 1 111 0 4 0 0 0 1 253 0 

5 0 0 0 0 0 815 5 0 0 0 0 3 43 

6 0 0 0 0 0 48 usual power = 0.995 

7 0 0 0 0 0 8 0.20 1 0 12 0 0 0 0 

8 0 0 0 0 0 4 2 0 0 99 0 0 0 

9 0 0 0 0 0 0 3 0 0 1 249 0 0 

10 0 0 0 0 0 1 4 0 0 0 3 384 0 
usual power = 1.000 5 0 0 0 0 4 245 

       6 0 0 0 0 0 3 

       usual power = 1.000 

       0.40 1 0 3 0 0 0 0 

       2 0 0 21 0 0 0 

       3 0 0 0 95 0 0 

       4 0 0 0 4 270 0 

       5 0 0 0 0 8 576 

       6 0 0 0 0 0 21 

       7 0 0 0 0 0 2 
    usual power = 1.000 
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Table 9. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed STO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.40,0.20,0.20,0.20)  and 
 𝐻1: 𝑝 = (0.35,0.05,0.40,0.20) under the STO hypothesis in cluster model D 
(irregular).  

STO-based original scan statistic 

 

STO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0 1 2 3 4 5 0 1 2 3 4 5 
1 0 0 0 0 0 0 0.10 1 0 0 0 0 0 0 

2 0 0 6 0 0 0 2 0 0 18 0 0 0 

3 0 0 0 335 0 0 3 0 0 0 403 0 0 

4 0 0 0 6 122 0 4 0 0 1 19 472 0 

5 0 0 0 5 0 0 5 0 0 0 11 35 19 

6 0 0 0 5 57 0 6 0 0 0 0 16 1 

7 0 0 0 3 3 0 7 0 0 0 2 0 1 

8 0 0 0 5 3 257 8 0 0 0 0 1 1 

9 0 0 0 2 5 96 usual power = 1.000 
10 0 0 0 3 1 7 0.20 1 0 0 0 0 0 0 

11 0 0 1 6 3 7 2 0 0 7 0 0 0 

12 0 0 0 5 2 13 3 0 0 0 386 0 0 

13 0 0 0 0 7 4 4 0 0 0 21 477 0 

14 0 0 0 0 2 4 5 0 0 0 12 21 21 

15 0 0 0 0 1 11 6 0 0 1 8 24 2 

16 0 0 0 0 1 11 7 0 0 0 8 5 1 

17 0 0 0 0 0 1 8 0 0 0 2 2 1 

       9 0 0 0 0 0 0 
usual power = 1.000 10 0 0 0 0 0 1 

       usual power = 1.000 
       0.40 1 0 0 0 0 0 0 

       2 0 0 5 0 0 0 

       3 0 0 0 395 0 0 

       4 0 0 0 16 427 0 

       5 0 0 0 11 14 20 

       6 0 0 1 13 30 0 

       7 0 0 0 9 7 3 

       8 0 0 0 5 12 16 

       9 0 0 0 0 3 5 

       10 0 0 0 1 4 2 

       11 0 0 0 0 0 1 
    usual power = 1.000 
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Table 10. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed STO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.30,0.20,0.30,0.20)  and 
 𝐻1: 𝑝 = (0.25,0.05,0.45,0.25) under the STO hypothesis in cluster model E 
(circular).  

STO-based original scan statistic 

 

STO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0-2 3 4 5 6 7 0-2 3 4 5 6 7 
1 0 0 0 0 0 0 0.10 1 0 0 0 0 0 0 

2 0 0 0 0 0 0 2 15 0 0 0 0 0 

3 0 0 0 0 0 0 3 1 70 0 0 0 0 

4 0 0 0 0 0 0 4 1 1 251 0 0 0 

5 0 0 0 2 0 0 5 0 0 17 340 0 0 

6 0 0 0 0 16 0 6 1 1 6 19 159 0 

7 0 0 0 0 1 586 7 0 0 0 8 4 90 

8 0 0 0 0 0 25 8 0 0 0 5 0 6 

9 0 0 0 0 1 4 9 0 0 0 1 0 1 

10 0 0 0 0 1 7 10-12 0 0 0 0 0 3 

11 0 0 0 0 0 9 usual power = 1.000 
12 0 0 0 0 0 4 0.20 1 0 0 0 0 0 0 

13 0 0 0 0 0 13 2 0 0 0 0 0 0 

14 0 0 0 0 1 13 3 0 10 0 0 0 0 

15 0 0 0 0 0 18 4 0 1 105 0 0 0 

16 0 0 0 0 0 23 5 0 0 4 212 0 0 

17 0 0 0 0 2 30 6 0 0 2 10 168 0 

18-22 0 0 0 0 4 240 7 0 0 1 5 10 408 
usual power = 1.000 8 0 0 3 8 5 20 

       9 0 0 0 3 2 8 
 10-12 0 0 0 1 0 14 

       usual power = 1.000 
       0.40 1 0 0 0 0 0 0 

       2 0 0 0 0 0 0 

       3 0 1 0 0 0 0 

       4 0 0 24 0 0 0 

       5 0 0 0 68 0 0 

       6 0 0 0 1 61 0 

       7 0 0 0 1 5 701 

       8 0 0 3 3 6 44 

       9 0 0 0 1 4 14 

       10 0 0 1 1 2 12 

       11-15 0 0 1 1 5 40 
    usual power = 1.000 
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Table 11. Estimated bivariate power distributions 𝑃(𝑙, 𝑠) × 1000 of original and 
proposed LRO-based methods for 𝐻0: 𝑝 = 𝑞 = (0.40,0.20,0.20,0.20)  and 
 𝐻1: 𝑝 = (0.25,0.15,0.25,0.35) under the LRO hypothesis in cluster model F 
(irregular).  

LRO-based original scan statistic 

 

LRO-based restricted scan statistic 
Length 

l 
Include s true regions 

𝛼1 
Length 

l 
Include s true regions 

0-2 3 4 5 6 7 0-2 3 4 5 6 7 
1 0 0 0 0 0 0 0.10 1 71 0 0 0 0 0 

2 11 0 0 0 0 0 2 184 0 0 0 0 0 

3 0 151 0 0 0 0 3 1 373 0 0 0 0 

4 0 2 35 0 0 0 4 0 10 261 0 0 0 

5 0 0 4 32 0 0 5 0 0 6 71 0 0 

6 0 0 1 180 1 0 6 0 0 0 6 9 0 

7 0 0 4 2 18 0 7 0 0 0 0 0 1 

8 0 0 0 36 380 0 8 0 0 0 0 1 0 

9 0 0 0 1 40 31 usual power = 1.000 
10 0 0 0 0 43 5 0.20 1 26 0 0 0 0 0 

11 0 0 0 0 3 2 2 80 0 0 0 0 0 

12 0 0 0 0 14 0 3 1 300 0 0 0 0 

13 0 0 0 0 3 1 4 0 10 329 0 0 0 
usual power = 1.000 5 0 0 9 188 0 0 

       6 0 0 0 27 16 0 

       7 0 0 0 2 6 0 

       8 0 0 0 1 4 0 

       9 0 0 0 0 1 0 
 usual power = 1.000 

       0.40 1 4 0 0 0 0 0 

       2 34 0 0 0 0 0 

      
  3 0 279 0 0 0 0 

       4 0 8 256 0 0 0 

       5 0 0 10 195 0 0 

       6 0 0 0 108 20 0 

       7 0 0 1 1 21 0 

       8 0 0 0 6 45 0 

       9 0 0 0 0 3 6 

       10 0 0 0 0 3 0 
    usual power = 1.000 
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4.  Application  

4.1  Data explanation 

We applied two approaches, the original and our proposed spatial scan 

statistics for the ordinal data, to real data in the 2014 Health Screening Program 

by the National Health Insurance Service (NHIS) of Korea. The data was obtained 

from the Korean Statistical Information Service (KOSIS). The NHIS annually 

offers the National Health Screening Statistical Yearbook since 2008 in order to 

provide basic data to be used for establishing medical and healthcare policies and 

health insurance policies, presenting directions for national policies for the 

improvement of regional health and medical service (NHIS, 2014). This program 

contains general health screening, life turning point health examinations, cancer 

screening, health screenings for infants, and other commissioned programs. 

We used the data set of statistics on first diagnoses based on general health 

screening by district and gender in 2014 as an ordinal data (normal, caution, 

suspected disease, and diagnosed with diseases) only in Seoul with 25 districts 

(gu). Tables 12 and 13 show the criteria for determining diagnoses based on the 

results of general health screening and the number of cases and percentage by 

gender, as well as the proportion by gender in Seoul (Figure 2).  
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Table 12. The criteria for determining diagnoses based on the general health 
screening.  

Division Explanation Criteria 
Normal A Individuals determined to be in sound health based on the results of 

the 1st step screening test 
 

Normal (1) 

Normal B (Cautionary) Individuals determined to be normal health based on the results of 
the first step screening test but who require self-care and preventive 
measures through improvements in dietary habits and 
environmental conditions 
 

Caution (2) 

Suspected Disease – 
General 

Individuals determined to be at risk of developing disease based on 
the results of the first screening test and who therefore require 
follow-up examinations or accurate diagnosis and treatment 
through a specialized medical institution 
 

Suspected 
disease (3) 

Suspected Disease – 
Hypertension or Diabetes 

Individuals determined to be suspected of experiencing 
hypertension or diabetes based on the results of the first step 
screening test and who therefore require treatment and care 
 

Individuals Diagnosed 
with Disease 

Individuals diagnosed with hypertension, diabetes, dyslipidemia or 
tuberculosis and who are currently receiving drug treatment 

Diagnosed with 
diseases (4) 

 

Table 13. Data on the diagnoses of general health screening in Seoul (2014).  

Male Level of diagnosis N %  Female Level of diagnosis N % 
1 Normal 55,891 4.97  1 Normal 139,729 12.92 
2 Caution 369,425 32.84  2 Caution 434,593 40.19 
3 Suspected disease 467,957 41.60  3 Suspected disease 302,015 27.93 
4 Diagnosed with 

diseases 
231,599 20.59  4 Diagnosed with 

diseases 
205,126 18.97 

 Total 1,124,872    Total 1,081,463  
 
 

         
Figure 2. The distribution of the general health screening by gender in Seoul. 
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4.2  Results 

For the general health screening data set, two approaches, the original scan 

statistics and the proposed spatial scan statistics with a restricted likelihood ratio, 

are utilized. The maximum size of the scanning windows of each location in this 

study is set to include 50% of the total population of Seoul. Based on the null 

hypothesis 𝐻0 ∶  𝑝𝑘 = 𝑞𝑘, for all k = 1,…, 4 and all scanning window z, the LRO-

based and STO-based alternative hypotheses can be defined as 𝐻𝑎 ∶  𝑝1
𝑞1
≤ 𝑝2

𝑞2
≤

𝑝3
𝑞3
≤ 𝑝4

𝑞4
 and 𝐻𝑎 ∶  ∑ 𝑝𝑘4

𝑘=1 ≤ ∑ 𝑞𝑘4
𝑘=1 , respectively. We compare the results of 

original spatial scan statistics with that of the proposed spatial scan statistics using 

the value of 𝛼1 = 0.10. We evaluate the statistical significance for clusters via 

9999 replications for Monte Carlo simulations at significance level 𝛼0 = 0.05. 

Figure 3 shows the result map for spatial cluster detection on the level of first 

diagnoses on the general health screening in Seoul. In the case of male’s diagnosis 

results, we identified that the original cluster detection methods detected larger 

clusters than our proposed methods, in particular, on the most likely cluster. 

Although the original scan statistic for ordinal data detected a large cluster in the 

north area, our method detected two or three small clusters except in “Jonglo-gu”. 

It may be expected that the original method tends to detect larger clusters by 
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absorbing adjacent regions with irrelevant risks, “Jonglo-gu” in this case. There is 

no difference between the original and restricted method in the female data. Since 

the stochastic ordering hypothesis incorporates the likelihood ratio ordering 

hypothesis, the results in the STO-based approach detected more districts as a 

cluster than the results in the LRO-based method which, for example, did not 

detect the districts “Sungdong-gu”, “Kwangjin-gu”, and “Keumchun-gu”, as 

shown in Figure 3 (c) and (d). We represent the proportion of spatial clusters on 

general health screening for males and females in Figures 4 and 5. Due to the 

large cases in Seoul, there might be a slight difference between clusters and total 

population of Seoul. However, the patterns showed that spatial clusters almost 

have lower proportion in normal and caution and higher proportion in suspected 

disease and diagnosed with diseases than the total proportion in Seoul. 

We illustrate the detailed information about all statistically significant 

clusters through the MC hypothesis testing in Tables 13 through 16. The most 

likely cluster that has the maximum likelihood ratio is the primary cluster level 

and the rest of the clusters are the secondary cluster level. The most likely cluster 

for the original method has ten districts based on “Gangbuk-gu”, while only six 

districts are belonging to the most likely cluster in spatial scan statistic with a 

restricted likelihood ratio in both Tables 13 and 14. “Keumchun-gu” and 
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“Sungdong-gu” cannot be detected with the LRO-based alternative hypothesis in 

the health diagnoses for males. For females, “Dongjak-gu” also has stochastic 

ordering in its level of diagnosis, so that it cannot be detected using the LRO-

based hypothesis.  
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(a) STO cluster map in males (b) LRO cluster map in males 

  
(c) Restricted STO cluster map in males (d) Restricted LRO cluster map in males 

  
(e) STO cluster map in females (f) LRO cluster map in females 

 Figure 3. Spatial cluster detection results for the general health screening by 
gender in Seoul using original and restricted approaches in both STO-based and 

LRO-based methods. 
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(a) STO-based results for males (b) LRO-based results for males 

  
(c) Restricted STO-based results for males (d) Restricted LRO-based results for males 

Figure 4. The comparison of the distribution between whole study area and clusters based on the results of 
spatial cluster detection for males. 
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(a) STO-based results for females (b) LRO-based results for females 

Figure 5. The comparison of the distribution between whole study area and clusters based on the results of 
spatial cluster detection for females. 
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Table 14. Spatial clusters of high rates of the diagnoses on the general health 
screening in Figure 3 (a) and (c).  
 

 Cluster 
Level 

 Centroid 
(Gu) 

No. of 
Districts 

LLR Total 
cases  

Percent cases in area 
([1],[2],[3],[4]) 

STO Primary 1 Gangbuk 10 1239.14 399,525 (4.41,31.09,41.65,22.84) 
Secondary 2 Keumchun 1 13.18 33,399 (5.03,31.81,42.35,20.81) 

3 Sungdong 1 8.37 30,761 (5.24,31.75,43.03,19.99) 
      

Restricted 
STO 

Primary 1 Nowon 6 851.60 281,474 (4.45,30.80,41.79,22.96) 
Secondary 2 Eunpyung 2 188.19 89,643 (4.32,31.70,41.07,22.90) 

3 Joong 1 28.89 13,185 (4.19,30.73,42.81,22.26) 
4 Keumchun 1 13.18 30,761 (5.24,31.75,43.03,19.99) 
5 Sungdong 1 8.37 33,399 (5.03,31.81,42.35,20.81) 

 
Table 15. Spatial clusters of high rates of the diagnoses on the general health 
screening in Figure 3 (b) and (d). 
 

 Cluster 
Level 

 Centroid 
(Gu) 

No. of 
Districts 

LLR Total 
cases 

Percent cases in area 
([1],[2],[3],[4]) 

LRO Primary 1 Gangbuk 10 1239.14 399,525 (4.41,31.09,41.65,22.84) 
       

Restricted 
LRO 

Primary 1 Nowon 6 851.60 281,474 (4.45,30.80,41.79,22.96) 
Secondary 2 Eunpyung 2 188.19 89,643 (4.32,31.70,41.07,22.90) 

3 Joong 1 28.89 13,185 (4.19,30.73,42.81,22.26) 
4 Sungdong 1 8.37 33,399 (5.03,31.81,42.35,20.81) 

 
Table 16. Spatial clusters of high rates of the diagnoses on the general health 
screening in Figure 3 (e).  
 

 Cluster 
Level 

 Centroid 
(Gu) 

No. of 
Districts 

LLR Total 
cases 

Percent cases in area 
([1],[2],[3],[4]) 

STO Primary 1 Sungbuk 11 2174.73 421,400 (11.32,38.60,28.50,21.58) 
Secondary 2 keumchun 1 57.88 27,429 (12.51,37.46,29.58,20.45) 

3 Dongjak 2 26.01 10,648 (12.85,42.62,26.31,18.23) 
4 guro 1 10.56 49,116 (12.26,40.45,28.31,18.98) 

 
Table 17. Spatial clusters of high rates of the diagnoses on the general health 
screening in Figure 3 (f).  
 

 Cluster 
Level 

 Centroid 
(Gu) 

No. of 
Districts 

LLR Total 
cases 

Percent cases in area 
([1],[2],[3],[4]) 

LRO Primary 1 Sungbuk 11 2174.73 421,400 (11.32,38.60,28.50,21.58) 
Secondary 2 Keumchun 1 56.05 49,116 (12.26,40.45,28.31,18.98) 

 3 Guro 1 10.05 27,429 (12.51,37.46,29.58,20.45) 
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5.  Discussion and Conclusion   

The purpose of this study was to propose modified spatial scan statistics for 

ordinal outcome data by considering the restricted likelihood ratio in order to 

resolve the undesirable phenomenon. Since the spatial scan statistic by Kulldorf 

tends to detect much larger clusters in a Poisson-based model, we suspected that 

the two spatial scan statistics for ordinal data would also have that tendency. 

According to Tango (2008), we applied a screening criterion to the spatial scan 

statistics on ordinal data and compared the performance our proposed method 

with the original ones. 

There are several findings in the simulation studies. Similar patterns have 

been identified in all of the simulation results regardless of the different scenarios. 

As we supposed, the original spatial scan statistics tended to detect clusters larger 

than the true clusters on ordinal outcome data. Our proposed spatial scan statistics 

seemed to relieve that undesirable property; they have a good performance with a 

high value of PPV compared with the performance of the original method. Even 

though sensitivity seemed to be lower in our proposed approach, it can be solved 

by adjusting a screening value. Sensitivity and power can be higher when we have 

the appropriate screening value and this can be advantageous in our method. In 

other words, our proposed approach gives the researcher to capability of adjusting 



45 

 

the screening level of 𝛼1 in accordance with the purpose of the research. 

We used the general health screening data set in 2014 from the NHIS. To 

establish health care and health insurance policies, it is important to understand 

the geographical patterns about certain risky-areas compared to surrounding areas 

for improving health care in the local area, such as post-management of health 

checkups and disease prevention. Our findings can contribute to the development 

of the system for promoting the public health by detecting the spatial clusters 

which need prevention and intervention. For instance, by adjusting the screening 

level of 𝛼1, our proposed method is able to help health planners decide an 

appropriate range of areas for their health care program.  

In conclusion, the proposed spatial scan statistic with a restricted likelihood 

ratio for ordinal data demonstrates a better property in detecting the true cluster 

compared with the original method, and the screening value of 𝛼1 can be useful 

for conducting an accurate cluster detection in accordance with the purpose of 

cluster detection. 

However, some limitations are discussed in this study. We used the circular 

scanning window to conduct the cluster detection. Tango and Takahashi (2012) 

proposed a spatial scan statistic with a restricted likelihood ratio using the flexible 
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scanning window in the Poisson-based model and their proposed method had 

better performance than the circular spatial scan statistic. Nevertheless, we did not 

use the flexible scanning window due to a heavy computational load and we 

expect that similar results may be shown in terms of the comparison between the 

original and restricted spatial scan statistics. Moreover, there are some 

methodologies for more effectively cluster detection such as CLIC and the Gini 

coefficient (Han et al., 2016). Further studies need to compare those methods with 

our method in cluster detection for ordinal data. These improvements could be 

considered for future research building on the findings of this study. 
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국 문 요 약  

 

순서형 자료에서의 제한된 우도비를 이용한 공간검색 통계량 연구  

 

공간검색통계량(spatial scan statistic)은 우도비 검정을 기반으로 특정 사건에 

대한 분포가 다른 지역의 분포와 통계적으로 유의하게 다른 공간군집(spatial 

cluster)을 탐색하는 방법으로 여러 분야에서 이용되고 있다. 이 방법은 연구자가 사

전에 각 지역의 중심점을 기준으로 형성되는 후보 군집(scanning window)의 모양과 

최대 군집 크기를 설정한다. 후보 군집의 모양은 원형, 타원형, 비정형이 널리 사용

되고, 최대 군집 크기는 보통 전체 인구의 50%로 설정한다.  

Kulldorff (1997)에 의해 제안된 공간검색통계량이 군집 탐색을 위한 방법으로 널

리 쓰이나, 이 방법이 실제 군집보다 더 넓은 범위의 군집을 도출한다는 것이 Tango 

(2007)에 의해 알려졌다. Tango (2008)는 모의실험을 통하여 포아송 기반의 공간검색

통계량이 실제 군집 주변의 유의하지 않는 지역들을 흡수함으로써 더 넓은 지역을 군

집으로 도출한다는 사실을 보였고, 이에 대한 해결책으로 포아송 기반의 공간검색 통

계량에 제한된 우도비를 적용함으로써 유의하지 않는 지역들을 사전에 제거하여 관심 

대상의 지역들 만으로 군집을 도출하는 방법을 제안하였다. Tango (2008)가 제안한 

방법이 기존의 방법보다 실제 군집을 비교적 더 정확히 찾아냄을 모의 실험을 통해 

보였다.  

한편 순서형 자료는 질병의 진행단계와 같은 순위 범주를 가지는 자료로 의학 분야
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에서 빈번히 나타난다. 이러한 자료를 위한 공간검색통계량은 대립가설에 따라 두 가

지 방법이 Jung et al. (2007)과 Jung and Lee (2011)에 의해 제안된 바가 있으며, 

본 연구에서는 이 공간검색통계량들 또한 위와 같은 현상을 보일 것이라 예상한다. 

따라서 본 연구에서는 순서형 자료를 위한 공간검색통계량에 제한된 우도비를 적용하

는 방안을 제안하고, 모의실험을 통하여 기존의 방법과 비교 및 평가해 보고자 한다.  

그 결과, 순서형 자료를 위한 기존의 공간검색통계량이 우리의 예상과 같이 실제 

군집보다 더 넓은 지역의 군집을 도출한다는 것이 발견되었고, 제한된 우도비를 적용

한 공간검색통계량 방법이 이러한 점을 어느 정도 잘 해결함을 알 수 있었다. 또한 

제안된 방법을 실제 데이터에 적용함으로써 본 방법의 필요성을 제안하였다. 

 

 

핵심되는 말: 공간검색통계량, 순서형 자료, 군집 탐색, 제한된 우도비 

 


