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Summary

The hexosamine biosynthetic pathway (HBP) is dependent on metabolic
nutrients status including glucose, glutamine, and acetyl-CoA. Increased
HBP flux leads to upraised post-translational modification of O-linked
N-acetylglucosamine (O-GlcNAc) to numerous nuclear and cytoplasmic
proteins. This modification is caused by the enzymatic attachment of
the N-acetylglucosamine (GIcNAc) moiety to the hydroxyl groups of
serine or threonines. O-GIcNAcylation is dynamically regulated by
O-GIcNAc transferase (OGT) and O-GlcNAcase (OGA), which are

responsible for O-GIcNAc addition and removal respectively.

The diverse subcellular localization of OGT further affects its
interactions with the nuclear or cytoplasmic O-GlcNAc modified
proteins. Although there are a few reports that OGT is redistributed
from the nuclear compartment to the cytosol and plasma membrane, the
mechanisms which modulate nuclear import and export of OGT are not
well understood. Here, we identified a sequence of three amino acids
(DFP) in OGT that play a role as a NLS. Moreover, we revealed that
nuclear import of OGT is mediated by importin ab. We also elucidated
that O-GlcNAcylation of the tetratricopeptide repeats (TPR) domain of
OGT 1is required for its direct nuclear translocation. Overall, our data
suggest that both the NLS and O-GlcNAc modification of OGT are

required for its nuclear localization.

Cancer cells has a general characteristic of abnormally up-regulated
total O-GlcNAcylation and OGT protein levels. A number of studies
suggest that O-GIcNAcylation is a central mediator of nutrient status
to control important metabolic and signaling pathways that regulate
varied cancer cell phenotypes. Although OGT protein level is maintained
at a high status, little is known about the mechanisms of OGT protein

regulation in cancer cells. Here, we report that X-linked inhibitor
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apoptosis protein (XIAP) functions as an E3 ligase and promotes the
proteasome—dependent degradation of OGT in vitro and in vivo. XIAP
also might be O-GIlcNAcylated at Ser4d06 O-GlcNAcylated and the
modification of XIAP influences on it E3 ligase activity for OGT. The
human colorectal carcinoma cells (HCT116) stably overexpressing XIAP
showed reduced cell proliferations. Our study demonstrates that a novel
function of XIAP in the regulation of cancer cell growth, which is

distinctly different from its well characterized anti—apoptotic properties.

Key words: O-GIcNAc, O-GlcNAc transferase (OGT), nuclear
localization signal (NLS), importin ab, tetratricopeptide repaeats (TPR),
Cancer cells, X-linked inhibitor apoptosis protein (XIAP), E3 ligase,

ubiquitylation, proteasome degradation
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Chapter 1

Nucleocytoplasmic O-GIcNAc Transferase



1. Abstract

O-GIcNAc transferase (OGT) catalyze the reversible and dynamic
cycling of subcellular, post-translational modification on numerous serine
or threonine residues of cytoplasmic, nuclear, and mitochondrial
signaling proteins. A functionally diverse set of substrate proteins of
OGT has been identified, and the extent of O-GlcNAcylation fluctuates
in response to nutrients and cellular signaling. OGT is implicated in
widespread, nutrient-sensing regulation of wvarious signaling pathways
and transcriptional programs. Recent studies have also implicated OGT
as a regulators of many cancer phenotypes including cancer cell growth,
survival, metastasis, angiogenesis and even cancer epigenome. While an
emerging interest in the field of O-GIcNAc has contributed to
understanding the functional impacts of O-GlcNAcylated proteins, little
1s known about the upstream mechanisms which modulate OGT's
subcellular localization, post—translational modification, degradation and

substrate targeting.



2. OGT's structure and function

O-GIcNAc transferase (OGT) is expressed in all mammalian tissues
and 1s most abundant in brain, heart, pancreas, skeletal muscle, and
uterus (Lubas et al., 1997; Nolte and Muller, 2002). OGT gene (~43 kb)
residues are highly conserved, present as a single X-linked gene
localized at the chromosome Xql3.1, and alternatively spliced to
generate nucleocytoplasmic (nc), mitochondrial (m), and short (s)
isoforms (Kreppel et al, 1997; Wrabl and Grishin, 2001; Blatch and
Lassle, 1999). These OGT isoforms are distinguished by their
N-terminal ~domains  which contain a  variable number  of
tetratricopeptide repeats (TPRs), which are common protein—protein
interaction domains. The full length ncOGT isoform possesses 13.5
TPRs while mOGT and sOGT isoforms contain 9 and 3 TPRs,
respectively (Hanover et al., 2003; Love et al., 2003). mOGT has an
additional 120 amino acid stretch at the N-terminus identified as the
mitochondrial targeting sequence (Love et al, 2003). Three different
OGT isoforms consist of two catalytic regions related to the classic
GT-B (glycosyltransferase-B) domains, which 1is located at the
C-terminus (Gao, 2010). An exceptional O-GIcNAc transferase,
extracellular OGT (EOGT) has been identified in Drosophila. EOGT is
localized within the ER lumen and is structurally unconnected to
ncOGT. EOGT exploits UDP-GIcNAc for the O-GlcNAc modification of
epidermal growth factor (EGF)-like domains of secreted proteins
(Sakaidani et al., 2012; Sakaidani et al., 2012).

The TPR domain of OGT may affect the OGT's selectivity by
mediating its oligomerization. Hetero—trimeric OGTs compose two 110
kDa subunits and one 78 kDa subunit (sOGT) which are found in
tissues such as kidney, liver, muscle, spleen, and pancreas (Akimoto et
al., 1999; Haltiwanger et al., 1992; Kreppel et al., 1997, Marz et al.,



2006). Homo-oligomeric OGTs have been observed and these
homo-oligomers are disrupted by truncation of TPRs 1-6th residues
(Kreppel and Hart, 1999) which also reduces the auto-glycosylation of
OGT (Lubas and Hanover, 2000). A recent study reveals that the
homo-dimerization of OGT is abolished when two conserved residues
(Trpl98 and Ile201) within the TPR 6-7th interface were mutated, and
these same mutations abate the O-GlcNAcylation of Nup62 (Jinek et al.,
2004).

OGT 1s also regulated by post-translational modifications. OGT
undergoes auto—GlcNAcylation between amino acids 380 and 396 in the
9th TPR and between amino acids 1027 and 1036 in the C-terminal
catalytic domain and, and phosphorylation occurs at Thr444 and Tyr969
of OGT (Kreppel et al.,, 1997; Lubas et al., 2000; Tai et al., 2004). The
function of O-GlcNAcylation of OGT has not been discovered. One
report shows that OGT activity is raised upon increased tyrosine 969
phosphorylation of OGT following insulin treatment in 3T3-L1
adipocytes (Song et al., 2008; Whelan., 2008). However, the specific
mechanisms underlying how the phosphorylation sites regulate OGT

activity are still not elucidated.
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13.5 TPRs linker Catalytic domain
MTS 9TPRs Catalytic domain

[I] SOGT

3 TPRs Catalytic domain

Figure 1. Schematic domain structures of OGT

Human OGT possesses a N-terminal tetratricopeptide repeats (TPRs)
and catalytic domain and three isoforms are generated by alternative
promoter usage from a single gene which resides in chromosome X.
ncOGT contains 135 TPRs and is localized predominantly more in the
nucleus and less in the cytoplasm. mOGT has mitochondrial targeting
sequence (MTS) at the N-terminus. mOGT and sOGT possess 9 TPRs
and 3 TPRs, respectively. Reported post-translational modifications of

OGT are indicated by amino acid residues.



3. Intracellular localization of OGT

OGT's subcellular localization influences its interaction with other
cellular O-GIcNAc modified proteins. OGT 1is localized both in the
nucleus and the cytoplasm (Akimoto et al, 1999; Love et al., 2003;
Lubas et al, 1997). The localization of OGT can be modulated by
transient complex formation with other adopter proteins. OGT forms a
complex with O-GIlcNAcase, mitotic aurora B Kkinase, and protein
phosphatase 1c (PPlc) at the mitotic spindle during mitosis (Slawson et
al., 2008). When aurora B kinase activity is inhibited, translocation of
OGT to the midbody is abolished during cytokinesis. Another example
of OGT’s subcellular translocation is that OGT is localized to the
transcriptional initiation sites for O-GIcNAc modification of RNA
polymerasell, forming a complex with trafficking kinesin—-binding 1

protein (TRAK1), a microtubule-associated protein (Iyer et al., 2003).

These findings that OGT utilizes its interacting partners for OGT
localization could explain why there are no canonical substrate sequence
motifs for O-GlcNAc modification unlike phosphorylation motifs. OGT
may interact with specific pools of other proteins in specific signal

dependent manners.



4. Regulation of OGT

OGT is known to be regulated by several different mechanisms. The
mRNA and protein levels of OGT are oscillated during cell cycle
progression (Dehennaut et al., 2007; Drougat et al., 2012; Lefebvre et al.,
2004; Slawson et al., 2005 Yang et al, 2012) and are tissue specific
(Andres-Bergos et al., 2012; Ogawa et al, 2012). OGT transcription,
protein expression, and activity are also affected by numerous stressors,
including oxidative, osmotic, thermal, and nutrient availability (Cheung
and Hart, 2008; Zachara and Hart, 2004, Zachara et al., 2004), and this

1s consistent with its acting as a stress modulator and nutrient sensor.

OGT activity is impacted by the available levels of UDP-GIlcNAc, a
donor substrate. OGT affinity regarding its peptide substrates can be
raised by increasing UDP-GIcNAc concentrations (Haltiwanger et al.,
1992; Kreppel et al., 1997; Kreppel and Hart, 1999). Recently reports
reveal that OGT activity against specific substrate proteins can be
regulated through interaction between OGT and its interacting partner
proteins, depending on specific signal transduction pathways. During
glucose deprivation, OGT interacts with the stress Kkinase, p38, and
activated p38 recruits OGT to specific targets, including
neurofilament-H (NF-H). Inhibition of p38 influences OGT activity
toward  specific target proteins (Cheung and Hart, 2008).
Correspondingly, substrate specificity of OGT 1is changed in the
expression of a myosine phosphatase targeting protein (MYPT1), or a
co-activator associated arginine methyltransferase 1 (CARM1) (Cheung
et al, 2008). Another example of OGT activity modulation by OGT’s
interacting proteins is O-GIcNAc modified forkhead box protein O1
(FoxOl). Under hyperglycemic conditions, the transcription coactivator,
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC-1a), binds to OGT and promotes OGT activity regarding the
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transcription factor FoxOl (Housley et al., 2008; Housley et al., 2009).



5. Future directions

O-GIcNAc modification is a fast growing field with nearly over a
thousand O-GIcNAcylated proteins identified since its first detection.
Many of these O-GIcNAc modified proteins are crucial regulatory
proteins in cellular signaling pathways, proposing that O-GIcNAc
modification is one of the major directors in cellular processes and
metabolism. Recent studies reveal that improper O-GlcNAcylation
causes serious effects on cellular metabolism. Cancer cells undergo
metabolic re-programing and exhibit abnormal levels of OGT and
0O-GIlcNAc modification. However, there is still little investigation of the
mechanisms underlying how OGT is regulated in subcellular localization
or expressed at high levels in many different types of cancer. Further
studies on OGT regulations will provide a better understanding of the
roles in O-GIcNAc dependent modulation of signaling pathways
involved in metabolic re-programing of cancer. Therapeutic window

may exist to pointedly target OGT in cancer cells.



Cancer OGT and O-GIcNAc
Elevated OGT/O-GlcNAc in cancer cells and OGT RNA

elevated in invasive breast cancer

Breast ) ) ) ) )
O-GlcNAcylation/OGT increased in primary malignant

tumors compared to benign tumors
Elevated OGT/O-GIcNAc in cancer cells; OGT increase

associated with progression and poor survival
O-GlcNAcylation, OGT elevated in colon cancer tissue

Prostate

Col compared to adjacent tissue; Metastatic CRC cell clones
olon
contain increased O-GlcNAcylation compared to primary

clones
O-GlcNAcylation and OGT levels are elevated in lung

Lung squamous cell carcinoma tissue compared to adjacent

lung tissue; PFK-1 is hyper-O-GlcNAcylated in cancers
O-GlcNAcylation elevated in hepatocellular carcinoma

Liver compared to healthy liver;

O-GlcNAcylation elevated in recurrent HCC patients
OGT transcript levels are significantly higher in grade

II and III in comparison to grade I
Bladder bladder cancer; significant increase in OGT expression
between early bladder cancers and invasive or advanced

bladder cancers
Elevated O-GlcNAcylation, OGT and decreased OGA

Pancreatic | found in human pancreatic cancer cell lines compared to

non-tumorigenic pancreatic epithelial cells
Chronic lymphocytic leukemia patients contain elevated

) O-GlcNAcylation compared to normal circulating B
Leukemia )
cells. Mouse model of T-cell acute lymphoblastic

leukemia requires OGT.

Table 1. Abnormal regulation of OGT and O-GIcNAcylation in

cancer
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Chapter 2

Identification of Nuclear Localization Signal
of O-GIcNAc Transferase and

Its Nuclear Import Regulation
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1. Abstracts

Nucleocytoplasmic O-GIcNAc transferase (OGT) attaches a single
GIcNAc to hydroxyl groups of serine and threonine residues. Although
the cellular localization of OGT is important to regulate a variety of
cellular processes, the molecular mechanisms regulating the nuclear
localization of OGT is unclear. Here, we characterized three amino acids
(DFP; residues 451 - 453) as the nuclear localization signal of OGT and
demonstrated that this motif mediated the nuclear import of
non-diffusible B-galactosidase. OGT bound the importin a5 protein, and
this association was abolished when the DFP motif of OGT was
mutated or deleted. We also revealed that O-GIcNAcylation of Ser3g9,
which resides in the tetratricopeptide repeats, plays an important role in
the nuclear localization of OGT. Our findings may explain how OGT,
which possesses a NLS, exists in the nucleus and cytosol

simultaneously.
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2. Introduction

O-linked N-acetylglucosamine (O-GlcNAc) modification occurs on
serine or threonine residues of various proteins in the nucleus and
cytoplasm, similar to phosphorylation (Wells et al., 2001). Since the
discovery of O-GlcNAcylation by Hart and Torres in 1984 (Torres and
Hart, 1984), O-GIcNAc has been implicated in many fundamental
biological processes including various signaling pathways, proteasomal
degradation, epigenetic regulation, protein—protein interactions,
transcription, translation and the stress response (Hanover, 2010; Ozcan
et al., 2010; Roos et al, 1997; Ruan et al., 2013; Slawson et al., 2006;
Wells et al, 2003). O-GlcNAcylation is reversible and highly dynamic,
and is controlled by only two enzymes. O-GlcNAc transferase (OGT)
catalyzes the addition of O-GlcNAc and O-GIcNAcase removes
O-GIlcNAc (Dong and Hart, 1994, Haltiwanger et al., 1992). O-GlcNAc
modification interplays with phosphorylation in a reciprocal and
competitive manner (Hu et al., 2010). The gene encoding OGT was first
described in rat liver and is ubiquitously expressed in higher eukaryotes
(Kreppel et al., 1997). In mammals, the three variants of OGT are
synthesized by  alternative  splicing of the  amino-terminus
tetratricopeptide repeat (TPR) domain. Nucleocytoplasmic OGT contains
13,5 domains and is found in the nucleus and cytoplasm. mOGT, the
mitochondrial OGT, has a mitochondrial targeting sequence with nine
TPRs, and sOGT, the short form OGT, only contains three TPRs
(Hanover et al., 2003; Love et al., 2003; Lubas et al., 1997). The crystal
structure of the TPR domain of human OGT is similar to the transport
protein importin a and shows the enzyme as a dimer with a large
super helix at the inner surface (Jinek et al, 2004). OGT is also
comprised of a C-terminal catalytic domain, whose crystal structure
indicates there is a pivot point between the twelfth and thirteenth TPR,

a flexible region called a hinge that is capable of large motions
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(Lazarus et al, 2011). Although there are reports of the subcellular
translocation of OGT (Bullen et al, 2014; Whelan et al, 2008), the
mechanism underlying how OGT can be both localized in the nucleus

and remain in the cytoplasm is obscure.

The transport of proteins between the nucleus and cytoplasm is a
highly regulated process. Nuclear import substrates possess nuclear
localization signals (NLS), which are recognized by distinct transport
factors such as importin as (Adam et al, 1991; Cortes et al, 1994;
Gorlich et al.,, 1994; Kohler et al.,, 1997, Kohler et al., 1999; Nachury et
al., 1998, Seki et al, 1997, Weis et al, 1995) Importin as act as
adaptors by binding to both the import substrate and importin 3. This
trimeric import complex docks to the nuclear pore complex through
importin B and translocates into the nucleus (Cautain et al., 2015;
Gorlich et al., 1995; Xu et al, 2004). The mono- or bipartite motif of
NLS 1is recognized by different members of the importin a family,
which is divided into al, a3, a4, ab, a6 and a7. On the other hand, only
one importin B has been described in humans (Goldfarb et al., 2004,
Kamei et al,. 1999; Kohler et al., 1997; Kohler et al., 1999; Nachury et
al.,, 1998; Prieve et al., 1998; Tsuji et al., 1997). Although nuclear import
via the canonical mechanism is most common, other proteins enter the
nucleus independently because of their ability to interact directly with

components of nuclear pore complexes (Xu et al., 2003).

Here, we identified a sequence of three amino acids (DFP) in OGT that
act as a NLS. Moreover, we revealed that nuclear import of OGT is
mediated by importin a5. We also elucidated that O-GlcNAcylation of
the TPR domain of OGT is required for its direct nuclear translocation.
Overall, our data suggest that both the NLS and O-GIlcNAc

modification of OGT are required for its nuclear localization.
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3. Materials and Methods

Cell culture, DNA transfection and plasmids

HEK293 and Hela cells were cultured in Dulbecco’s Modified Eagle’s
Medium (Hyclone, Logan, UT) supplemented with 10% fetal bovine
serum, 100 U/ml penicillin and 100 pg/ml streptomycin at 37°C in 5%
CO,. DNA was transfected using polyethylenimine (Sigma-Aldrich, St
Louis, MO) as described previously (Boussif et al., 1995). siRNA was
transfected by lipofection (Lipofectamine Plus; Invitrogen, Carlsbad, CA).
Human WT-OGT, mutant OGT, WT-B-galactosidase and mutant
B-galactosidase were cloned into the p3XxFLAG-CMV™-7.1
ExpressionVector (Sigma-Aldrich, St Louis, MO). Human importin
proteins were cloned into pRK5 in frame with an N-terminal Myc
epitope. Human MEF2C was cloned into pEXPR-IBA105 Strep tag
vector (IBA, Goettingen, Germany). The OGT mutants with deletion of
residues 451 - 453 and substitution of residues 451 - 453 to alanine and
B-galactosidase fused to DFP were generated by PCR. The other OGT
mutants, including OGT-WI9RE, I201D (Trpl98 mutated to glutamate
and Ile201 mutated to aspartate), OGT-S381A (Ser381 mutated to
alanine), OGT-T383V (Thr383 mutated to valine), OGT-S389A (Ser389
mutated to alanine) and OGT-T394V (Thr394 mutated to valine), were
generated wusing the QuikChange Site-Directed Mutagenesis Kit
(Stratagene, La Jolla, CA). The mutations were confirmed by DNA
sequence analysis. To generate GST-tagged importin ab, the cDNA
encoding full-length importin a5 was cloned downstream of the GST
coding sequence in pGEX-5X (Clontech, Rockville, MD)

Reagent and antibodies

Thiamet-G was kindly provided by Dr Kwan Soo Kim (Yonsei
University, Seoul, Korea) and 5-thio-GIcNAc was kindly provided by
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David Vocadlo (Simon Fraser University, Canada). Antibodies were
used against Flag (F-3156, mouse monoclonal, Sigma-Aldrich, St Louis,
MO), Myc (B-14, mouse monoclonal, Santa Cruz, Dallas, Texas), GST
(9E10, mouse monoclonal, Santa Cruz), a-tubulin (TU-02, mouse
monoclonal, Santa Cruz, Dallas, Texas), B-actin (C-2, mouse
monoclonal, Santa Cruz, Dallas, Texas), lamin A/C (#2032, rabbit
polyclonal, Cell Signaling, Beverly, MA), MEF2C (#5030, rabbit
monoclonal, Cell Signaling, Beverly, MA), OGT (DM17, rabbit
polyclonal, Sigma—-Aldrich, St Louis, MO) and importin a5 (SAB2500572,
goat polyclonal, Sigma-Aldrich, St Louis, MO). CTD110.6, an antibody

against O-GlcNAc, was purchased from Covance (Princeton, NJ).
Western blotting, immunoprecipitation and GST precipitation

For western blotting, cells were lysed in NET buffer (150 mM NaCl,
196 Nonidet P-40 [NP-40], 50 mM Tris-HCl and 1 mM EDTA, pH 8.0)
supplemented with a protease inhibitor cocktail (Roche, Mannheim,
Germany) for 30 min on ice. Protein concentrations were determined by
the Bio-Rad protein assay (Hercules, CA). Protein samples were
subjected to reducing SDS-PAGE and transferred to nitrocellulose
membranes (Amersham, Piscataway, NJ). For immunoprecipitation, cell
lysates were gently mixed with specific antibodies and protein A/G
beads (Santa Cruz, Dallas, Texas) for 4 h at 4°C. Immunoprecipitates
were washed three times with lysis buffer, eluted with SDS sample
buffer and subjected to reducing SDS-PAGE. For
co-immunoprecipitation, cells were lysed in co-immunoprecipitation
buffer (50 mM Tris-HCl, pH 7.4; 150 mM NaCl; 05% NP-40;, 1 mM
DTT; 0.1 mM EDTA and a protease inhibitor cocktail) and incubated
with Flag antibody-conjugated A/G beads for 3 h at 4°C. Thereafter,
the beads were washed three times with co-immunoprecipitation
washing buffer (20 mM HEPES, pH 74; 2 mM MgCly, 2mM EGTA;
150 mM NaCl and 0.1%6 Triton X-100), suspended in sample buffer and
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subjected to western blotting. Recombinant GST-importin a5 was
purified using Glutathione-Sepharose4dB (GE Healthcare), and bug of
beads containing bound proteins were incubated with pre-cleared cell
lysates for 2h at 4°C. The precipitated proteins were washed

extensively and subjected to western blot analysis.

Immunofluorescence microscopy

Cells were grown on precision coverslips (0.17 = 0.01 mM thickness;
Glaswarenfabrik Karl Hecht GmbH & Co KG, Sondheim, Germany) and
preparation of the cells were described previously (Park et al., 2014).
For immunofluorescence analysis, mouse monoclonal anti-Flag
antibodies (1:5000) were applied for 2 h, followed by rinses (2 x 5 min)
in PBS containing 1% bovine serum albumin and incubation with the
appropriate fluorescent secondary antibodies for 1 h. DAPI was used to
stain nuclei. After rinsing, coverslips were mounted on glass slides with
Mowiol. Immunofluorescence was recorded with a Zeiss LSM 510
confocal microscope (Zeiss, Jena, Germany) using a Plan-Apochromat
63x objective (1.4 NA). Meta Imaging Series® MetaMorph software
(Meta Series Software 7.7.0; Molecular Devices) was used to quantify
the data by taking densitometry readings of five separate locations with

in the nucleus and cytoplasm of each cell.
SDS-PAGE and in-gel digestion

The eluted OGT sample was loaded onto a 4 -12% Bis-Tris NuPAGE
gel (NOVEX, SanDiego, CA) for electrophoresis and stained with
Coomassie Brilliant Blue (Sigma-Aldrich). The gel bands corresponding
to OGT were excised and subjected to in—gel tryptic digestion following
a general protocol (MA & Hart 2014; Shevchenko et al., 2006). Briefly,
OGT bands were destained with 50% (v/v) acetonitrile (ACN) prepared

in 25 mM ammonium bicarbonate and 100 mM ammonium bicarbonate
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for 15 min. Proteins were reduced with 20 mM DTT at 60°C for 1 h
and then alkylated with 55 mM iodoacetamide at room temperature for
45 min in the dark. After dehydration, the proteins were digested with
125 ng/ul analytical grade porcine trypsin (Thermo Scientific Pierce,
Rockford, IL) prepared in 50 mM ammonium bicarbonate overnight at
37°C. Peptides were then extracted from the gel pieces with 50%(v/v)
ACN prepared in 5% formicacid, driedundera Centrivap concentrator
(Labconco, Kansas City, MO) and stored at -20°C until use.

Mass spectrometry

The peptide samples extracted by in-gel digestion were suspended in
40 ul of solvent A (0.1% formic acid prepared in water, Optima LC/MS
grade, Fisher Scientific, Pittsburgh, PA). Thereafter, 2 ul of the sample
was loaded onto a house-packed 75 um (inner diameter of
microcapillary) x 15 cm C18 (5 ym, 100 A) column and separated with
a 5-30% gradient of solvent B (0.1%6 formic acid prepared in ACN) for
90 min at a flow rate of 300 nL/min. Mass spectra were recorded on
an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher
Scientific, SanJose, CA) interfaced with a nano acquity UPLC (Waters,
Milford, MA). The Orbitrap Fusion Tribrid mass spectrometer was
operated in several modes all in Orbitrap, namely, full scan MSI,
data—dependent acquisition high—-energy collision dissociation scan,
product ion-triggered MS3 ETD scan and product ion-triggered MS3
EThcD scan. The raw data were processed using the Trans-Proteomic
Pipeline (v4.8.0 PHILAE) and compared with a database composed of
human OGT1 (015294-3, UniProt ID), about 500 decoy proteins and
common contaminants. Carbamidomethyl of cysteine was considered the
fixed modification, and variable modification was set for oxidation of

methionine and O-GlcNAcylation of serine and threonine.

Statistical analysis
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Each experiment was repeated three to four times with consistent
results. Data are representative of the mean values obtained. Differences
between groups were evaluated using the two-tailed unpaired Student’s
t-test. P values <0.05 were considered to indicate statistical significance
for all statistical evaluations. (*P<0.01 and **P<0.05)
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Results

4.1. The DFP motif plays a role in the nuclear localization
of OGT

To identify the NLS of OGT, we generated deletion mutants of OGT
and determined their subcellular localization. HelL.a cells were transfected
with OGT fused to GFP at the N-terminus and subjected to subcellular
fractionation. The first deletion mutant (residues 1-453) contained 13
TPRs, including the sixth and seventh repeats (the local dyad axis of
the homodimer), and localized in the nucleus and cytoplasm. The second
deletion mutant lacked the N-terminal 453 aminoacids (residues 454 -
1036) and localized exclusively in the cytoplasm. The third construct
contained three more amino acids downstream of the thirteenth TPR
(residues 451 - 1036) and was detected in the nucleus and cytoplasm
(Figure 1). Taken together, these data suggest that the residues 451 -
453 are 1important for the nuclear import of OGT. To further
demonstrate that these three amino acids are the NLS of OGT, we
generated Mono—-OGT, which excluded the possibility of an interaction
between mutant OGT and endogenous OGT, because the tendency of
homodimerization of OGT is decreased when two hydrophobic residues
are replaced with negatively charged residues (W198E and 1201D) (Jinek
et al., 2004). The interaction between Mono-OGT and endogenous OGT
was significantly decreased compared to WT-OGT (Figure 3).
Furthermore, the three amino acids of interest (Asp451, Phe452 and
Pro453) were mutated to alanine (451-453AAA) or deleted (A451-453;
Figure 2A). Both Mono-OGT 451-453AAA and Mono-OGT A451-453
were distributed largely in the cytoplasm (Figure 2B -E). Taken
together, these results indicate that we identified the NLS of OGT that

plays a role in localizing OGT to the nucleus.
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Figure 1. Subcellular localization of OGT deletoin mutants

(A) Schematic representation of OGT constructs used. The first deletion
mutant (residue 1-453) only contained 13 TPR repeats. The second and
third constructs lacked the N-terminal TPR repeats and contained
catalytic domain. The third construct contained three more amino acids

downstream of the thirteenth TPR (residues 451-1035).

(B) GFP-tagged WT-OGT and various OGT deletion mutants were
expressed in HelLa cells. Cells were subjected to subcellular

fractionation. Western blotting of aliquots of the fractions was
performed with an a-Flag antibody to detect OGT and with a-lamin
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A/C, a-a-tubulin and a-B-actin as markers of the nuclear, cytoplasmic

and total fractions, respectively.

_29_



TPR repeats Catalytic domain

W88 1201 451-453 DFP
ks -
OGT i o]

170
I8:Flag 130
C .
i ]
12
= Nucleus Cytoplasm Total lysate
T 10 85
2
o 1B: lamin AJC
g 084 72—
=
foe 18: artubiin g5 [ e IB: Pectin
£
o 02
i

Flag-FITC DAFPI Overlay i %
£ ‘
WT-0GT =
i
Flag B
WT-0GT g . .
g
Mucleus  Cytoplasm | Muckus | Cyloplasm
Mona-OGT T
Fiag £
Mane-0GT g
3 Hucleis Cytogl: HNucleus Cytopla:
£ | *
Mona-OGT £
Flag £6451-453 =
“Mane-DGT £
£451-453 B e
-] Mucleus | Cytoplaem | Mucleus | Cytoplaen
Flag Mono-OGT  § aso0
R 451453888 F 2000
1500
451-453444 £ 1coo
B a0
£ ——— ==
8

Nucleus Gytoplasm Mucleus Cytoplasm

Figure 2. Identification of the NLS of OGT

(A) Schematic representation of the OGT constructs used. In
Mono-OGT, Trpl98 and Ile201 were mutated to glutamate and
aspartate, respectively. A, deleted DFP motif; AAA, substituted DFP

motif.

(B) WT-OGT and various OGT mutants were expressed as

Flag-tagged proteins in Hela cells grown in 10 cm plates. Subcellular
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fractionation was performed and aliquots of the fractions were analysed
by western blotting with an a-Flag antibody to detect OGT, and with
a-lamin A/C, a-a-tubulin and a-B-actin antibodies as markers of the
nuclear, cytoplasmic and total fractions, respectively. Images of western
blot immunoblotted with an a-Flag antibody, was stripped, and then
re-immunoblotted with a-lamin A/C, a-a-tubulin and a-B-actin

antibodies respectively.

(C) The band intensities of nuclear imported Flag-OGT in (b) were
quantified by densitometry and normalized to the laminA/C band
intensity. *P<0.01 (Student’s t-test), mean * s.d.

(D) HeLa cells were grown on coverslips and transfected with
Flag-tagged WT-OGT, Mono-OGT, Mono-OGT A451-453 or
Mono-OGT 451-453 AAA. Cells were stained with an a-Flag antibody
(green) and then analysed by fluorescence microscopy. Nuclei were
stained with DAPI (blue). Scale bar, 10 pm.

(E) Densitometry readings of five separate locations within the nucleus
were averaged and this was compared with the mean measurement in
five separate locations within the cytoplasm of each cell. Data were
quantified using MetaMorph software. Data show mean * s.d., n=b
locations in the cell. *P<0.01 (Student’s t-test).
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Figure 3. Overexpressed OGT interacts with endogenous OGT

Flag-tagged WT-OGT or Mono-OGT (Trpl98 and Ile201 mutated to
glutamate and aspartate, respectively) was overexpressed in HelLa cells
and immunoprecipitated with an a-Flag antibody. Levels of precipitated
OGT were determined by an a-Flag antibody, and interacting
endogenous OGT was detected by an a-OGT antibody.
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4.2. The DFP motif can function as a NLS independently

To wvalidate the importance of the DFP motif of OGT and to examine
whether it can act as a NLS independently, we used Flag-tagged 3
—galactosidase. This protein was too big to freely diffuse into the
nucleus and localised exclusively in the cytoplasm when expressed in
HelLa cells. However, the addition of DFP to the N-terminus of
Flag-tagged B-galactosidase induced its nuclear translocation (Figure
4A - C), and this was prevented by mutation of DFP to AFP, DAP,
DFA or AAA (Figure 5). Then we wanted to test whether the putative
NLS of OGT reported in 1997 (Lubas et al,. 1997) has an actual
function as nuclear import. However, fusion of putative NLS (residues
477-493) to the Flag-tagged B-galactosidase did not cause import into
the nucleus (Figure 5B). We also used Flag tagged double-stranded
RNA-specific editase 1 (ADARBI1) to test the function of DFP motif in
ADARBI. ADARB1 mutated DFP (residues 171 - 173) to AAA showed
greatly reduced nuclear import than WT-ADARB1 (Figure 12).
ADARBI1 was still localized in the nucleus because ADARBI interacts
with other endogenous ADARBI1 in the cells. These results clearly
demonstrate that the DFP motif functions as nuclear import

independently.
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Figure 4. The DFP motif is an independent NLS

(A) Subcellular fractionation was performed of Hela cells transfected
with Flag-tagged WT-[B-galactosidase or DFP-fused [B-galactosidase.
Western blotting of aliquots of the fractions was performed with an a
-Flag antibody to detect the B-galactosidase proteins, and with a-lamin
A/C, a-a-tubulin and a-B-actin antibodies as markers of the nuclear,
cytoplasmic and total fractions, respectively. Images of western blot
immunoblotted with an a-Flag antibody, was stripped, and then
re-immunoblotted with a-lamin A/C, a-a-tubulin and a-B-actin

antibodies respectively.

(B) Immunofluorescence confirmed the subcellular fractionation results.
HelLa cells transiently overexpressing Flag-tagged [(-galactosidase

constructs were fixed and stained with both an a-Flag antibody (green)
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and DAPI (blue). Scale bar, 10 pm.

(C) The mean of densitometry readings in five separate locations within
the nucleus was obtained and this was compared with the mean
measurement of five separate locations within the cytoplasm of each
cell. Data were quantified using MetaMorph software. Data show mean
+ s.d.; n=5 locations in the cell. *P<0.01 (Student’s t-test).
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Figure 5. The DFP motif can induce B-galactosidase’s
nuclear import

(A) Subcellular fractionation was performed of Hela cells transfected
with Flag-tagged WT-B-galactosidase, DFP-{3-galactosidase,
AFP-B-galactosidase, DAP-@-galactosidase, DFA-[3-galactosidase or
AAA-B-galactosidase. Western blotting of aliquots of the fractions was
performed with an a-Flag antibody to detect the -[B-galactosidase
proteins, and with a-lamin A/C, a-a-tubulin and a-B-actin antibodies

as markers of the nuclear, cytoplasmic and total fractions, respectively

(B) HeLa cells were transfected with Flag-tagged WT-[B-galactosidase,
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DFP-[3-galactosidase, or putative NLS-B-galactosidase and then
subjected to subcellular fractionation as described in (A). DFP; 451-453
residues and putative NLS; 477-493 residues.
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4.3. Importin a5 interacts with OGT

Because nuclear transport of proteins commonly requires their
interaction with importin as(Christophe et al,. 2000; Goldfarb et al,
2004), we determined whether OGT associates with importin as. The
classical nucleocytoplasmic import pathway is mediated by the importin
a/B heterodimer (Cautain et al.,, 2015; Gorlich et al., 1995). While only
one importin B isoform exists, six human importin as have been
reported(Quensel et al., 2004). Although the importin as differ in terms
of their cell-andtissue-specific expression patterns, most are expressed
ubiquitously, except for importin a6, which is only present in testes
(Kohler et al., 1997). Therefore, we tested the association of OGT with
the other five importin as. No binding was observed between OGT and
importin B, al, a3, a4, or a7 (Figure 6A, B). However, overexpressed
OGT interacted with overexpressed or endogenous importin ab (Figure
6A-D). To determine whether importin ab is also required for the
nuclear localization of OGT, we depleted importin a5 in Hela cells by
RNA interference (RNAIi). In cells treated with small interfering RNA
(siRNA) targeting importin ab, the amounts of overexpressed OGT
localized in the nucleus and cytosol were decreased and increased,
respectively (Figure 6E - G). Thus, our results suggest that importin ab
1s an important karyopherin of OGT.
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Figure 6. Binding of importin proteins to OGT

(A) HeLa cells were co-transfected with Flag-tagged OGT and
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Myc-tagged importin a or B. Cell lysates were immunoprecipitated with
an a-Flag antibody. Co-immunoprecipitated importin a or B, as well as
the loading amounts, were analysed by western blotting with an a-Myc
antibody. An a-Flag antibody immunoblotting confirmed that equal

amounts of OGT constructs were immunoprecipitated.

(B) Cells were transfected as in (A) were immunoprecipitated with an a
-Myc antibody. Co-immunoprecipitated OGT was blotted with an a
-Flag antibody. An a-Myc antibody immunoblotting confirmed that

equal amounts of importin a and B were immunoprecipitated.

(C) Hela cells were transfected with Flag-tagged OGT and
immunoprecipitated with an ao-Flag antibody. Bound endogenous
importin ab was detected by an a-importin a5 antibody. Total lysates

were blotted with an a-importin a5 antibody as a loading control.

(D) HeLla cells transiently overexpressing Myc-tagged importin a5 were
immunoprecipitated with an a-Myc antibody. Co-immunoprecipitated
endogenous OGT was detected by an a-OGT antibody. Total lysates
were blotted with an a-OGT antibody to monitor the amount of OGT.

(E) HeLla cells were transfected twice with siRNA targeting importin ab
or control siRNA. After 3 days, cells were transfected with Flag-tagged
OGT. After another day, cells were subjected to subcellular
fractionation. Western blotting was performed on the cytoplasmic and
nuclear fractions. Total lysates were blotted with an a-importin ab
antibody to monitor the reduction in endogenous importin a5 and with

an a-B-actin antibody as a loading control. *NS; non-specific.

(F) Immunofluorescence confirmed the subcellular fractionation results.
Cells were prepared as described in (E), fixed, stained with an a-Flag
antibody (green) and DAPI (blue). Scale bar, 10 pm.
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(G) The mean of densitometry readings in five separate locations within
the nucleus was obtained and was compared with the mean readings of
five separate locations within the cytoplasm of each cell. Data were
quantified using MetaMorph software. Data show mean * s.d.; n=b
locations in the cell. *P<0.01 (Student’s t-test).
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4.4, The DFP motif is required for the interaction of OGT
with importin ab

The finding that importin a5 is involved in the nuclear import of OGT
prompted us to examine whether the binding of importin a5 is
dependent on the DFP motif of OGT. We first examined the interaction
of the various OGT mutants with importin a5. Co-immunoprecipitation
experiments revealed that WT-OGT interacted more strongly with
importin a5 than Mono-OGT and that Mono-OGT in which the NLS
was mutated or deleted showed significantly reduced association with
importin a5 (Figure 7A, B). A slight interaction exists between
Mono-OGT A451-453, Mono-OGT 451-453 AAA and importin ab
because Mono-OGT still can interact with endogenous OGT (Figure 3).
These results were confirmed by in vitro binding assays (Figure 7C).
Pull-down experiments were performed in which glutathione
S—transferase (GST)-importin ab fusion protein was incubated with the
lysates of Hela cells transiently overexpressing WT-OGT, Mono-OGT,
Mono-OGT A451-453 or Mono-OGT 451-453 AAA. No interaction was
observed between GST-importin a5 and Mono-OGT A451-453 or
Mono-OGT 451-453 AAA, as expected. In all experiments, importin ab
interacted more weakly with Mono-OGT than with WT-OGT. This
reduced binding affinity of Mono-OGT for importin a5 would explain
why the nuclear localization of Mono-OGT was less extensive than
that of WT-OGT (Figure 2B, C). Taken together, these results indicate
that importin a5 has a functional interaction with the NLS of OGT,

which affects the nuclear localization of monomeric OGT.
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Figure 7. The DFP motif of OGT interacts with importin a5
transiently overexpressing Flag-tagged WT-OGT,

(A) Hela cells
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Mono-OGT, Mono-OGT A451-453 or Mono-OGT 451-453 AAA
together with Myc-tagged importin a5 were immunoprecipitated with an
a-Myc antibody and the beads were stringently washed three times.
Co-immunoprecipitated OGT constructs were detected by an a-Flag
antibody. Blotting with an a-Myc antibody revealed that equal amounts

of importin a5 were immunoprecipitated.

(B) Hela cells transfected with Flag-tagged WT-OGT, Mono-OGT,
Mono-OGT A451-453 or Mono-OGT 451-453 AAA together with
Myc-tagged importin a5 were immunoprecipitated with an a-Flag
antibody. Following stringent washes, co—immunoprecipitated importin a
5 was detected by an a-Myc antibody. Blotting with an a-Flag
antibody revealed that equal amounts of the OGT constructs were

immunoprecipitated.

(C) HeLa cells were transfected with Flag-tagged WT-OGT,
Mono-OGT, Mono-OGT A451-453 or Mono-OGT 451-453 AAA. Cell
lysates were incubated with immobilized recombinant GST-importin ab.
GST-importin ab was precipitated, and the associated OGT constructs
were detected by western blotting using an a-Flag antibody.
GST-importin a5 was detected by Coomassie staining to verify the

amount of protein used in the assay.
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4.5. O-GIlcNAclation of OGT occurs at Ser389

OGT is reportedly modified by O-GlcNAc (Khidekel et al., 2007, Tai et
al., 2004). However, the sites and functions of O-GlcNAc modification
of OGT has not been elucidated. To identify the O-GlcNAcylated
site(s) of OGT, we used HEK?293 cells instead of HeLa cells to acquire
the necessary amount of Flag-tagged OGT. We separated Flag-tagged
OGT immunoprecipitated from HEK293 cell lysates by SDS-PAGE and
analysed the protein by mass spectrometry in electron-transfer
dissociation (ETD) fragmentation mode. We identified an
O-GlcNAcylated peptide (amino acids 380 - 396) of OGT
(ISPTFADAYSNMGNTLK; Xcorr, 2.808; DeltaCn, 0.477), where the
Ser389 residue was modified with O-GlcNAc assigned c+ and z+
product ions including distinct O-GlcNAc oxonium ions*(m/z 204.09,
186.08, 168.06, 138.05 and 126.05) (Figure 8A). Next, we created
site-specific point mutants of OGT. Mutation of Ser381 and Ser389 with
alanine and Thr383, and Thr394 with valine, resulted in a reduction in
O-GIcNAc modification (Figure 8B, C). From this investigation, we
determined that Ser389 is the major O-GIcNAc modification site of
OGT. However, we cannot rule out the possibility that other
O-GlcNAcylation sites exist because OGT was still modified with
O-GlcNAc, despite mutation of this site.
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Figure 8. OGT undergoes O-GlcNAc modification

(A) The ETD MS/MS spectrum of an O-GlcNAcylated peptide of
OGT1 (residues 380 -396) with the triply charged precursor ion m/z
638.9831(M+3H)*isshown.The c¢- and z-type product ions were
assigned. The O-GlcNAc oxonium ion (m/z, 204.09) and a series of its
fragments (m/z, 186.08, 168.06, 138.05 and 126.05) were also assigned.

(B) Flag-tagged WT-OGT or OGT point mutants were overexpressed
in  HEK293 cells. WT-OGT and OGT point mutants were
immunoprecipitated with an a-Flag antibody and blotted with an a
-0O-GIlcNAc antibody. Blotting with an a-Flag antibody confirmed that
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equal amounts of the OGT constructs were immunoprecipitated. *NS;
non-specific.

(C) The band intensities O-GIcNAc in (B) were quantified by

densitometry and normalized to immunoprecipitated Flag band intensity.
*P<0.01 (Student’s t-test), mean * s.d.
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4.6. O-GIlcNAc modification of the TPR domain of OGT is
important for its nuclear localization

Next, we examined to what extent O-GlcNAc modification of OGT
contributes to its nuclear localization. Because Mono-OGT showed less
nuclear import than WT-OGT (Figure 2B-E) and has lower O-GIlcNAc
modification level than that of WT-OGT (Figure 9). Combined with the
previous results, we assumed that O-GlcNAcylation of OGT may
impact its nuclear localization. To address this issue, we constructed
the Mono-OGT S389A mutant. To increase O-GIcNAc modification of
OGT, cells were treated with Thamet-G, a selective inhibitor of
O-GlcNAcase. Then nuclear localization of both WT-OGT and
Mono-OGT was increased in Thiamet-G-treated cells (Figure 10A, B).
However, the nuclear localization of Mono-OGT S389A was almost
abolished in both Thiamet-G-treated and untreated cells (Figure 10A).
To decrease O-GIcNAc modification of OGT, cells were treated with
5-thio-GlcNAc (Gloster et al., 2011), an inhibitor of OGT. The nuclear
localization of both WT-OGT and Mono-OGT was decreased in
5-thio—GlcNAc-treatedcells, and the nuclear localization of Mono-OGT
S389A was completely prevented (Figure 10C, D). These findings were
further supported by fluorescence microscopy analysis (Figure 10 E, F).
We predicted that the nuclear localization of OGT was decreased by a
change in its conformation upon exposure of the NLS (residues 451 -
453). OGT S389A had the same enzyme activity as WT-OGT (Figure
11) and the substitution of Alanine for Ser389 in OGT does not affect
protein—protein interaction with other proteins (Figure 11C). This
indicated that the decrease of the nuclear localization of OGT was not
due to distortion of its structure, but due to exposure of its NLS.
Collectively, our data indicate that the nuclear localization of OGT is
mainly regulated by O-GIlcNAc modification of Ser389. Our results are
summarised in Figure 13. O-GIlcNAc modification at Ser389 probably
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Figure 9. Decreased O-GlcNAcylation of Mono-OGT

Flag-tagged WT-OGT or Mono-OGT was overexpressed in Hela cells
and immunoprecipitated with an a-Flag antibody. Immunoprecipitates
were blotted with an a-O-GlcNAc antibody. Blotting with an a-Flag
antibody confirmed that equal amounts of OGT were precipitated. *NS;

non-specific.
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Mono-OGT S389A for 24 hours. Cell extracts were subjected to
subcellular fractionation. Western blotting of aliquots of the fractions
was performed with an a-Flag antibody to detect the OGT constructs,
and with a-a-tubulin and a-lamin A/C antibodies as cytoplasmic and
nuclear markers, respectively. Images of western blot immunoblotted
with an a-Flag antibody, was stripped, and then re-immunoblotted with

a-lamin A/C, a-a-tubulin and a-B-actin antibodies respectively.

(B) The band intensities of nuclear imported Flag-OGT in (A) were
quantified by densitometry and normalised to the laminA/C band
intensity. **P<0.05 (Student’s t-test), mean * s.d.

(C) HelLa cells were treated with 5-thio-GIlcNAc (50 uM, 4h) and were
then transfected with Flag-tagged WT-OGT, Mono-OGT or
Mono-OGT S389A for 24 hours. Cell extracts were subjected to

subcellular fractionation as described in (A).

(D) The band intensities of nuclear imported Flag-OGT in (C) were
quantified by densitometry and normalized to the laminA/C band
intensity. **P<0.05 (Student’s t-test), mean * s.d.

(E) Immunofluorescence analysis confirmed the subcellular fractionation
results shown in (B). Hela cells were treated with 5-thio—GlcNAc (50
uM, 4h) or untreated, and then transfected with Flag-tagged WT-OGT,
Mono-OGT or Mono-OGT S389A. Thereafter, cells were fixed, stained
with an a-Flag antibody (green) and DAPI (blue), and visualized. Scale
bar, 10 pm.

(F) The mean of densitometry readings in five separate locations within
the nucleus was obtained and this was compared with the mean
measurement of five separate locations within the cytoplasm of each
cell. Data were quantified using MetaMorph software. Data show mean
+ sd; n=5 locations in the cell. *P<0.01 (Student’s t¢-test)
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Figure 11. The substitution Alanine for Ser389 in OGT dose not
affect the enzyme acitivity and protein-protein interaction

(A) Flag-tagged WT-OGT or OGT S389A was expressed in Hela
cells. OGT activity was measured using the casein kinase 2 peptide as
a substrate. The y-axis represents activity relative to that of
WT-OGT. Data show mean *= s.d.; n=3, data pooled across three
independent experiments.

(B) Flag-tagged WT-OGT or OGT S389A were co-expressed with
Strep—tagged MEF2C in Hela cells. Strep-tagged MEF2C was then
immunoprecipitated with streptavidin agarose and immunoblotted with
for a-O-GIcNAc antibody. Blotting with an ao-MEF2C antibody

confirmed that equal amount of the MEF2C constructs were
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immunoprecipitated.

(C) HeLa cells were transfected with Flag-tagged WT-OGT or OGT
S389A. Cell lysates were immunoprecipitated with an a-Flag antibody
and the beads were mildly washed three times. Co-immunoprecipitated
proteins were separated by SDS-PAGE and were then stained with
silver nitrate. *, IgG heavy chain
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Figure 12. The DFP motif mediates the nuclear import of

ADARBI
HEK?293 cells were transfected with control siRNA or siRNA targeting
later, cells were

ADARBI1 wusing Lipofectamine. Forty—-eight hours
Flag-tagged

transfected with the siRNA-resistant construct of
ADARBI, or ADARB1-171-173 AAA respectively. Subsequently, cells
were subjected to subcellular fractionation. Western blotting of aliquots
of the fractions was performed with an a-Flag antibody to detect
ADARBI1 and with a-a-tubulin, a-lamin A/C and a-B-actin antibodies

as cytoplasmic, nuclear and total markers, respectively.

_55_



""]I
h}i.l-*

N -
W

Cytoplasm Nucleus

Figure 13. Working model for the nuclear localization of OGT

In the cytosol, OGT can be O-GIlcNAcylated on Ser389, which is
located in the vicinity of the DFP motif. Without O-GIlcNAc
modification, binding of importin a5 may be hindered because the DFP
motif of OGT is hidden. However, once O-GlcNAc modification occurs,
OGT can interact with importin a5 and hence localise in the nucleus.
CD 1,0, catalytic domain I,II.
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5. Discussion

OGT transfers GIcNAc from uridine diphosphate-N-acetyl glucosamine
to the hydroxyl group of a serine or threonine residue on cytoplasmic
and nucleus protein substrates (Haltiwanger et al., 1992; Kreppel et al.,
1997). The TPR domain of the enzyme crystallizes as adimer with an
interface between the two subunits (Jinek el al., 2004). The -catalytic
domain has a nucleotide-binding domain and there are hinge regions
between  the twelfth and  thirteenth  TPRs, where OGT
pivotsdramatically (Lazarus et al., 2011). Based on these previous
studies, we investigated the molecular changes that allow the nuclear
import of OGT, which is not fully understood. We identified the NLS of
OGT (DFP at position 451 -453). Deletion or alanine substitution of
DFP abolished the nuclear localization of OGT and [B-galactosidase
localized in the nucleus when fused to DFP, suggesting that this NLS
plays an essential role in nuclear import. We wused Mono-OGT
(W198EandI201D) (Jinek el al, 2004) because endogenous OGT can
interact with the exogenously expressed proteins and transport them to
the nucleus. Immunoprecipitated Flag-tagged Mono-OGT showed a very
weak binding affinity for endogenous OGT (Figure 3), confirming the
weak interaction between Mono-OGT and endogenous OGT. This is
why very faint bands of Mono-OGT 451-453 AAA and Mono-OGT A
451-453 were detected in the nuclearfraction (Figure 2B). Moreover,
because Mono-OGT weakly interacted with endogenous OGT, we
predicted that the extent of O-GlcNAc modification of Mono-OGT is
much lower than that of WT-OGT. To test this possibility, we
immunoprecipitated Flag from lysates of cells transiently overexpressing
Flag-tagged WT-OGT and Mono-OGT. The level of O-GlcNAcylated
Mono-OGT was considerably lower than that of O-GIcNAcylated
WT-OGT (Figure 9). This reduced O-GIcNAc modification of
Mono-OGT decreased its interaction with importin ab (Figure 7A-C).
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Together, these experiments explain why the nuclear importation rate of
Mono-OGT was lower than that of WT-OGT. On the other hand, the
nuclear localization of transfected Mono-OGT A451-453 and Mono-OGT
451-453 AAA was significantly impaired compared with that of
WT-OGT and Mono-OGT (Figure 2B - E). The identified DFP motif of
OGT 1is not a classical NLS and many proteins that have the same
motif localize in the nucleus or remain in the cytoplasm. Surprisingly,
the nuclear 1import of exogenously expressed double-stranded
RNA-specific editase 1 (ADARB1) was decreased when its DFP
residues at positions 171 - 173 were mutated to AAA (Figure 12). In
these experiments, endogenous ADARB1 was knocked down using
RNAi because this protein reportedly forms a homodimer (Cho et al.,
2003; Valente et al., 2007). Regulation of then uclear import of other
proteins that have a DFP motif should be studied. We postulate that
both the NLS and O-GlcNAcylation of Ser389 contribute to the nuclear
localization of OGT. O-GIcNAc modification might induce a
conformational change to facilitate nuclear translocation, similar to other
nucleocytoplasmic proteins, such as phosphorylation of extracellular
signal-regulated kinase 5 and human telomerase reverse transcriptase
(Chung et al, 2012, Kondoh et al, 2006). Additionally, a recent
publication showed that phosphorylation of T hr444 of OGT is important
for its nuclear localization (Bullen et al., 2014). We assume that Thr444
1s in close proximity to the DFP motif at positions 451 - 453 and acts
the same as Ser389. In summary, we identified a unique NLS that is
responsible for the nuclear localization of OGT. This NLS controls the
nuclear localization of overexpressed 3-galactosidase containing the DFP
motif. We also showed that OGT is imported into the nucleus using the
DFP motif mediated by importin ab5. Our data indicate that
O-GlcNAcylation of the TPR domain of OGT (Ser389) is required for
its nuclear localization. These findings establish a foundation for how

nucleocytoplasmic proteins are regulated and exist in the nucleus and
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cytosol simultaneously without any other sequestering proteins.
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Chapter 3

X-linked Inhibitor of Apoptosis Protein
(XIAP) Promotes Degradation of OGT and
Inhibits Cancer Cell Growth
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1. Abstracts

O-GlcNAcylation and O-GlcNAc transferase (OGT) levels are elevated
in many cancer types. Increased O-GIlcNAcylation plays an important
roles in key metabolic and signaling pathways that conduct multiple
cancer phenotypes. However, little is known about how subcellular OGT
protein levels are regulated. Here, We report that X-linked inhibitor
apoptosis  protein (XIAP), a well-known caspase inhibitor, is
O-GlcNAcylated and directly ubiquitylates and promotes
proteasomal-dependent degradation of OGT. O-GlcNAc modification at
Ser406 reduces its E3 ligase activity for OGT. The HCT116 human
colorectal carcinoma cells stably overexpressing XIAP show reduced
OGT protein level and cancer cell growth. Our study reveals an

antigrowth function of XIAP which suppresses tumorigenesis.
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2. Introduction

X-linked inhibitor of apoptotic protein (XIAP; also known as BIRC4) is
characterized a member of the IAP family and a compelling inhibitor of
the caspase mediated apoptosis pathway (Srinivasula and Ashwell,
2008). XIAP possesses three N-terminal baculovirus IAP repeat (BIR)
domains, which together with flanking residues, can bind directly to
caspases 3, 7, and 9 and a C-terminal really interesting new gene
(RING) domain, which participates in the ubiquitin—-proteasome pathway
through their roles as E3 ubiquitin ligases (Joazeiro et al., 2000;
Schimmer et al., 2006). The UBA domain in XIAP and a RING
dimerization are important for the XIAP’s ability to bind K63-linked
poly—ubiquitin, and in some cases to K48-linked poly—-ubiquitin
(Gyrd-Hansen et al., 2008). XIAP ubiquitinates a broad range of cellular
substrates, thereby participating in a range of cellular activities beyond
anti—apoptotic effects (Galban and Duckett, 2010; Srinivasula and
Ashwell, 2008). Although XIAP is reportedly shown as acting a role in
promoting cancer invasion and metastasis, some conflicting data also
exist. This has been a challenge in understanding how XIAP can be

such a versatile, multi—functional protein related to cancer cell biology.

O-linked N-acetylglucosamine (O-GIlcNAc) occurs on hydroxyl groups
of serine or threonine residue, like phosphorylation (Wells et al., 2001).
O-GlcNAc modification is controlled by O-GlcNAc transferase (OGT)
in the nucleus and cytoplasm (Haltiwanger et al., 1992). OGT transfers
beta N-acetylglucosamine from UDP-GIcNAc to target proteins that are
participated in various biological processes, including protein—protein
interactions, epigenetic regulation, protein stability, localization, and
enzyme activity (Butkinaree et al., 2010; Love and Hanover 2005;
Zachara and Hart 2004 ).

Numerous reports suggest that many cellular proteins are abnormally

_69_



O-GIcNAc modified in many types of cancer (Lynch and Reginato,
2011; Slawson and Hart, 2011), such as bladder cancer (Rozanski et al.,
2012), colorectal and lung cancer (Mi et al., 2011), pancreatic cancer
(Ma et al, 2013), and prostate cancer (Lynch et al., 2012). Increasing
OGT and O-GIcNAc during breast cancer progression are correlated
with the histological grade of the tumor (Caldwell et al., 2010; Krzeslak
et al, 2012), suggesting OGT plays a critical role in tumorigenesis.
Although OGT protein level is maintained at a high status, little is

known about the mechanisms of OGT protein regulation in cancer cells.

Here, we report that XIAP functions as an E3 ligase and promotes the
proteasome—dependent degradation of OGT in vitro and in vivo. XIAP
also might undergo O-GIcNAc modification at Serd06 and the
modification of XIAP influences on its E3 ligase activity for OGT. The
HCT116 human colorectal carcinoma cells stably overexpressing XIAP
showed reduced cell proliferations. Our study suggest novel function of
XIAP in the regulation of cancer cell growth, which is distinctly

different from its well-characterized apoptotic suppression.
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3. Material and Methods

Cell culture, DNA transfection and plasmids

HEK?293, Human colon cancer cell lines HCT116 wild-type and XIAP
-/= HCTI116 cells, and breast cancer cell lines MDA-MB231 cells were
cultured in Dulbecco’s Modified Eagle’'s Medium (Lonza, Basel, Swiss)
supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100
ng/ml streptomycin at 37°C in 5% CO2. DNA was transfected using
polyethylenimine (Sigma-Aldrich, St Louis, MO ) as described
previously (Boussif et al., 1995). Human OGT, wild-type XIAP, and
mutant S406A XIAP were cloned into the p3xFLAG-CMVTM-7.1
ExpressionVector  (Sigma-Aldrich, St Louis, MO). Human wild-type
XIAP and ARING XIAP proteins were cloned into pRK5 in frame with
an N-terminal Myc epitope. The mutant S406A XIAP was generated
using the QuikChange Site-Directed Mutagenesis Kit (Stratagene, La
Jolla, CA). The mutations was confirmed by DNA sequence analysis.
To generate GST-tagged OGT, the cDNA encoding full-length OGT
was cloned downstream of the GST coding sequence in pGEX-5X
(Clontech, Rockville, MD). His-tagged wild-type XIAP and mutant
S406A XIAP were cloned into pET6xHN expression vector (Clontech,
Rockville, MD).

Reagent and antibodies

Antibodies against XIAP (H-202, rabbit polyclonal), HA (Y-11, rabbit
polyclonal), Myc (B-14, mouse monoclonal), GST (9E10, mouse
monoclonal, Santa Cruz), a-tubulin (TU-02, mouse monoclonal), B-actin
(C-2, mouse monoclonal), GAPDH (6C5 mouse monoclonal) were
purchased from Santa Cruz, Dallas, Texas. Antibodies against Flag
(F-3156, mouse monoclonal) and OGT (DM17, rabbit polyclonal) were
from Sigma-Aldrich, St Louis, MO. CTDI110.6, an antibody against
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O-GlcNAc, was purchased from Covance (Princeton, NJ). E1 (UBE],
E1-305) and E2 (UbcHb5c, E2-627) were purchased from Boston

Biochem.

sWGA affinity purification, immunoprecipitation and Western
blotting

HEK?293 cells were lysed with NET lysis buffer (150 mM NaCl, 50 mM
Tris, pH 74, 1 mM EDTA, 1% Nonidet P-40) supplemented with a
protease inhibitor cocktail (Roche, Mannheim, Germany) and cell lysates
were incubated with agarose—conjugated succinylated wheat germ
agglutinin (sWGA, Vector Laboratories, Burlingame, CA) for 3 h at 4°C.
For control of specificity, 20 mM GIcNAc was added. Precipitates were
washed 4 times with lysis buffer and protein were eluted by boiling in
SDS sample buffer. Immunoprecipitation and Western blotting are

described previously (Seo et al., 2016).
In vivo and in vitro Ubiquitylation Assay

HEK?293 cells were transiently co—expressed with Flag-tagged OGT,
Myc-tagged XIAP, and HA-tagged ubiquitin for in vivo in vVitro
ubiquitylation. After 48 h of transfection, cells were treated with MG132
(20 uM) for 2 h and then harvested with RIPA buffer supplemented
with aprotinin (10 pg/nl), leupeptin (10 npg/w), DTT (1 mM), and
ubiquitin aldehyde (5 uM). The cell extracts were subjected to
immunoprecipitation using Flag antibody-conjugated A/G beads or
pull-down with Glutathione-Sepharose4dB (GE Healthcare) beads under
denature condition with buffer containing 2% SDS. The beads were
washed three times with RIPA buffer followed by SDS-PAGE. For
OGT in vitro wubiquitylation, 2 pg GST-OGT and 300 ng His-XIAP
(purified) were incubated with 150 ng E1 (UBE1), 400 ng E2 (UbcHbc),
and 5 pg HA-ubiquitin in 50 pl volumes containing 25 mM Tris—HCI
(pH 8.0), 4 mM ATP, 5 mM MgCl2, 200 uM CaCl2, and 1 mM DTT.
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After incubation in 37°C for 2h GST-OGT proteins were pulled down
by GST beads. These beads were washed three times with
corresponding buffer, and the immobilized proteins were subjected to
SDS-PAGE. The ubiquitylation of OGT was analyzed by
immunoblotting with HA antibody.

Quantitative real-time PCR

Total RNA was isolated from HEKZ293 cells using TRIzol reagent
(Invitrogen). Complementary DNA was synthesized using ReverTra
Ace qPRC RT Master Mix (Toyobo Co., Japan). Quantitative real-time
PCR was performed using SYBR Premix Ex Taq (Takara, Japan). All
reactions were done according to manufacturer’s instructions. Amplified
product was analyzed by Applied Biosystems 7300 Real-Time PCR

system. Gene specific primers were as follows:

OGT, forward 5'-CTTTAGCACTCTGGCAATTAAACAG-3,
OGT, reverse 5'-TCAAATAACATGCCTTGGCTTC-3'
GAPDH, forward 5'-AGGGCTGCTTTTAACTCTGGT-3’,
GAPDH, reverse 5'-CCCCACTTGATTTTGGAGGGA-3'.
The mRNA levels of OGT were normalized to GAPDH.
Stable cell line establishment

XIAP were cloned into retroviral vector pMSCV-Flag for stable cells
establishment. Together with retroviral packaging plasmids pVSV-G
and Gag/Pol, 3 ng retroviral DNA constructs were transfected into
293T cells. Retroviral particles were collected twice at 24 h and 48 h
after transfection to infect target cells supplement with 10 pg/ml final
concentration polybrene. After 24 h of infection, start to antibiotic

selection till get the stable transgenic cells.
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Cell counting

HCT116 cells were seeded in 60-mm dishes, 10 x 104 cells per plate.
After treatment the cells were incubated with 0.25% Trypsin-EDTA
(Gibco) for 1 min and then harvested. The cells were re-suspended in
256mM Dulbecco’s Modified Eagle’s Medium. 1:1 ratio diluted cells were
prepared by mixing with 0.4% Trypan blue stain (Gibco) and incubating
for 5 min. The stained cells were then transferred to a Neubauer
improved chamber (Marienfeld) and viable cells were counted under
OLYMPUS CK2-TRC microscope. The number of cells in 0.1 pl of
cells were obtained by counting four large squares, then dividing the
sum of the four cells by 4, and multiplying by dilution factor 2. The
number of cells per ml was obtained by multiplying the cell number

from the previous calculation with 107,
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4. Results

4.1. XIAP is modified by O-GlcNAc

Various studies demonstrate that maintaining elevated OGT and
O-GlcNAcylation levels are important for cancer cell progression
(Fardini et al., 2013; Lynch and Reginato, 2011). Since it has been
reported that the correlation between abnormal X-linked inhibitor of
apoptosis protein (XIAP) expression and malignant cancer progression
(Fong et al., 2000; Yang et al., 2003), we first addressed the question of
whether XIAP could be a substrate of OGT. To examine whether
endogenous XIAP is modified by O-GlcNAc, we used succinylated
wheat germ agglutinin (sWGA) for affinity purification of HEK293 total
cell lysates (Gambetta et al., 2009; Love and Hanover, 2005) and probed
the precipitates with an antibody against XIAP. We successfully
detected O-GIcNAc modified endogenous XIAP (Figure 1A). The
specificity of the lectin affinity purification was demonstrated by
addition of the inhibitory mono-saccharide GlcNAc (Figure 1A). Next,
human XIAP were cloned into the Flag-tagged expression vector and
transiently expressed in HEK293 cells. Immunoprecipitated Flag-tagged
XIAP was probed with the O-GIcNAc-specific antibody. We were able
to unequivocally detect O-GIlcNAc on XIAP in an amount which could
be significantly increased by co-expressed OGT, and decreased by
co—expressed OGA (Figure 1B). To determine the existence and location
of the O-GlcNAc site(s) on XIAP by mass spectrometry analysis, XIAP
was immunoprecipitated from HEK?293 cells co-expressing OGT and
subjected to SDS-PAGE. The precipitated XIAP was then in-gel
digested with trypsin, and analyzed by quadrupole time-of-flight tandem
mass spectrometry (Q-TOF MS). The O-GlcNAc modified 406-419
peptide of XIAP was observed (data not shown). Since there is only

one serine residue in XIAP 406-419 peptide, we were able to conclude
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that serine 406 might be O-GIlcNAc modified. We created a site—specific
point mutant of XIAP. Mutation of Ser406 with alanine showed a
completely disappeared O-GIcNAc modification (Figure 1C). Next, to
rule out the possibility that the substitution alanine for Ser406 in XIAP
does not affect its functional protein—protein interaction with OGT,
co—immunoprecipitation was performed. Both wild-type XIAP and
S406A XIAP interacted with OGT (Figure 1D-E). The XIAP RING
domain has E3 ubiquitin ligase activity and is able to associate with
other proteins when XIAP is transiently overexpressed. To examine
whether the binding between XIAP and OGT is functional not due to
XIAP's RING domain, deletion mutant of XIAP lacked the C-terminal
RING domain was used. The deletion mutant XIAP lacking RING
domain still interacted with OGT (Figure 1F). Taken together, these
results indicate that XIAP is O-GlcNAcylated, may be at Ser406

residue and has a functional interaction with OGT.
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Figure 1. XIAP carries O-GIcNAc modification at Ser406

(A) HEK?293 cells were treated with Thiamet-G (100 nM, 4 h) and cell
lysates were subjected to sWGA lectin affinity purification and the
precipitates analyzed with Western blot

control, mono—saccharide inhibitor GlcNAc

for

sWGA lectin affinity purification.

(B) Western blot analysis for O-GlcNAc

overexpressing OGT,

from

transiently
transfected HEK?293 cells. Blotting with an a-Flag antibody confirmed

of

OGA,

endogenous XIAP. For
(20 mM) was added during

immunoprecipitated XIAP

or control

that equal amounts of the XIAP constructs were immunoprecipitated.
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(C) Flag-tagged WT-XIAP or XIAP point mutants were transfected in
transiently overexpressing OGT HEK?293 cells. WT-XIAP and XIAP
point mutants were immunoprecipitated with an a-Flag antibody and
blotted with an a-O-GlcNAc antibody.

(D) HEK?293 cells transiently overexpressing Myc-tagged WT-XIAP or
XIAP S406A mutant together with Flag-tagged OGT  were
immunoprecipitated with an a-Flag antibody and the beads were
stringently washed three times. Co—immunoprecipitated XIAP constructs
were detected by an a-Myc antibody. Blotting with an a-Myc antibody

revealed that equal amounts of XIAP were immunoprecipitated.

(E) HEK?293 cells were transfected as in (D) were immunoprecipitated
with an a-Myc antibody. . Co-immunoprecipitated OGT constructs were
blotted with an a-Flag antibody. An a-Myc antibody immunoblotting

confirmed that equal amounts of XIAP were immunoprecipitated.

(F) Myc-tagged WT-XIAP, XIAP S406A mutant, or XIAP AR mutant
were transfected transiently overexpressing Flag-tagged OGT HEK293
cells. Cell lysates were immunoprecipitated with an a-Flag antibody.
Co-immunoprecipitated XIAP as well as the loading amounts were
analysed by western blotting with an a-Flag antibody. An a-Myc
antibody immunoblotting confirmed that equal amounts of XIAP

constructs were immunoprecipitated.
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4.2. OGT 1is a substrate of the E3 ligase XIAP in vitro and in

vivo

The finding that XIAP is O-GIcNAcylated and interacts with OGT
prompted us to investigate whether XIAP could ubiquitylate OGT in
vivo. Expression vectors encoding Flag-OGT and HA-Ub were
co—transfected into HEK293 cells transiently expressing Myc—-XIAP. As
shown in Figure 2A, the ubiquitylation of OGT was largely increased
in Myc—XIAP transiently expressing HEK293 cells compared with only
OGT transfected cells. To determine whether XIAP could ubiquitylate
OGT in wvitro, pull-down experiments were performed in which
glutathione S-—transferase (GST)-OGT fusion protein was incubated
with His-tagged XIAP fusion protein under denatured condition with
buffer containing 2% SDS. As expected, poly-ubiquitylation of
GST-tagged OGT was observed, whereas without His-tagged XIAP
showed no detectable ubiquitylation (Figure 2B). We next performed
similar in vivo ubiquitylation assay in HCT116 wild type (WT) and
HCT116 XIAP-deficient (XIAP-/-) cells. Decreased ubiquitylation of
OGT was observed in HCT116 XIAP-/- cells compared with HCT WT
cells (Figure 2C). Taken together, the results show that XIAP is an E3

ubiquitin ligase and ubiquitylates OGT in vivo and in vitro.
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Figure 2. XIAP acts as an E3 ligase of OGT

(A) The expression vector encoding Flag-tagged OGT and HA-Ub
were transfected into HEKZ93 cells, which transiently overexpressing
Myc-tagged XIAP as indicated. After immunoprecipitation by an a-Flag
antibody, the ubiquitylation of OGT was analyzed by immunoblotting
with an a-HA antibody. Equal amounts of whole cell lysates were

subjected to immunoblotting with antibodies as indicated.

(B) GST-OGT was incubated with His-XIAP, HA-ubiquitin, E1, E2,
and ATP as indicated. After GST pull-down under denature condition
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with buffer containing 2% SDS. The ubiquitylation of OGT was
analyzed by immunoblotting with an o-HA antibody. The same
amounts of OGT in the reaction was immunoblotted with an a-GST

antibody.

(C) HCTI116 WT or HCTI116 XIAP-/- cells were transfected with
Flag-tagged OGT and were then treated with MG132 (20 uM) for 2 h.
The wubiquitylation of immunoprecipitated OGT was analyzed by

immunoblotting with an a-ubiquitin antibody.
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4.3. XIAP induced degradation of OGT

Protein ubiquitylation is known to regulate protein degradation and
subcellular signaling. To investigate the function of XIAP-mediated
ubiquitylation of OGT, we measured the half-lives of OGT in HCT116
wild type (WT) and HCT116 XIAP-deficient (XIAP-/-) cells in the
presence of CHX. The protein level of OGT decreased at a much
slower rate in XIAP-/- cells than in XIAP WT cells (Figure 3A),
whereas the mRNA levels of OGT in the two cell lines were
comparable (Figure 3B). Thus, our results suggest that the turnover of
OGT 1s regulated at ©protein level, possibly through an
ubiquitin—-dependent pathway. We next transfected Flag-tagged XIAP
into HEK?293 cells and measured the protein level of endogenous OGT
in the presence or absence of MGI132. In support of our hypothesis,
XIAP-mediated degradation of OGT was blocked by the addition of
MG132 (Figure 3C-D). No significant difference of mRNA levels was
observed in transiently overexpressing Flag-tagged XIAP cells treated
with MG132 or not treated (Figure 3E). Collectively, the results
indicate that XIAP promotes proteasomal-dependent degradation of OGT

n Vivo.
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Figure 3. XIAP promotes OGT protein degradation

(A) HCT116-WT or HCTI116 XIAP -/- cells were treated with CHX
(10 uM) and harvested at the indicated time points. The expression
levels of OGT, XIAP and GAPDH were determined by immunoblotting.

(B) OGT mRNA levels in HCT116-WT or HCTI116 XIAP -/- cells
were measured by gRT-PCR. The value was normalized by GAPDH

mRNA levels. The error bars represent + s.d.,; triplicate experiments.
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(C-D) The empty vector or the expression vector encoding Flag-tagged
XIAP was transfected into HEK?293 cells as indicated. Before harvest,
the cells were treated with or without MGI132 (20 uM) as indicated.
The expression levels of OGT, XIAP, and B-actin were determined (A),
and the relative protein level of OGT was quantified (B).

(E) HEKO93 cells were prepared as in (A). The mRNA levels of OGT
were detected by qRT-PCR. GAPDH was used for normalization. The

error bars represent + s.d.,; triplicate experiments.
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4.4 O-GlcNAc modification at Ser406 plays an important role in
E3 ligase activity of XIAP

It has been verified that the Serd06 residue of XIAP is located in the
ubiquitin associated (UBA) domain. Since the presence of the UBA
domain in XIAP is essential for XIAP’s ability to bind K63-linked
poly—ubiquitin and in some cases to K48-linked poly—-ubiquitin
(Gyrd-Hansen et al., 2008), we next speculated that O-GlcNAc
modification of XIAP influence on the XIAP mediated ubiquitylation of
OGT. To determine whether Ser4d06 O-GlcNAc modification on XIAP is
important for poly—ubiquitylation of OGT, purified glutathione
S—transferase (GST)-OGT fusion protein was incubated with HEK?293
transiently overexpressing Flag-tagged wild-type XIAP or Flag-tagged
S406A mutant XIAP, respectively. Upon pull-down of OGT with GST
beads and immunoblotting with an anti-HA antibody to detect ubiquitin,
we observed that GST-OGT with Myc-tagged wild-type XIAP showed
an apparent  large  mobility shift, indicating an  efficient
poly—ubiquitylation of OGT compared to Myc-tagged S406A mutant
XIAP (Figure 4A). The finding was further confirmed in an in vitro
ubiquitylation assay, in which GST-OGT was efficiently ubiquitylated
by His-tagged wild-type XIAP fusion protein but not His-tagged
S406A mutant XIAP fusion protein (Figure 4B). These results
presumably indicate that Serd06 O-GIcNAc modification in XIAP may
affect the E3 ligase activity of XIAP.
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HA-Ubiquitin, E1, E2, and ATP as indicated. After pull-down by GST
beads, the ubiquitylation of OGT was analyzed by immunoblotting with
an a-HA antibody. Equal amounts of whole cell lysates were subjected

to immunoblotting with antibodies as indicated.

(B) GST-OGT was incubated with His-XIAP (WT) or His-XIAP
(5406), together with HA-Ubiquitin, E1, E2, and ATP as indicated.
After GST pull-down under denature condition with buffer containing
2% SDS, the ubiquitylation of OGT was detected by immunoblotting
with an a-HA antibody. The amounts of OGT in the reaction were

immunoblotted with an a-GST antibody.
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45 XIAP inhibits HCT11.6 cell growth through degradation of
OGT

OGT 1is overexpressed in various cancer cells and plays an important
role in cell growth (Lynch and Reginato, 2011). XIAP also atypically
exhibits deregulated protein levels because of resistance to anti—cancer
drugs by binding to and suppressing caspase function (Schimmer et al.,
2006). To verify the role of OGT and XIAP in cancer cells, first we
established different cancer cell lines stably expressing XIAP, such as
adenocarcinomic human alveolar basal epithelial cells (A549), human
breast adenocarcinoma cells (MDA-MB-231), human colorectal
carcinoma cells (HCT116) Wild-type, and HCT116 XIAP -/- cells. As
shown in Figure 5A, OGT and total O-GlcNAcylation levels were
reduced in stably overexpressing Flag-tagged XIAP HCT116 cells
compared to control HCT116 cells. Next, we performed a cell
proliferation assay . The introduction of XIAP gene by infection with
Flag-XIAP retroviral particles in HCT116 cells showed the phenomenon
of decreased cell growth (Figure 5B). Collectively, these data suggest
that abnormally overexpressed XIAP induced the degradation of OGT

protein levels and consequently disrupted cancer cell growth rate.
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Figure 5. XIAP inhibits HCT116 colorectal carcinoma cell growth
by inducing the degradation of OGT

(A) Establishing of Ab49, MDA-MB231, HCTI116(WT), and
HCTI116(XIAP-/-) overexpressing Flag-tagged XIAP cell lines by
introducing retroviral particle packaging. Total cell lysates was

immunoblotted as indicated antibodies, respectively .

(B) HCT116 (WT) and HCT116 (Flag-XIAP O/E) cells were treated
with trypsin and counted using 0.4% Trypan blue staining and a
Neubauer improved counting chamber. The value indicates number of

cells per ml.
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4. Discussion

O-linked N-acetylglucosamine (O-GIcNAc) is a post-translational
modification on hydroxyl groups of serine or threonine residues of
nuclear and cytoplasmic proteins (Wells et al., 2001). O-GlcNAcylation
plays crucial regulatory roles in various cellular signaling processes
(Hanover, 2010; Ozcan et al., 2010; Roos et al, 1997, Ruan et al., 2013;
Slawson et al., 2006, Wells et al., 2003). Recent works in many different
cancer types now Indicate that abnormally increased OGT and
O-GlcNAcylation levels are a general feature of cancer and contribute
to transformed cancer phenotypes (Ferrer et al., 2014; Itkonen et al.,
2016; Lynch et al., 2012). Although known for XIAP’s ability to inhibit
caspase and apoptosis, XIAP also participated in other diverse
subcellular functions, including copper metabolism, signal activation, and
ubiquitination (Eckelman et al., 2006). Here, we found that OGT
interacts with XIAP and O-GlcNAcylated XIAP at Ser406 (Figure 1
A-C). The interaction between XIAP and OGT is functional because
substitution of Alanine for Serine 406 also binds to OGT (Figure
1D-E). Given that XIAP has been known to exhibit ubiquitin protein
ligase activity (E3 ligase) (Suzuki et al., 2001), we assessed whether
XIAP was prompting OGT degradation in the proteasome through
ubiquitin dependent pathway. We observed XIAP mediated ubiquitylation
of OGT (Figure 2A-C) and degradation in the proteasome (Figure
3A-E). So far, the ubiquitin associated (UBA) domain in the IAP family
proteins has been lately characterized (Gyrd-Hansen et al.,, 2008). The
mechanisms how UBA domain in XIAP lead to recognize and interact
with poly—-ubiquitin chain remain unclear. Since O-GIlcNAc modification
occurs on Serd06 of XIAP where UBA domain (residues 368-419) is
located, we investigate XIAP’'s E3 ligase activity for OGT. The
mutation of O-GlcNAcylation Ser406 in XIAP results in decreased
OGT's poly- ubiquitylation (Figure 4 A-B). Next, stably overexpressing
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XIAP colorectal carcinoma cell lines (HCT116) were established to
further investigate the role of OGT and XIAP in cancer cells.
Overexpressed XIAP induced degradation of OGT and total
O-GlcNAcylation levels (Figure 5A) and inhibited HCT116 cancer cell
growth (Figure 5B). These studies collectively support the hypothesis
that abnormal expression of XIAP inhibits the growth of certain type of
tumors, in which the elevated level of OGT upon perhaps the loss of
XIAP is required for cancer cell growth and proliferation. Our study

may expand XIAP’s role in tumor growth through degradation of OGT.
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Appendix

Site Mapping for O-GIlcNAc Modification of
X-linked Inhibitor of Apoptosis Protein
(XIAP)

_97_



>

< e
11808151 12008033
26614009 26715775
39718705 30419487
1512208 25229780
50829840 509.90620
60535117 69695690

&
e

¥y z 1 2

197104476 189592604 | 180609387  048.97087 | 17
VIBAETEM 174885762 | 174086545 8754338 | 16
160983022 167742050 167889833 83991780 | 16
157079620 156377757 156478540 78289634 | 14
1927208 1670915 14177108 | 70936213 | 19

<vwowumz T4

1
2

3

4

5

6

7 78208320 78339102 10567510 191965638 192066421 66089574 | 12
& 8340107 mavaraan 124864307 129262405 12069218 01731973 | 11
9 92849870  927.AMs2 119162160 117560288 117661071 598.808%8 | 10
10 107348047 102449728 110458957 10857085 108957808 34529798 | ©
N 112255789 112856571 10075368  S9LS1B08 | 99252591 | 49676550 | 8
12 141266920 141367711 SHesNAG  ODBAGS3S B244060 | BUGASTA0 4472828 7
18 148370641 MB47MZ3| A 6183598 6023326 | 60334608 20217668 | B
14 1570734 157104826 S 54731085 59130114 51230806 26685812 | 5
15 16778612 167270304 T 026783 41426011 | 44527603 2314210 | 4
16 17BemIe sl L /02015 3132213 | B44I205 1726188 | 3
17 18E500731 BEE.01613 A 24615608 23013736 | 28114518 1607623 | 2
18 R 17511896 15910028 16010808 8056767 | 1

yo el
1008.00659 157173474

1856.90918

2y
Pl 12256299 1677.81897
94547418

1009 1900 2000

Figure 1. O-GIcNAc Position: Serine (43)
Sequence: TFANFPSGSPVSASTLAR, S12-HexNAc (203.07937 Da)

Charge: +3,  Monoisotopic m/z: 671.66968 Da (+0.68 mmu/+1.01 ppm),
MH+: 2012.99448 Da, RT: 39.82 min,

Identified with: Sequest HT (v1.3); XCorr:2.52, Fragment match

tolerance used for search: 0.8 Da
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Figure 2. O-GIcNAc Position: Threonie (135)
Sequence: DHFALDRPSETHADYLLR, T11-HexNAc (203.07937 Da)

Charge: +4,  Monoisotopic m/z: 590.53906 Da (+0.76 mmu/+1.28 ppm),
MH+: 2359.13442 Da, RT: 41.92 min,

Identified with: Sequest HT (v1.3); XCorr:2.45, Fragment match

tolerance used for search: 0.8 Da
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Figure 3. O-GIcNAc Position: Serine (239)
Sequence: NLNIRSESDAVSSDR, S6-HexNAc (203.07937 Da)

Charge: +3,  Monoisotopic m/z: 622.63257 Da (-0.15 mmu/-0.25 ppm),
MH+: 1865.88315 Da, RT: 19.99 min,

Identified with: Sequest HT (v1.3); XCorr:3.04,

Fragment match tolerance used for search: 0.8 Da
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Figure 4. O-GIcNAc Position: Serine (245)
Sequence: SESDAVSSDR, S7-HexNAc (203.07937 Da)

Charge: +2, Monoisotopic m/z: 62826770 Da (-0.19 mmu/-0.3 ppm),
MH+: 125552812 Da, RT: 6.87 min,

Identified with: Sequest HT (v1.3); XCorr:1.60, Fragment match

tolerance used for search: 0.8 Da
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