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Abstracts 

 

Bayesian Two-Stage Dose-Finding Study for Binary 

Endpoints in PhaseⅡclinical trials 
 

 

Bak, Jean Kyung 

Dept. of Biostatistics and Computing 

The Graduate School  

Yonsei University 

 

In this study, we proposed Bayesian two-stage dose-finding model to identify 

the MED for binary endpoint in phaseⅡ clinical trials. Our study was motivated 

from the idea of the predictive probability with efficacy criterion motivating from 

the dose-finding study of Pozzi et al. (2013). 

We made calculation of the predictive probability comparing with the pre-

specified threshold in order to identify the MED in phaseⅡ clinical trials. While 

we making calculation of the predictive probability, we used the Bayesian Model 

Averaging method to solve the problem of the model uncertainty (Raffery and 

Volinsky, 1999). In addition, we have experienced the challenge of the integral of 

the predictive probability, which has vast difficulty to solve it in Bayesian 

perspective. Therefore, to make the predictive probability under the efficacy 

criterions, we adopted the Sampling-Importance Resampling (SIR) algorithm first 



 

viii 
 

proposed by Rubin (1983), which is the method of the approximation to sample 

from the posterior distribution even though we could not directly explain the 

distribution. 

To make semi-parametric model under assuming monotonic constraint of the 

mean effect under the five dose groups, we made the stick-breaking construction 

with employing the jump-variable. In simulation study, the stick-breaking 

construction has an advantage easily to apply the proposed model while adopting 

the Bayesian Model Averaging. As a result, we found that the simulation result 

from the Bayesian Model Averaging is accurately identified the MED comparing 

the result of the different models.  

 

KEY WORDS: Bayesian two-stage design, MED, binary endpoint, predictive probability, success 

probability, Sampling-Importance Resampling(SIR) algorithm, stick-breaking construction, 

jump-variable, semi-parametric model 
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1. Introduction 
 

Clinical trials play a critical role in drug development. Of diverse issues in 

clinical trials, dose finding design has been researched for several decades in drug 

development. In doing dose finding study, we should well understand with 

characteristics of the dose response relationship of any new compound is 

important and ubiquitous in many areas of scientific investigation. This is 

especially true in the context of pharmaceutical drug development, where it is 

mandatory to launch safe drugs which demonstrate a clinically relevant effect. 

Selecting a dose too high may result in unacceptable safety problems. On the 

contrary, selecting a dose too low may lead to ineffective drugs. Therefore, dose 

finding studies perform an important role in any drug development. In fact, most 

researchers question about what doses relevantly different from control within 

acceptable safety. This question is closely connected to the estimation of a 

minimum effective dose (MED), that is the smallest dose with a discernible useful 

effect following to ICH-E4 (1994), Ruberg (1995) and Bretz et al. (2010). In 

Frequentist approach, if confirmatory pair-wise comparisons with a control are of 

main interest, multiple comparisons may be an appropriate to answer the question. 

However, in Bayesian approach, there is not yet decided definite answer to the 

question even though there are several applies to solve the question.  

PhaseⅡ studies are the basis for planning of the next stage clinical trials. 

Especially, the major purpose conducting phaseⅡb is to determine the optimal 

dose which is going into the next stage clinical trials. An optimal dose is a dose 

that is high enough to demonstrate efficacy in the target population. In fact, there 

may be diverse strategies to determine the optimal dose, but here we focus on the 

Bayesian two-stage dose finding study in phaseⅡ clinical trials. Particularly, we 
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use the parallel dose comparison study, which several potential doses are selected 

and subjects are randomized to receive one of the doses for entire study. At the 

end of study, we can look at how each treatment group performed as compared to 

the control group. Before we research the Bayesian two-stage dose finding design, 

we look around two-stage dose finding design about general approach in phaseⅡ 

clinical trials. In clinical development of a new treatment, the conventional role of 

a phaseⅡa clinical trial is a “proof of concept” by checking the potential efficacy 

of a new treatment. Typically, this kind of drug is the maximum tolerated dose in 

cancer trials under the assumption that toxicities are positively associated with 

cancer killing activities (Ratain, 1993). In other words, the goal of a Proof-of 

Concept (PoC) study is to verify dose efficacy in patients in phaseⅡa clinical trials. 

In reality, developing new pharmacological therapies is extremely expensive and 

only few studies may be successful. Therefore, there is a great value in enabling 

earlier to check optimal dose and better making decision which dose levels 

continue with a drug development study.  However, incomplete understanding 

of the dose-finding studies is recognized as a major leading to inappropriate or 

appropriate doses being taken into phaseⅢ clinical trials. For example, to describe 

efficacy optimal dose with over-dispersed count endpoint, Pozzi et al. (2013) 

suggested that Bayesian adaptive two-stage dose-finding design in phase Ⅱ 

clinical trials.  

In general, there are major several types of primary endpoints such as 

continuous endpoint, count endpoint, binary endpoint and so on. In this paper, we 

focus on binary endpoint because most patients are classified as a responder or 

non-responder to the treatment study at the end of a study. We mention the 

situation of that “Why should we use binary endpoint?”. A typical primary 

efficacy analysis is to compare with the numbers and proportions of responders 
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between treatment groups. The response variable is a binary variable. Even if the 

endpoint is continuous, there is an increasing tendency to re-define criteria and re-

classify subjects as a “responder” or a “non-responder”. Ting (2006) introduced an 

example case that patients in anti-depressants trials are frequently referred to as 

responders if they experience a 50% reduction in the HAM-D score from their 

baseline values. In addition, there are many situations that binary response makes 

sense. The examples include “alive” or “dead” for patients in a salvage trial. In this 

manner, binary outcome in clinical trials is common type no matter which problem 

faced we are. Hence, in this study, we discuss the dose finding design to identify 

the MED for binary endpoints in phaseⅡ clinical trials. Particularly, we discuss 

model based on Bayesian two-stage dose-finding process to choose the MED for 

binary endpoints in phaseⅡ clinical trials.  

 

1.1. Two-stage dose finding design in phase Ⅱ clinical trials 

 

In general, since Simon’s two-stage design (1989) has been proposed, there 

have been emerged diverse useful designs such as sample size determination in 

phaseⅡ clinical trials based on Simon’s two-stage design. In this study, we apply 

the concept of Simon’s two-stage design to find the MED in dose finding studies. 

Even if Simon’s design has limitation to focus on determining the sample size, 

many researchers have cited and utilized the method into their diverse clinical 

studies such as dose finding studies. In fact, Simon’s two-stage design was based 

on four major procedures such as decision making for hypotheses, adhering strict 

sample size to keep the power, and enrollment procedure for patients and 

stopping rule with respect to Frequentist perspective.  
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In Frequentist approach, Polley (2008) and Cheung (2008) applied Simon’s 

two-stage design to find the MED when they compared several dose levels with a 

placebo. They mentioned to manage the issue of multiple comparisons due to 

handling several dose levels in two-stage dose finding studies. In addition, as a way 

of finding solution of the multiple comparisons, Steansson (1988) and Hsu and 

Berger (1999) introduced two-stage design for the partitioning test of binary 

outcome in Frequentist approach. Based on their statements, there are three 

different methods such as the pre-determined step-down method, the sample-

determined step-down method and the sample-determined step-up method in 

partitioning test to explain the multiple comparisons in Frequentist perspective. 

However, there is no definite method to account for multiple comparisons even 

though many researchers have discussed since Duncan (1965) has introduced 

several mixed approaches for multiple comparisons that was combined Bayesian 

perspective with Frequentist perspective. In addition, Muller et al. (2006) were 

mainly used posterior probability and decision theoretic approaches for adjust 

multiplicities. Besides, Meng et al. (1987) discussed the multiplicity problem relied 

on Bayesian p-value that is the similar approach with traditional significance 

testing. Although there are many efforts and approaches in Bayesian ways, it is 

fact that there is an argument among researchers who are interested in explaining 

the multiple comparisons. Therefore, we do not mention the multiple comparisons 

with identifying the MED among the several dose levels. 

Lee et al. (2008) presented the decision method when we stop and how to stop 

the clinical trials for efficacy or futility based on the predictive probability in 

Bayesian approach. Given the interim data, the predictive probability of the 

posterior distribution provides the estimation ways how to reject the null 

hypotheses in dose finding studies. That is, they mentioned two different 
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assumptions. One assumption could be the decision rule that predictive 

probability depended on that the true response rate 𝑝1 is greater than the null 

response rate, 𝑝0. Another assumption was the decision rule how to stop the trial 

for success or futility. In this study, we apply the idea of decision rule using 

predictive probability while identifying an appropriate dose level as the MED in 

Bayesian perspective. In addition, we adopt the concept of decision making that 

was Bayesian two-stage design for phaseⅡ clinical trials with respect to the Single 

Threshold Design (STD) for binary endpoint proposed by Sambucini (2008). 

Particularly, the design proposed by Sambucini (2008) was based on the predictive 

probability of the STD to select the sample size in the experimental study. Before 

Sambucini (2008) proposed one of the STD methods, Tan and Machin (2002) firstly 

introduced the idea of the Single Threshold Design (STD) in two-stage design 

when they decided the sample size, in which a large posterior probability of the 

true response rate exceeds a target value when the observed response rate is larger 

than the pre-specified target value. They offered to the method of the sample size 

calculations through extending different kinds of informative prior distributions 

which use informative conjugate prior distributions. Other most researchers 

including Herson (1979) mainly have managed the issue of the sample size 

determination through the predictive probability in phaseⅡ clinical trials.  

However, only few cases are known where the issue of dose finding for binary 

outcome relies on the Single Threshold Design (STD) with the predictive 

probability in phaseⅡ clinical trials. For instance, Ivanov, Xiao and Tymofyeyev 

(2012) proposed the Bayesian adaptive two-stage design to find the MED for phase

Ⅱ dosing finding study. They handled both the continuous and binary outcomes 

to make decision grounded on the posterior probability of the target dose location 

in making decision which dose level could be the MED. More recently, Pozzi et al. 
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(2013) proposed a Bayesian adaptive dose selection design with over-dispersed 

count data. They considered the predictive probability as a decision method since 

they wanted to explain the future data given the interim data while identifying the 

MED in phaseⅡ clinical trials. In other words, the study design was taken into 

account of one interim analysis to make decision which dose level could be the 

MED in Bayesian perspective.  

 

1.2. Purpose 
 

The purpose of this study is to present the method in Bayesian two-stage dose 

finding design for binary endpoint in phaseⅡ clinical trials. Especially, we discuss 

the dose finding method to identify the MED depended on the Bayesian predictive 

probability by comparing with pre-specified criterions. Besides, we also referred 

the approach of the inference to select the MED that was found by comparing the 

predictive probabilities of several dose groups with a placebo according to 

Dunnett (1995) and Williams (1971). Particularly, while modeling with referring to 

efficacy criterion for binary outcomes, we take advantage of the convenience of the 

approximation method to sample from the posterior distribution with Sampling-

Importance Resampling (SIR) algorithm proposed by Rubin (1983) and Smith and 

Gelfand (1992). Under the similar studies figuring out the MED, if we let t denote 

the clinically relevant value, i.e., the smallest relevant value which shows a 

clinically relevant and statistically significant effect, we expect a dose to be better 

than a placebo. The approach to find the MED by comparing Bayesian predictive 

probability with the pre-specified criterions for binary endpoint in phase Ⅱ 

clinical trial could be a new challenge even though it was motivated by Pozzi et al. 

(2013) that was Bayesian adaptive two-stage dose finding study to the MED with 
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over-dispersed count data. Therefore, as mentioned above, we utilize the method 

of the approximation that draws samples through Sampling-Importance 

Resampling algorithm from the posterior distribution to calculate the predictive 

probability as a decision rule presented by Pozzi et al. (2013). 

 

1.3. Outlines 
 

In this study, we discussed the model in two-stage dose finding studies for 

binary endpoint with respect to the Single Threshold Design (STD) proposed by 

Tan and Machin (2002). In addition, there has an approximation method to sample 

from the integral of the equation (7) presented by Rubin (1983) and Smith and 

Gelfand (1992) in section 2.2.3. Furthermore, Bayesian two-stage design in dose 

finding studies in phaseⅡ  clinical trials was presented with the predictive 

probability as a decision rule. The proposed method is provided in chapter 3. To 

figure out the MED, simulation studies with the Bayesian Model Averaging 

method are presented in section 4.1. Furthermore, identifying the MED via the 

simulation studies of eight different models is provided in chapter4. Finally, there 

is the conclusion and discussion in chapter 5. 

 



 

16 
 

2. Background 

 

On the average, major considerations and plans with dose finding studies 

should be started with the non-clinical development stage. With the clinical 

development plan over the entire phase, diverse clinical trial studies are designed 

and carried out for several decades. This clinical development study is updated 

over time based on newly available information. Specially, estimation of dose-

response relationship might be one of the very important issues in the clinical 

development study. Method to find an appropriate dose finding is needed enough 

information such as related data and plentiful and diverse expert opinions and 

experiences with respect to across all phases of clinical trials.  

The crucial stage for finding a proper dose level should be around phaseⅡ. 

There are two parts in phaseⅡ clinical trials. One is phaseⅡa called Proof-of-

Concept (PoC) and another is phaseⅡb. Relied on information collected from the 

results of phaseⅠclinical studies, many clinical trials in phaseⅡa should be 

planned and carried out Proof-of-Concept (PoC), dose finding studies. A 

commonly used Proof-of-Concept study typically has two parallel treatment 

groups such as a placebo group and test treatment group using high dose very 

close to MTD or the MTD itself. Dose finding studies usually include a placebo 

group, plus a few doses of test drug–e.g., low dose, several intermediate doses, 

and high dose. Commonly, these kinds of studies have parallel group with fixed 

doses in traditional approach. The main objective of the dose finding studies is to 

estimate the dos-response relationships for efficacy and safety.  

The MED is often defined as the lowest dose with mean response significantly 

different from a placebo, which means that the mean effect adds the clinically 



 

17 
 

important minimum difference (ICH E4 Guideline, 1994). As mentioned in section 

1, the primary objective of phaseⅡ clinical trials is often to find the MED which is 

statistically significantly superior to a placebo and produces a clinically relevant 

effect (Ruberg, 1989 and ICH E4, 1994). As mentioned in section 1.2, we discuss 

two-stage dose finding design to identify the MED with respect to binary outcomes 

in Bayesian perspective in phaseⅡ clinical trials. In making decision of the MED 

in dose finding studies, we rely on the Bayesian predictive probability of the 

posterior distribution following to the pre-specified efficacy and exclusion 

criterion.  

 

2.1. Models in two-stage dose finding studies 
 

2.1.1. Notations and Assumption 

 
We assume that J dose-response relationships are increasing as follows; 

 

 𝑑1 <  𝑑2 <  ⋯ < 𝑑𝐽, 

 

where 𝑑1 is a placebo, 𝑑2, ⋯ , 𝑑𝐽−1 are the intermediate doses to be the MED and 

𝑑𝐽 is the highest dose. We make notation that the structure of the data such as the 

current data Y and the future data 𝑌∗ with each dose level is presented by Table 

1. We notify that 𝑌𝑖𝑗  and 𝑑𝑖𝑗 (i = 1, ⋯ 𝑛𝑗, 𝑗 = 1, ⋯ , 𝐽) are the response and the 

dose level for the ith patient at the jth dose level after finishing a treatment. The 

term of 𝒀𝒋 is the response in current data and the term of 𝒀𝒋
∗ is the response in 

future data about jth dose level 
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Table 1. Data Structure According to Dose Level 

Dose Level Current Data (Y) Future Data (𝑌∗) 

1 𝑌11  ⋯ 𝑌𝑛11 𝑌11
∗  ⋯ 𝑌𝑚11

∗  

2 𝑌12  ⋯ 𝑌𝑛22 𝑌12
∗  ⋯ 𝑌𝑚22

∗  

⋮ ⋮ ⋮ 

k 𝑌1k  ⋯ 𝑌𝑛k𝑘 𝑌1k
∗  ⋯ 𝑌𝑚k𝑘

∗  

⋮ ⋮ ⋮ 

J 𝑌1J  ⋯ 𝑌𝑛𝐽𝐽 𝑌1J
∗  ⋯ 𝑌𝑚𝐽𝐽

∗  

 

The term of 𝜃𝑗 = 𝐸[𝑌𝑖𝑗] , i = 1, ⋯ 𝑛𝑗, 𝑗 = 1, ⋯ , 𝐽 , is the mean effect of jth  dose 

levels and 𝛉 is the meaning of the parameter vector. Furthermore, according to 

the assumption of the mean effect in dose groups proposed by Pozzi et al.(2013), 

we assume that the relationship of the mean effects corresponding to each dose 

level is given by 

 

𝜃1 ≥  𝜃2  ≥  ⋯ ≥ 𝜃𝐽.          (1) 

 

The equation (1) indicates that the probability of detection for disease is decreased 

by the dose with increasing the mean effect of the dose group after administering 

drug. In this study, we have taken account of two-stage dose finding studies to 

identify the MED in phaseⅡ clinical trials in Bayesian perspective. The decision 

which dose could be the MED was based on the predictive probability (PP) to 

compare with the pre-specified clinical threshold (t) that is clinically relevant 

value obtaining from diverse clinical opinions and experiences of the medical 
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experts. There is the brief design flow of the study in Figure 1. The terms of n, m 

and N are the sample sizes at the current data, the future data and the entire data, 

respectively.  

 

 

Figure 1. Flowchart of Bayesian Two-Stage Dose Finding Study in phaseⅡ 
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2.2. Bayesian two-stage design in dose finding studies. 
 

Generally, most of dose finding study is to identify the most suitable dose 

level for medical treatment in clinical trials. As a matter of fact, there are many 

uncountable approaches to find the best fitted dose for patients in Frequentist and 

Bayesian perspectives. Unfortunately, there is no guarantee which dose level is the 

best dose for patients without any toxicity. Therefore, we research Bayesian 

method of dose finding design for binary endpoints in phaseⅡ clinical trials. 

Typically, dose finding studies in phaseⅡa clinical trials use a single dose to assess 

the efficacy of new drugs, with the goal of screening out those that are ineffective. 

After passing the initial efficacy assessment of a new drug in phaseⅡa clinical 

study, subsequently, dose finding studies in phaseⅡ  clinical trials use multi-

doses to compare the efficacy of the new drugs with a placebo. Therefore, the most 

promising dose can be selected for large scale evaluation in late phase studies such 

as phaseⅢ clinical trials. That is, dose finding studies in phaseⅡ  are often 

randomized, multi-doses levels with the goal of identifying the most promising 

dose to send to large-scale phaseⅢ trials for definitive testing. 

Kramar, Potvin and Hill (1996) mentioned multi-stage designs to achieve 

getting better results than single stage design. Basically, they pointed out different 

multi-stage designs in clinical trials focused on and developed in the sample size 

determination. Besides, they mentioned that Gehan (1961) firstly proposed the 

multi-stage design and still being widely used in spite of rarely cited. The two-

stage design allows for prompt rejection of an ineffective treatment or drug at the 

end of the second stage. In addition, they described that Fleming (1982) developed 

multi-stage designs to enable early termination of a trial when treatment or drug 

is either clearly effective or ineffective. In particular, Simon (1989) improved 
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Fleming’s two-stage design by minimizing either the average or the maximum 

number of patients required under the hypothesis of treatment ineffectiveness. 

Furthermore, Chen (1997) developed a three-stage design to apply Simon’s designs. 

As mentioned above, multi-stage designs including two-stage designs have an 

advantage which is flexible to apply dose finding studies.  

Even though multi-stage designs have better statistical properties than single-

stage designs by employing information gained in the interim data, the Frequentist 

analysis of such designs is constrained due to rigid requirement of examining the 

outcome at the pre-specified sample size at each pre-determined stage. This lack 

of flexibility exposes a fundamental limitation of all such Frequentist-based 

methods. Besides, sometimes most researchers can experience such a situation that 

there is disparity between the proposed design and sampling plan. Therefore, 

some of researchers try to account for all statistical inference through adjustment 

method mentioned by Green and Dalberg (1992). Particularly, we are interested in 

getting flexibility to make decision which dose could be the MED. This kind of 

reason supports the need for more flexible designs. 

On the other hand, Bayesian perspective provides a different approach to do 

designing and monitoring clinical trials by calculating of the posterior probability 

of diverse events given data. In particular, Bayesian perspective has a special merit 

in clinical conduct and impart the ability to examine interim data, update the 

posterior probability of interesting parameters and make relevant predictions and 

sensible decisions. In general, there are three kinds of major testing methods such 

as decision making, predictive probability and posterior probability in Bayesian 

perspective. But, in this study, we mainly refer to the predictive probability in 

section 2.2.1 as we use the predictive probability as a decision rule to make decision 

in Bayesian approach. 
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2.2.1. The Predictive Probability 

 

Generally, based on the interim data, the predictive probability is gotten by 

calculating the probability of a positive calculation to reject the null hypothesis or 

alternative hypothesis that the trial should be conducted to the maximum planned 

sample size (Lee et al., 2008). The decision to continue or to stop the trial can be 

made according to the strength of this predictive probability. In particular, given 

the current data, we calculate the predictive probability for future data in dose 

finding studies in Bayesian perspective. For instance, according to Pozzi et 

al.(2013), the Bayesian predictive probability as a decision rule was calculated for 

over-dispersed count data to identify the MED in phaseⅡ clinical trials. In 

addition, Pozzi et al.(2013) mentioned that how we can define the predictive 

probability of the posterior distribution in Bayesian perspective. To begin with, 

they assumed that the response 𝑌𝑖𝑗  for ith  patient at jth  dose level, is 

distributed as follows; 

 

𝑌𝑖𝑗  ~ 𝑝𝑜𝑖𝑠𝑠𝑠𝑜𝑛(𝜃𝑗). 

 

The likelihood function of posterior distribution of the response 𝑌𝑖𝑗  follows a 

gamma distribution. That is, by imposing conjugate distribution of the gamma 

prior distribution and poisson likelihood function, they showed that the posterior 

distribution of the response is given by, 

 

𝜃𝑗|𝑌 ~ 𝐺𝑎𝑚𝑚𝑎(𝛼𝑗 , 𝛽), 
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where they assumed that the scale parameter β is identical across dose groups to 

reach identifiability. Thus, the response in future patients, 𝑌𝑖𝑗
∗ , follows a negative-

binomial distribution; 

 

𝑌𝑖𝑗
∗  ~ 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 − 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 𝑟, 𝜃𝑗), 

 

where r is the number of failure until the experiment is stopped. According to 

Pozzi et al. (2013) description, a general definition of the predictive probability of 

the response for “Success” as follows; 

 

PP = P{"Success"|Y} = P{𝑌∗ ∈ 𝑌𝑠|𝑌} = ∫ 𝑝(𝑌∗|𝑌)𝑑𝑌∗            (2)
𝑌𝑆

  

 

for some success region 𝑌𝑆. To make definition about which is the meaning of the 

predictive probability after doing treatment in more detail, they firstly made the 

term of “Success” can be defined as follows: 

 

{"Success"} = 𝑌𝑆 = {𝑌∗: 𝑃{𝜃 ∈ Θ𝐸|𝑌, 𝑌∗} > 𝑐}, 

 

for some efficacy region Θ𝐸 and some threshold c. Then, they have the predictive 

quantity (2) becomes 

 

PP = P{"Success"|Y} = ∫ 𝑝(𝑌∗|𝑌)𝑑𝑌∗ = ∫ 𝐼({𝑌∗: 𝑃{𝜃 ∈ Θ𝐸|𝑌, 𝑌∗} > 𝑐}𝑝(𝑌∗|𝑌)𝑑𝑌∗

𝑌𝑆

 

 
The case of the intermediate dose levels, j ∈ {2, ⋯ , J − 1}, we make decision which 

dose will be the MED among the intermediate dose levels in phaseⅡb clinical trials. 



 

24 
 

Using the exclusion and efficacy criterions introduced by Pozzi et al. (2013) when 

we assume that the dose-response relationship is increasing, we redefine the 

exclusions and efficacy criterions as follows; 

 

Exclusion Criterion  

 

P {
𝜃𝑗

𝜃1
≥ 𝜉1| 𝑌, 𝑌∗} ≥ 50%,                                                                    (3) 

 

Efficacy Criterion  

 

(ⅰ) P {
𝜃𝑗

𝜃1
< 1|𝑌, 𝑌∗} ≥ 95%                                                              (4) 

(ⅱ) max {P{
𝜃𝑗

𝜃1
≤ 𝜉2|𝑌, 𝑌∗}, P{

𝜃𝑗

𝜃𝐽
≤ 𝜉3|𝑌, 𝑌∗}}  ≥ 50%             (5) 

 

where 𝜉1, 𝜉2 and 𝜉3 (0 < 𝜉1,  𝜉2, 𝜉3 < 1) are determined by clinical experiences 

and expert opinions given data. The exclusion criterion(3) is the meaning of the 

efficacy at the dose level j is not better than placebo to a clinically extent. In the 

efficacy criterion(4), we require the dose to be superior to dose 1 with very high 

probability. In addition, the meaning of the equation(5) is necessary for the dose 

to be either at least 𝜉2 better than or at most 𝜉3 worse than dose J.  
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2.2.2. Bayesian Model Averaging to Monotone Dose Finding Model 

 

As mentioned in section 2.1.1, the equation (1) is assumption for a single 

model. However, we have seen that a major goal of the model selection is to choose 

a single model that is considered the best one among all candidate models we 

expected. If we want to choose a single model as the best model, all subsequent 

decisions are made well under the chosen model without any problem. But, we 

often meet with uncertainty about selected an unsuitable single model. The model 

uncertainty leads to over-estimation or under-estimation about our inferences and 

decisions that are much risky than we expected. Therefore, in this study, we use 

the Bayesian Model Averaging method that is averaging different competing 

models. Hoeting, Madigan, Rafftery and Volinsky (1999) mentioned that the 

Bayesian Model Averaging gives us a coherent mechanism for accounting for this 

model uncertainty. Furthermore, they mentioned that the definition of the 

Bayesian Model Averaging to describe the uncertainty in model selection for 

accounting predictive performance is following to 

 

P(event|data) = ∑ 𝑃(𝑒𝑣𝑒𝑛𝑡|𝑀𝐾 , 𝑑𝑎𝑡𝑎)𝑃(𝑀𝐾|𝑑𝑎𝑡𝑎)

𝐾

𝑘=1

,           (6) 

 

where models 𝑀𝐾 ( k = 1,2, ⋯ , K)  are considered. That is, the meaning of the 

equation (6) is an average of the posterior distributions under all different models 

considered which are weighted by the probability about their posterior models, 

where 𝑀1, ⋯ , 𝑀𝐾  are the models. According to Congdon (2014), the Bayesian 

Model Averaging may be based on MCMC samples from models sampled in 

parallel. For the models  (𝑀1, ⋯ , 𝑀𝐾) , we may obtain model weights at each 
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iteration, and estimates of the posterior probabilities for each model, or of model 

averaged parameters by averaging over samples. The posterior probability for 

model 𝑀𝐾 is following to  

 

P(𝑀𝐾|𝑑𝑎𝑡𝑎) =
𝑃(𝑑𝑎𝑡𝑎|𝑀𝐾)𝑝(𝑀𝐾)

∑ 𝑃(𝑑𝑎𝑡𝑎|𝑀𝑙) 𝑃(𝑀𝑙)𝐾
𝑙=1

 

 

where P(data|𝑀𝑘) = ∫ 𝑃(𝑑𝑎𝑡𝑎|𝜃𝑘 , 𝑀𝑘) 𝑃(𝜃𝑘|𝑀𝑘)𝑑𝜃𝑘  which is the marginal 

likelihood of model 𝑀𝐾, 𝜃𝑘 is the vector of parameters of model 𝑀𝐾. P(𝜃𝑘|𝑀𝐾) 

is a prior density of 𝜃𝑘 under model 𝑀𝐾  and P(data|𝜃𝑘, 𝑀𝐾) is the likelihood 

and P(𝑀𝐾) is the prior probability that 𝑀𝐾 is the true model.  

Furthermore, Madigan and Raftery (1993) made an explanation that 

averaging all of the models provides better averaging of the predictive ability than 

using any single model,𝑀𝐾, conditional on M. Therefore, we adopt the concept of 

the Bayesian Model Averaging in order to reduce model uncertainty while 

identifying the MED in this study. When making inference an appropriate model, 

they adopted the Bayesian Model Averaging which is represented by a different 

combination to decrease the model uncertainty. With adopting the Bayesian Model 

Averaging, it can be fully specified as follows, for patients, i = 1, ⋯ , 𝑛𝑗 , dose 

groups, j = 1, ⋯ , J and models k = 1, ⋯ , K. 

Next, by the exclusion and efficacy criterions explained in section 2.2.1, we 

can define that the jth predictive probability given each model, 𝑀𝐾, is given by  

   

𝑃𝑃𝑗
∗ = 𝑃 {𝑃 {

𝜃𝑗

𝜃1
< 1| 𝑌𝑗 , 𝑌𝑗

∗ 𝑀𝐾} > 95%} ∩     

{max {𝑃{
𝜃𝑗

𝜃1
≤ 𝜉2|𝑌𝑗 , 𝑌𝑗

∗, 𝑀𝐾} , P {
𝜃𝑗

𝜃𝐽
≤ 𝜉3|𝑌𝑗, 𝑌𝑗

∗, 𝑀𝐾}} > 50%}|𝑌},         (7)                                                                                                                                                                                                                       
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which is an appropriate to a formal representation of the efficacy criterion. Thus, 

we can choose the dose as the MED if the jth 𝑃𝑃𝑗
∗ ≥ 𝑡(pre-specified threshold). In 

order to explain the predictive probability of the posterior distribution, we 

approximate 𝑃𝑃𝑗
∗  given the different models which are based on the general 

framework of the Sampling-Importance Resampling algorithm. In particular, we 

provide the detail information about the application of the Sampling-Importance 

Resampling to dose finding studies in section 3.3. 

 

2.2.3. Application of Predictive Probability to Dose Finding 

 
Usually, dose finding studies have been included a placebo or control group, 

a few doses of the test drug in phaseⅡb clinical trials. Naitee (2006) referred to an 

ideal dose finding study that should incorporate a wide range of doses from low 

to high doses. For instance, Pozzi et al. (2013) assumed that five dose levels such 

as a placebo, three intermediate doses and the highest dose. In particular, for three 

intermediate dose levels, j ∈ {2,3,4}, they made decision which dose is the MED in 

phaseⅡb clinical trials. Using the exclusion and efficacy criterions presented in 

section 2.2.1, they determined the clinical threshold values of 𝜉1 , 𝜉2  and 𝜉3 

according to the diverse opinions and experiences of clinical experts. In this study, 

we determine that 𝜉1 = 0.7, 𝜉2 = 0.5 and 𝜉3 = 1.2 by utilizing the approach of 

Pozzi et al. (2013). However, those kinds of clinical thresholds may be changed by 

the purpose and characteristics of each clinical study. In particular, in order to 

make decision which dose could be the MED, we need to obtain samples from the 

posterior distribution. Unfortunately, as Dani (2006) mentioned in his study, it is 
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very complicated to directly sample from the posterior distribution for the vast 

majority of problems of practical relevance.  
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3. Proposed methods 

 

3.1. Model Setting and Assumptions 
 

We propose the Bayesian two-stage model under the monotone constraint of 

the mean effects between dose groups to identify the MED in dose finding studies 

for binary outcome in phaseⅡ  clinical trials. In particular, we use the semi-

parametric model due to the monotonicity between then mean effects of dose 

groups presented by Pozzi et al. (2013). We start with what is the model we used 

and which distribution follows we used. To reduce the model uncertainty, we 

adopt the Bayesian Model Averaging method using ten different model 

combinations presented by Pozzi et al. (2013). In addition, we present the 

distribution and process of each stage in more detail as follows. As mentioned 

above, we assume five dose levels including a placebo, three intermediate doses 

and the highest dose for binary endpoint. First, we let 𝛉  be the unknown 

probability parameters and 𝑌𝑖𝑗  (𝑖 = 1, ⋯ , 𝑛𝑗, 𝑗 = 1, ⋯ ,5) be the binary response 

variables that could be success or failure.  

In this study, our proposed method has been based on the general framework 

of the distribution that we use a conjugate prior distribution 𝜃𝑗~𝑏𝑒𝑡𝑎(𝛼𝑗 , 𝛽𝑗) for 

binary endpoint in Bayesian perspective. When we have 𝑌1𝑗, ⋯ , 𝑌𝑛𝑗𝑗|𝜃𝑗~Ber(𝜃𝑗), 

we can get  

 

𝑌.𝑗|𝜃𝑗 ~ bin(𝑛𝑗, 𝜃𝑗) 

 

for 𝑌.𝑗 = ∑ 𝑌𝑖𝑗
𝑛𝑗

𝑖=1
 and the likelihood function of posterior distribution of the 

success rate follows a beta distribution. That is, by imposing conjugate distribution 
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of the beta prior and multiplying the conjugate beta prior 𝜃𝑗~𝑏𝑒𝑡𝑎(𝛼𝑗, 𝛽𝑗) and 

binomial likelihood, 𝑌.𝑗~bin(𝑛𝑗, 𝜃𝑗), we obtain the posterior distribution of the 

success rate in first stage as follows; 

 

𝜃𝑗|𝑌𝑗 ~ 𝑏𝑒𝑡𝑎(𝛼𝑗 + 𝑌𝑗 , 𝛽𝑗 + 𝑛𝑗 − 𝑌𝑗). 

 

Thus, in second stage, the number of the success in the potential future patients 

m = 𝑁 − 𝑛, 𝑌.𝑗
∗ is distributed as a beta-binomial distribution; 

 

𝑌.𝑗
∗ ~ 𝑏𝑒𝑡𝑎 − 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚, 𝛼𝑗 + 𝑌.𝑗, 𝛽𝑗 + 𝑛𝑗 − 𝑌.𝑗). 

 

In particular, in order to explain the posterior distribution, we should consider 

what the shape of the prior distribution is in more detail. As mentioned above, we 

use the conjugate beta prior distribution 𝜃𝑗~𝑏𝑒𝑡𝑎(𝛼𝑗, 𝛽𝑗) for binary outcome in 

Bayesian perspective. For convenience, we want to fix another parameter 𝛽𝑗 on 

β . Thus, we explain re-parameterization method about the parameters in 

Appendix. 

 

3.2. Monotone Dose Finding Model in Bayesian Perspective 
 

To obtain the predictive probability of the equation (7) in section 2.2.2, we explain 

the method presented by to Pozzi et al. (2013). In particular, in this study, we adopt 

the ten different models presented by Pozzi et al. (2013) as follows;  
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𝑀1 ∶  𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4 ≥ 𝜃5 𝑀2 ∶  𝜃1 = 𝜃2 ≥ 𝜃3 ≥ 𝜃4 ≥ 𝜃5  

𝑀3 ∶  𝜃1 ≥ 𝜃2 ≥ 𝜃3 ≥ 𝜃4 = 𝜃5 𝑀4 ∶  𝜃1 ≥ 𝜃2 ≥ 𝜃3 = 𝜃4 = 𝜃5  

𝑀5 ∶  𝜃1 = 𝜃2 = 𝜃3 ≥ 𝜃4 ≥ 𝜃5 𝑀6 ∶  𝜃1 = 𝜃2 ≥ 𝜃3 ≥ 𝜃4 = 𝜃5 (8) 

𝑀7 ∶  𝜃1 = 𝜃2 = 𝜃3 = 𝜃4 ≥ 𝜃5 𝑀8 ∶  𝜃1 = 𝜃2 ≥ 𝜃3 = 𝜃4 = 𝜃5  

𝑀9 ∶  𝜃1 = 𝜃2 = 𝜃3 ≥ 𝜃4 = 𝜃5 𝑀10 ∶  𝜃1 ≥ 𝜃2 = 𝜃3 = 𝜃4 = 𝜃5.  

 

Ten different models of the equation (8) are averaged with the Bayesian Model 

Averaging in Bayesian perspective. 

To model the monotonic constraint under mth  model and to make an 

explanation of the distribution of the interesting parameter vector 𝜶 =

(𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5) about five dose levels, we adopt the concept of the jump variable 

such as 𝛿𝑗,𝑘 = log(𝛼𝑗) − log (𝛼𝑗+1) and we put a truncated normal1) prior on  

 

𝛿𝑠𝑢𝑚 = ∑ 𝛿𝑗,𝑘 = log(𝛼1) − log(𝛼5) ~𝑇𝑁(𝜇𝑠𝑢𝑚, 𝛿𝑠𝑢𝑚)𝑗−1 , 

 

where K  is ten different model presented in the equation (8), k = 1, ⋯ , 10 . 

Besides, if we assume the monotonic dose response relationship about five dose 

levels, there is the relationship between five dose groups after taking logarithm of 

the interesting parameter about five dose levels in ten different models of the 

equation (8). 

 

 

1) We use a truncated normal distribution for a particular parameter, so that we can restrict the range of 

parameter regions but have some belief about its mean and variance (Ando, 2010). The prior is chosen to 

maximize the average information in the data density relative to that in the prior. 
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where 𝛼𝑗 > 𝛼𝑗+1  to make definition 𝛿𝑗,𝑘 = log(𝛼𝑗) − log(𝛼𝑗+1) > 0 . After 

completing the jump variables about each model in equation (5) of section 2.2.2, 

we make a stick prior about each model. Then we made stick-breaking 

construction about the stick prior. The stick-breaking construction brings about 

semi-parametric model due to monotonic constraint of dose response relationship. 

The stick priors are made by corresponding to the relationship of the model and 

their order statistics that 𝑠𝑗,𝑘 ~ 𝑈(0,1)  j = 1,2,3  and k = 1, ⋯ ,10 . Finally, we 

summarize the different configurations of the 𝛿′𝑠 in  jump × model matrix as 

follows; 

 

 

 

Ishwaran and James (2001) remarked that the overall treatment effect 𝛿𝑠𝑢𝑚  is 

partitioned along each column using a “stick-breaking” construction involving 

independent uniform variables. Eventually, after putting a prior on the collection 

of models, the stick-breaking construction allows us to average over all of ten 

different models without any parametric assumption on the dose response curve. 

That is, it is fact that we adopt the Bayesian Model Averaging in the equation (1) 

as a Bayesian semi-parametric model. This model made with the Bayesian Model 

Averaging is used to draw samples from the posterior distribution. 
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3.3. The Sampling-Importance Resampling(SIR) to Dose Finding 
Model 
 

We adopt the Sampling-Importance Resampling algorithm to approximate 

the posterior distribution π(θ|Y) of the parameters θ given the interim data to 

compute the predictive probabilities to be used for making an interim decision. 

First, we let the parameters, θ, be obtained from the prior density p(θ) in the 

interim posterior. That is, we can tell p(θ) = π(θ|Y) .  However, our primary 

concern is to approximate the integrals of equation (8) in section 2.2.3 by averaging 

over many possible future outcomes 𝑌∗ in stage 2.  

To approximate the integrals of the equation (7), we select a posterior sample, 

(𝜽)(1), ⋯ , (𝜽)(𝑟), ⋯ , (𝜽)(𝑁)given the model with the Bayesian Model Averaging. To 

simulate future outcomes 𝑌∗ in stage 2, we draw a pair (𝜽)(𝑙) from this sample, 

and utilize this parameter to simulate one post-interim posterior data set 𝑌𝑗
∗(𝑙)

, 

where j ∈ {2, 3, 4} is the dose to be explored; we also include future placebo and 

the responses of the five doses in this data set. The probability of data set 𝑌𝑗
∗(𝑙)

 

given the pair, (𝜽)(𝑟) , p (𝑌𝑗
∗(𝑙)

| (𝜽)(𝑟))  is computed r = 1, ⋯ , R . We draw the 

samples with the importance ratios or weights as follows; 

 

𝑤𝑟 =
𝑙(𝜃𝑟; 𝑌)

∑ 𝑙(𝜃𝑗; 𝑌)𝑗

 

                                                       =
𝑝 (𝑌𝑗

∗(𝑙)
| (𝜃)(𝑟)) × 𝑝((𝜃)(𝑟))

∑ 𝑝 (𝑌𝑗
∗(𝑙)

| (𝜃)(𝑗)) × 𝑝((𝜃)(𝑗))𝑗

 

                                                      =
𝑝 (𝑌𝑗

∗(𝑙)
| (𝜃)(𝑟))

∑ 𝑝(𝑌𝑗
∗(𝑙)

𝑗 | (𝜃)(𝑗))
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which is the interim posterior sample uniformly distributed with probability 

p((𝛼, 𝛽)(𝑙)) = 1/𝑁,  r = 1, ⋯ , R.  

Next, we should check a sample (𝜽)(𝑟)  to be satisfied with the decision 

criterions such as efficacy criterion presented in section 2.2.1 directly. With 

satisfied the efficacy criterions in sample (𝜽)(𝑟) s, we can approximate the 

equation(7) is following to 

 

P{Success  in dose j|𝑌∗, 𝑀𝑘} 

= ∫ 𝑃{𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑖𝑛 𝑑𝑜𝑠𝑒 𝑗|(𝜽), 𝑌∗, 𝑀𝐾} 𝑃{(𝜽), 𝑌∗, 𝑀𝐾}𝑑(𝜽) 

                           ≈
1

𝑁
∑ 𝐼{(𝜽)(𝑟) 𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑖𝑛 𝑑𝑜𝑠𝑒 𝑗}

𝑁

𝑖=1

× 𝑤𝑘 

                           = 𝑃𝑃𝑗
∗(𝑙)

[𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑖𝑛 𝑑𝑜𝑠𝑒 𝑗]. 

 

We repeat this procedure for l until we can recognize very large number, say R. 

Finally, we can identify the lowest dose d satisfying the efficacy criterions.  

 

𝑃𝑃𝑗
∗(𝑙)

=
1

𝐿
∑ 𝐼𝐿

𝑙=1 { ⋂ {𝑃𝑃𝑗
{𝑙}[𝑆𝑢𝑐𝑐𝑒𝑠𝑠] > c}}{𝑠𝑢𝑐𝑐𝑒𝑠𝑠} . 

 

For convenience, we summarize the algorithm as follows: 
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Step 1: Select dose j; 

Step 2: Sample (𝜽)(1), (𝜽)(2), ⋯ , (𝜽)(𝑟), ⋯ , (𝜽)(𝑁) from the post-interim posterior 

 distribution; 

Step 3: Draw (𝜽)(𝑙) from the sample of the posterior distribution at interim stage  

of the entire sample size N; 

Step 4: Simulate one data set 𝑌𝑗
∗(𝑙)

| (𝜽)(𝑙); 

Step 5: Apply Sampling-Importance Resampling to compute p (𝑌𝑗
∗(𝑙)

| (𝜽)(𝑟)),  

r = 1, ⋯ , R 𝑤𝑟 and 𝑃𝑃𝑗
∗(𝑙)

[𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛] for each criterion success is defined 

upon; 

Step 6: Repeat steps from 3 to 5  

 

3.4. Procedure at Second Stage 
 

As described above, we provide the Bayesian two-stage dose finding method 

to find the MED based on the predictive probability comparing the pre-specified 

threshold (t) for binary outcome in phaseⅡ clinical trials. As we can see figure 

1, which is the entire design flow, we randomize a placebo, three intermediate 

doses, j = {2, 3, 4} and the highest dose at the second stage. In this stage, we make 

a test which dose is the MED under the predictive probability to compare to the 

pre-specified threshold. However, if we do not make decision in the end of the 

study, we should make decision whether to stop for efficacy, or stop for futility 

relied on the opinion of the clinical experts. 
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4. Simulation Study 

 

In this study, fundamental approach of the simulation studies was conducted 

to certify which dose level is the MED in phaseⅡ clinical trials. Therefore, in this 

section, we performed the simulations to evaluate the performance of the 

proposed method under two different scenarios that we can make decision which 

dose level could be the MED using the Bayesian Model Averaging method with 

ten presented models about five dose levels presented by Pozzi et al. (2013).  

In addition, we conducted the simulations to evaluate the performance of the 

presented eight different models, respectively, to check which model is useful to 

find the MED or not useful without using the Bayesian Model Averaging. In 

simulation setting with the Bayesian Model Averaging and eight different models, 

we identify the true dose level before conducting the simulation to find the MED 

about each scenario. After conducting the simulation, we compare the true dose 

with the identified MED we found. As a result, we could check that the method 

we used at each scenario is well to detect the MED of the Bayesian Model 

Averaging and eight different models.  

Before we identify the MED, we find the true dose about each scenario in 

order to check which case of the scenario of the model is well find the MED. For 

example, there is an example case of the scenario how we can find the true dose 

before conducting the simulation under the efficacy criterion presented in section 

2.2.1. There is the Table 2 in the method to find the true dose. 

In order to identify the MED, we make ten scenarios in Table 3. Each scenario 

is distributed in binomial distribution with the probability of the success 𝑝𝑗 called 

the mean effect, 𝜃𝑗 . The scenarios 1 and 2 are used for the Bayesian Model 
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Averaging to find the MED. The scenario 3, 4, 5, 6, 7, 8, 9 and 10 are used for eight 

different models to identify the MED. 

 

Table 2. Method to find the True Dose 

 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 

Binomial Probability 0.5 0.45 0.4 0.28 0.24 

𝜃𝑗

𝜃1
 for success probability 1 0.9 0.8 0.56 0.48 

𝜃𝑗

𝜃5
 for success probability 2.08 1.87 1.67 1.17 1 

Note: The term of 𝜃1 is the mean effect of a placebo, 𝜃𝑗 is the mean effect of the j dose, 

𝜃5 is the mean effect of the highest dose. As we mentioned the efficacy criterions in section 

2.2.2, we can decide the true dose satisfying in which  
𝜃𝑗

𝜃1
 is at least greater than 0.5 and  

𝜃𝑗

𝜃5
 is less than 1.2. 

 

Table 3. Scenarios of the Mean Effect 

 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 

Scenario1 0.5 0.45 0.4 0.28 0.24 

Scenario2 0.45 0.38 0.25 0.22 0.21 

Scenario3 0.5 0.35 0.3 0.26 0.22 

Scenario4 0.51 0.51 0.4 0.29 0.245 

Scenario5 0.55 0.45 0.3 0.255 0.255 

Scenario6 0.45 0.24 0.21 0.21 0.21 

Scenario7 0.5 0.5 0.5 0.26 0.22 

Scenario8 0.58 0.58 0.3 0.26 0.26 

Scenario9 0.45 0.45 0.26 0.19 0.19 

Scenario10 0.45 0.45 0.45 0.24 0.205 

Note: The term of 𝜃1 is the mean effect of a placebo, 𝜃2, 𝜃3, and 𝜃4 are the mean effects 
of the intermediate doses d, 𝜃5 is the mean effect of the highest dose. 
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We assume that five dose levels such as a placebo, three intermediate doses 

and the highest dose was used to identify the MED with model. To begin with, we 

generate observations from random variable, 𝑌𝑖𝑗  ~ 𝑏𝑖𝑛(𝑛𝑗, 𝜃𝑗) , for patients i =

1, ⋯ , 𝑛𝑗 at dose levels, j = 1, ⋯ , 5 through the checking the sufficient condition as 

ten different models in equation (7) presented in section 2.2.2. The observable data 

set is determined by following steps; 

 

Step 1: Generate data set following to binomial random variable in 5 dose levels, 

which is 𝑌𝑖𝑗  ~ 𝑏𝑖𝑛(𝑛𝑗, 𝜃𝑗) for patients i = 1, ⋯ , 𝑛𝑗 at dose levels, j = 1, ⋯ , 5. Each 

value of the probability of the success 𝜃𝑗 is composed in accordance with efficacy 

criterions in section 2.2.1. 

 
Step 2: Using the observable data set in step 1, based on the clinical thresholds, t =

0.3 , t = 0.4  and t = 0.5,  we run MCMC algorithm with the Bayesian Model 

Averaging method that we iterate 10,000 times, burn-in is 1,000 and thin is 60. We 

get that total sample size is 150 in first stage about both in the Bayesian Model 

Averaging of ten models and eight different models. Besides, we do 100 iterations 

about Bayesian Model Averaging of ten models and eight different models to 

identify the MED about each sample. 
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4.1. Simulation Results using the Bayesian Model Averaging 

 

In order to identify the MED with Bayesian Model Averaging, we conducted 

the simulation study of two different scenarios relying on the relationship of the 

mean effect of the dose levels. To check the effect of corresponding to the difference 

of the clinical thresholds, we did simulation when the clinically thresholds were 

t= 0.3, t = 0.4 and t= 0.5 in accordance with each scenario. 

In the table 4, based on the definition of efficacy criterions in section 2.2.2, we 

recognize that the true dose is dose 4 because it is satisfied with that 
𝜃𝑗

𝜃1
 is at least 

greater than 0.5 and 
𝜃𝑗

𝜃5
 is less than 1.2, simultaneously. Therefore, we regard the 

dose 4 as the true dose before finding the MED. After conducting the simulation 

study, we can certify that the dose 4 as the MED is fitted of the true dose when we 

have t = 0.4 and t = 0.5 except for t = 0.3 in scenario 1. In addition, we can 

find that there was an under-estimated tendency in identifying the MED 

In the table 5, based on the definition of efficacy criterions in section 2.2.1, we 

recognize that the true dose is dose 3 because it is satisfied with that 
𝜃𝑗

𝜃1
 is at least 

greater than 0.5 and 
𝜃𝑗

𝜃5
 is less than 1.2, simultaneously. Therefore, we regard the 

dose 3 as the true dose before finding the MED. After conducting the simulation 

study, by the simulation result of scenario2, we certify that the dose 3 is the MED 

that this result is fitted of the true dose when we have t = 0.3, t= 0.4 and t = 0.5. 

In addition, we can find that there was an under-estimated tendency in identifying 

the MED 
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Table 4. Assumption: the true dose is dose 4 based on Scenario 1 (𝜃1 = 0.5, 𝜃2 =

0.45, 𝜃3 = 0.4, 𝜃4 = 0.28, 𝜃5 = 0.24) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.5 4(0.4)  

2 0.45 10(1)  

3 0.4 45(45) ◙ 

4* 0.28 36(36)  

5 0.24 5(0.5)  

0.4 

1 0.5 1(01)  

2 0.45 8(0.8)  

3 0.4 38(38)  

4* 0.28 48(48) ◙ 

5 0.24 5(0.5)  

0.5 

1 0.5 0(0)  

2 0.45 3(0.3)  

3 0.4 36(36)  

4* 0.28 53(53) ◙ 

5 0.24 8(0.8)  

* : true dose; ◙ : MED 

  

 

Figure 2. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3 , 
t = 0.4 and t = 0.5 in Scenario 1 
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Table 5. Assumption: the true dose is dose 3 based on scenario 2 (𝜃1 = 0.45, 𝜃2 =

0.38, 𝜃3 = 0.25, 𝜃4 = 0.22, 𝜃5 = 0.21) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.45 4(0.4)  

2 0.38 17(17)  

3* 0.25 68(68) ◙ 

4 0.22 11(11)  

5 0.21 5(0.5)  

0.4 

1 0.45 0(0)  

2 0.38 11(11)  

3* 0.25 64(64) ◙ 

4 0.22 23(23)  

5 0.21 2(0.2)  

0.5 

1 0.45 0(0)  

2 0.38 11(11)  

3* 0.25 61(61) ◙ 

4 0.22 28(28)  

5 0.21 0(0)  

* : true dose; ◙: MED 

 

 
 

Figure 3. The histogram of the 
posterior distribution of the 
success probability to be fitted with 
efficacy criterion in t = 0.3 , t =

0.4 and t = 0.5 in Scenario 2 
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4.2. Simulation Results in eight different models 

As mentioned in section 4.1, we certify that the simulation of the Bayesian 

Model Averaging is to show accurately identifying to the MED. If so, we are 

interested in which model among ten different models may well fitted to figure 

out the MED. Therefore, in order to check and compare with the simulations 

results which method is to test stably the MED between different models and the 

Bayesian Model Averaging, we conduct the simulation study relying on the eight 

different models presented by Pozzi et al.(2013) and we did simulation when the 

clinically thresholds are t = 0.3, t = 0.4 and t = 0.5 about each scenario. 

In the table 6, according to the definition of efficacy criterion in section 2.2.2, we 

recognize that the true dose is dose 4 because it is satisfied with that 
𝜃𝑗

𝜃1
 is at least 

greater than 0.5 and 
𝜃𝑗

𝜃5
 is less than 1.2, simultaneously. Therefore, we regard the 

dose 4 as the true dose before finding the MED. After conducting the simulation 

study, by the simulation result of scenario 3, we certify that the dose 4 as the MED 

is fitted of the true dose when we have t = 0.3, t = 0.4 and t = 0.5. 

In the table 7, according to efficacy criterions, we recognize that dose 4 

is satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5 and 

𝜃𝑗

𝜃5
 is less than 1.2, 

simultaneously. Therefore, we regard the dose 4 as the true dose before 

finding the MED. After conducting the simulation study, by the simulation 

result of scenario 4, we certify that the dose4 as the MED is fitted of the true 

dose when we have t = 0.3, t = 0.4 and t = 0.5. 
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Table 6. Assumption: the true dose is dose 4 based on scenario 3 (𝜃1 = 0.5, 𝜃2 =

0.35, 𝜃3 = 0.3, 𝜃4 = 0.26, 𝜃5 = 0.22) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.5 0(0)  

2 0.35 2(0.2)  

3 0.3 25(25)  

4* 0.26 70(70) ◙ 

5 0.22 3(0.3)  

0.4 

1 0.5 1(0.1)  

2 0.35 1(0.1)  

3 0.3 17(17)  

4* 0.26 80(80) ◙ 

5 0.22 1(0.1)  

0.5 

1 0.5 0(0)  

2 0.35 0(0)  

3 0.3 32(32)  

4* 0.26 67(67) ◙ 

5 0.22 1(0.1)  

* : true dose; ◙: MED 

 

 
  

Figure 4. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3, 
t = 0.4 and t = 0.5 in Scenario 3 
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Table 7. Assumption: the true dose is dose 4 based on scenario 4 (𝜃1 = 0.51, 𝜃2 =

0.51, 𝜃3 = 0.4, 𝜃4 = 0.29, 𝜃5 = 0.245) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.51 2(0.2)  

2 0.51 0(0)  

3 0.4 11(11)  

4* 0.29 76(76) ◙ 

5 0.245 11(11)  

0.4 

1 0.51 1(0.1))  

2 0.51 0(0)  

3 0.4 7(0.7)  

4* 0.29 81(81) ◙ 

5 0.245 11(11)  

0.5 

1 0.51 0(0)  

2 0.51 0(0)  

3 0.4 2(0.2)  

4* 0.29 87(87) ◙ 

5 0.245 11(11)  

* : true dose; ◙: MED 

 

 

Figure 5. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3 , 
t = 0.4 and t = 0.5 in Scenario 4. 
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In the table 8, according to efficacy criterions, we recognize that dose3 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose 3 as the true dose before finding the MED. After 

conducting the simulation study, by the simulation result of scenario 5, we certify 

that the dose3 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4 

and t = 0.5. 

In the table 9, according to efficacy criterions, we recognize that dose2 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose2 as the true dose before finding the MED. After 

conducting the simulation study, by the simulation result of scenario 6, we certify 

that the dose2 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4 

and t = 0.5.  
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Table 8. Assumption: the true dose is dose 3 based on scenario 5 (𝜃1 = 0.55, 𝜃2 =

0.45, 𝜃3 = 0.3, 𝜃4 = 0.255, 𝜃5 = 0.255) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.55 2(0.2)  

2 0.45 4(0.4)  

3* 0.3 76(76) ◙ 

4 0.255 18(18)  

5 0.255 0(0)  

0.4 

1 0.55 1(01)  

2 0.45 0(0)  

3* 0.3 83(83) ◙ 

4 0.255 16(16)  

5 0.255 0(0)  

0.5 

1 0.55 0(0)  

2 0.45 0(0)  

3* 0.3 90(90) ◙ 

4 0.255 10(10)  

5 0.255 0(0)  

* : true dose; ◙: MED 

  

 

Figure 6. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3, 
t = 0.4, t= 0.5 in Scenario 5 
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Table 9. Assumption: the true dose is dose 2 based on scenario 6 (𝜃1 = 0.45, 𝜃2 =

0.24, 𝜃3 = 0.21 𝜃4 = 0.21, 𝜃5 = 0.21) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.45 1(0.1)  

2* 0.24 65(65) ◙ 

3 0.21 34(34)  

4 0.21 0(0)  

5 0.21 0(0)  

0.4 

1 0.45 0(0)  

2* 0.24 58(58) ◙ 

3 0.21 42(42)  

4 0.21 0(0)  

5 0.21 0(0)  

0.5 

1 0.45 0(0)  

2* 0.24 71(71) ◙ 

3 0.21 29(29)  

4 0.21 0(0)  

5 0.21 0(0)  

* : true dose; ◙: MED 

 

 

Figure 7. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3 , 
t= 0.4, t = 0.5 in Scenario 6 
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In the table 10, according to efficacy criterions, we recognize that dose4 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose 4 as the true dose before finding the MED. After 

conducting the simulation study, , by the simulation result of scenario 7, we certify 

that the dose4 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4 

and t = 0.5.   

   In the table 11, according to efficacy criterions, we recognize that dose3 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose 3 as the true dose before finding the MED. However, 

after conducting the simulation study, by the simulation result of scenario 8, we 

certify that the dose4 as the MED is fitted of the true dose in t = 0.3 except for t =

0.4  and t = 0.5 . In addition, we can find that there was an over-estimated 

tendency in identifying the MED 
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Table 10. Assumption: the true dose is dose 4 based on scenario 7 (𝜃1 = 0.5, 𝜃2 =
0.5, 𝜃3 = 0.5 𝜃4 = 0.26, 𝜃5 = 0.22) 

Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.5 3(03)  

2 0.5 0(0)  

3 0.5 0(0)  

4* 0.26 55(55) ◙ 

5 0.22 42(42)  

0.4 

1 0.5 2(0.2)  

2 0.5 0(0)  

3 0.5 0(0)  

4* 0.26 50(50) ◙ 

5 0.22 48(48)  

0.5 

1 0.5 0(0)  

2 0.5 0(0)  

3 0.5 0(0)  

4* 0.26 58(58) ◙ 

5 0.22 42(42)  

* : true dose; ◙: MED 

 

 

Figure 8. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3 , 
t= 0.4, t = 0.5 in Scenario 7 
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Table 11. Assumption: the true dose is dose 3 based on scenario 8 (𝜃1 = 0.58, 𝜃2 =

0.58, 𝜃3 = 0.3 𝜃4 = 0.26, 𝜃5 = 0.26) 
Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.58 1(0.1)  

2 0.58 0(0)  

3* 0.3 59(59) ◙ 

4 0.26 40(40)  

5 0.26 0(0)  

0.4 

1 0.58 0(0)  

2 0.58 0(0)  

3* 0.3 36(36)  

4 0.26 64(64) ◙ 

5 0.26 0(0)  

0.5 

1 0.58 0(0)  

2 0.58 0(0)  

3* 0.3 49(49)  

4 0.26 51(51) ◙ 

5 0.26 0(0)  

* : true dose; ◙: MED 

 

 

Figure 9. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3, 
t = 0.4, t = 0.5 in Scenario 8 
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In the table 12, according to efficacy criterions, we recognize that dose3 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose 3 as the true dose before finding the MED. After 

conducting the simulation study, by the simulation result of scenario 9, we can 

certify that the dose5 is the MED but there is no fitted dose comparing with true 

dose. As a result, we can’t find the MED in scenario9 because dose5 was not 

considered the MED in advance. 

In the table 13, according to efficacy criterions, we recognize that dose 4 is 

satisfied with that 
𝜃𝑗

𝜃1
 is at least greater than 0.5  and 

𝜃𝑗

𝜃5
 is less than 1.2 . 

Therefore, we regard the dose 4 as the true dose before finding the MED. After 

conducting the simulation study, by the simulation result of scenario 10, we can 

certify that the dose3 is the MED but there is no fitted dose comparing with true 

dose. In addition, we can find that there was an under-estimated tendency in 

identifying the MED 
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Table 12. Assumption: the true dose is dose 3 based on scenario 9(𝜃1 = 0.45, 

𝜃2 = 0.45, 𝜃3 = 0.26 𝜃4 = 0.19, 𝜃5 = 0.19) 

Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.45 16(16)  

2 0.45 0(0)  

3* 0.26 0(0)  

4 0.19 0(0)  

5 0.19 84(84) ◙ 

0.4 

1 0.45 5(0.5)  

2 0.45 0(0)  

3* 0.26 0(0)  

4 0.19 1(0.1)  

5 0.19 94(94) ◙ 

0.5 

1 0.45 1(0.1)  

2 0.45 0(0)  

3* 0.26 0(0)  

4 0.19 0(0)  

5 0.19 99(99) ◙ 

* : true dose; ◙: MED 

 

 

Figure 10. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3, 
t = 0.4, t = 0.5 in Scenario 9 
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Table 13. Assumption: the true dose is dose 4 based on scenario 10 (𝜃1 = 0.45, 𝜃2 =

0.45, 𝜃3 = 0.45 𝜃4 = 0.24, 𝜃5 = 0.205) 

Threshold (t) Dose Mean Effect Frequency (%) MED 

0.3 

1 0.45 17(17)  

2 0.45 0(0)  

3 0.45 83(83) ◙ 

4* 0.24 0(0)  

5 0.205 0(0)  

0.4 

1 0.45 5(0.5)  

2 0.45 0(0)  

3 0.45 95(95) ◙ 

4* 0.24 0(0)  

5 0.205 0(0)  

0.5 

1 0.45 1(0.1)  

2 0.45 0(0)  

3 0.45 99(99) ◙ 

4* 0.24 0(0)  

5 0.205 0(0)  

* : true dose; ◙: MED 

 

Figure 10. The histogram of the 
posterior distribution of the 
success probability to be fitted 
with efficacy criterion in t = 0.3, 
t = 0.4, t = 0.5 in Scenario 10 
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5. Conclusion and Discussion 
 

Pozzi et al. (2013) suggested that the Bayesian adaptive two-stage dose finding 

design to identify the MED in phaseⅡ clinical trials based on the predictive 

probability when we have over-dispersed count endpoints. Our proposed method 

was the dose finding method to find the MED for binary endpoints. Unfortunately, 

there were a few cases of adoption into the clinical trials even though we are 

interested in binary outcomes such as response or no response to treatment 

intervention. In particular, our proposed method was the semi-parametric model 

with monotonic constraint of the mean effect of the five dose groups. In addition, 

our proposed method adopted the Bayesian Model Averaging which is averaging 

presented ten different models to decrease the model uncertainty. Furthermore, 

pre-specified efficacy criterions were included into our proposed method to make 

decision which dose level is the MED.  

To accomplish our goal in this study, the prior distributions for satisfied with 

efficacy criterions and their predictive distributions were defined with the efficacy 

criterions mentioned by Pozzi et al. (2013). We met a challenge to overcome draw 

samples from the posterior distribution. However, this problem had a variety of 

difficulties to obtain sample directly from the posterior distribution. Therefore, we 

approximate the integral of the posterior distribution through the Sampling-

Importance Resampling algorithm proposed by Rubin (1983) and presented by 

Smith and Gelfand (1992).  

Two different simulation scenarios were used to test our proposed model in 

adopting the Bayesian Model Averaging. For two simulation scenarios, the clinical 

threshold was set to t = 0.3 , t = 0.4  and t = 0.5 , respectively. As well, eight 

different simulation scenarios were used to test our proposed model in each 
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different model of the mean effect of the dose groups, respectively. The likelihood 

data sets were sampled from the binomial random distribution for each case.  

After checking the model relevancy to identify the MED, the cases of the 

adoption of the Bayesian Model Averaging were well accurately suited to identify 

the MED coincided with the true dose. On the contrary, the case of each different 

model was not stable to identify the MED coincided with the true dose.  

Unfortunately, there was limitation to show the appropriateness of our 

proposed model. One was that we did not adopt in diverse real data to test our 

proposed model. Another was to find the most suitable scenario in generating the 

binomial random variables in order to be satisfied with the efficacy criterions.  

In the future study, it will be more useful approach if we extend the sample 

size determination to identify the MED to apply in phaseⅡ clinical trials.  
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Appendix 
 
 

For convenience, in order to handling only one parameter 𝜶𝒋 with fixing the 

parameter, 𝛽𝑗 , we use the re-parameterization method. For binary response 

variable, 𝑌𝑖𝑗  given the probability of the success 𝑝𝑖𝑗 ,  is binomial distributed: 

𝑌𝑖𝑗~𝑏𝑖𝑛(𝑛𝑗, 𝑝𝑗) . In addition, we regard that hyper-parameter of the binomial 

distribution, 𝑝𝑗 , is beta distributed since we employ a conjugate beta prior 

distribution of the binomial distribution, 𝑝𝑗~𝑏𝑒𝑡𝑎(𝛼𝑗, 𝛽𝑗). Thus, because of the 

mean of beta distribution, 𝜃𝑗 =
𝛼𝑗

𝛼𝑗+𝛽𝑗
, we use 𝜶𝒋 ∝

𝜃𝑗

1−𝜃𝑗
 with increasing 𝜃𝑗. Finally, 

we can find that 
𝜃𝑗

1−𝜃𝑗
 is monotonically increasing. That is, with increasing 𝜃𝑗, 𝜶𝒋 

is monotonically increasing. We have the 𝜶𝑗′𝑠 are proportional to the mean effect 

𝜃𝑗 . For the beta distribution with two parameters 𝛼𝑗  and 𝛽𝑗 , we should make 

simple expression which can account for shape parameter 𝛼𝑗 with fixing 𝛽𝑗 on 

β. Without logical description, we could not explain the model with ease. Therefore, 

we use the re-parameterization concept to describe only one parameter among 

𝜶𝒋 = (𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5)  of the beta prior distribution. We know that the beta 

distribution is given by 

 

π(𝑝𝑗;  𝛼𝑗, 𝛽𝑗) =
Γ(𝛼𝑗+𝛽𝑗)

Γ(𝛼𝑗)Γ(𝛽𝑗)
𝑝

𝑗

𝛼𝑗−1
(1 − 𝑝𝑗)𝛽𝑗−1,   0 < 𝑝𝑗 < 1, 

 

where 𝛼𝑗 > 0, 𝛽𝑗 > 0 and Γ(∙) is the gamma function. The mean and variance of 

𝑝𝑗 are, respectively, 
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E(𝑝𝑗) =
𝛼𝑗

𝛼𝑗 + 𝛽𝑗
 

var(𝑝𝑗) =
𝛼𝑗𝛽𝑗

(𝛼𝑗+𝛽𝑗)
2

(𝛼𝑗+𝛽𝑗+1)
. 

 

To make re-parameterization of beta density, we let the mean effect 𝜃𝑗 =
𝛼𝑗

𝛼𝑗+𝛽𝑗
 

and precision parameter be 𝜙𝑗 = 𝛼𝑗 + 𝛽𝑗. Because 𝛼𝑗 = 𝜇𝑗𝜙𝑗 and 𝛽𝑗 = (1 − 𝜃𝑗)𝜙𝑗, 

we can re-write as follows;  

 

E(𝑝𝑗) = 𝜃𝑗 

var(𝑝𝑗) =
𝑉(𝜃𝑗)

1+𝜙𝑗
, 

 

where V(𝜃𝑗) = 𝜃𝑗(1 − 𝜃𝑗). Therefore, we can get a new beta density as follows; 

 

f(𝑝𝑗;  𝜃, 𝜙) =
Γ(𝜙𝑗)

Γ(𝜃𝑗𝜙𝑗)Γ((1−𝜃𝑗)𝜙𝑗)
𝑝

𝑗

𝜃𝑗𝜙𝑗−1
(1 − 𝑝𝑗)(1−𝜃𝑗)𝜙𝑗−1, 0 < 𝑝𝑗 < 1. 

 

If we let 𝜃𝑗 =
𝛼𝑗

𝛼𝑗+𝛽𝑗
 and 𝜙𝑗 = 𝛼𝑗 + 𝛽, we find that 𝑝𝑗  ~ 𝑏𝑒𝑡𝑎(𝜃𝑗𝜙, (1 − 𝜃)𝜙) and 

𝜃𝑗𝛼𝑗 + 𝜃𝑗𝛽 = 𝛼𝑗 . Thus, we have 𝛼𝑗 =
𝜃𝑗

1−𝜃𝑗
𝛽. Using 𝛼𝑗 ∝

𝜃𝑗

1−𝜃𝑗
 with increasing 𝜃𝑗 , 

we find that 
𝜃𝑗

1−𝜃𝑗
  is monotonically increasing. That is, when 𝜃𝑗 increases, 𝜶𝒋 is 

monotonically increasing. The parameter β  is assumed identical across dose 

groups to reach an identifiable condition; log(𝛽) ~𝑁(0, 𝜎𝛽
2), which correspond to 

β around one on average. Next, we should consider the method that the parameter 

𝛼𝑗 of the beta prior distribution is to be fitted well in the semi-parametric model 

through the Bayesian Model Averaging under the monotonic constraint. 
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국 문 요 약 
 

이항자료를 갖는 2 상 임상시험에서 적정 투여량 

결정에 대한 베이지안 모형 

 

 

본 논문은 2 상 임상시험에서 이항자료를 갖는 경우, 베이지안 

접근방법을 이용한 이 단계 설계방법으로서 최소 투여량으로 최대 효과를 

보이는 투여량을 결정하는 방법에 관한 연구이다.  

제안한 연구방법은, 첫 번째 단계의 자료를 가지고 있다는 전제하에 

중간분석 과정에서 미래의 자료에 대한 예측확률을 구하여 사전에 정의한 

임상적 한계치와 비교를 통해서, 최소의 투여량이면서 최대의 효과를 보이는 

투여량을 결정하는 방법에 대하여 다루었다. 본 논문은 이항자료를 갖는 

경우에 대한 연구로서 사전분포와 사후분포 모두 베타 분포족을 따른다고 

가정한다.연구에서 사용된 모형은, 투여량에 따른 평균 효과가 단조 감소하는 

패턴을 가정하고 또한 베이지안 준-모수 모형을 가정하였다. 연구 정보를 

설명하기 위한 모형을 선택하는데 있어서, 본 연구는 하나의 모델을 사용하지 

않고 사용 가능한 모든 모델을 평균화시키는 방법인 베이지안 모형 평균화 

방법을 사용하였다. 이 베이지안 모형 평균화 방법의 사용은 하나의 모델만 

사용함으로 인한 불확실성을 제거하기 위한 방법으로서 Raffery 와 

Volinsky(1999)에 의해서 사용되었다. 

특히, 본 연구에서는 다섯 개 투여량의 증가에 따른 평균 효과가 단조 

감소의 가정하에 베이지안 준-모수 모형을 설명하기 위해서, stick-breaking 

construction 방법을 적용하여 제안한 모형을 손쉽게 설명하는데 활용하였다. 
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이 stick-breaking construction 방법은 베이지안 접근방법에서 준-모수 

모형에 대한 문제를 해결하는 한 가지 방법으로 소개되고 있다.  

그러나 베이지안 접근 방법으로 예측확률에 대한 분포의 설명은 많은 

어려움이 따르므로, 가중부여에 의한 재표집방법을 이용한 시뮬레이션 연구를 

통해서, 베이지안 모형 평균화 방법에 의해 최소의 투여량으로 최대 효과를 

보이는 투여량이 어떤 것인지를 찾는 방법을 사용하였다. 뿐만 아니라 전체 

모델을 평균화시키지 않고 각 모델별로 결과를 산출하여 베이지안 모델 

평균화 방법에 의해 얻은 결과와 비교를 통해서, 베이지안 모델 평균화 

방법의 결과가 그렇지 않은 결과보다 더 정확한 결과를 제공해 주고 있음을 

확인하였다. 특히, 베이지안 모형 평균화 방법에 의해 최소 투여량으로 최대 

효과를 보이는 투여량을 찾는 결과에서 과소 추정하는 경향을 보임을 

확인하였다. 반면에 베이지안 모형 평균화 방법을 사용하지 않은 경우에는, 

어떤 모델이 사용되는지에 따라 과소 추정의 경향성이 다르게 나타남을 

확인할 수 있었다. 

이항자료에 대한 실제 2 상 임상시험 결과를 확보하지 못하여 실제 

사례로는 제안한 방법을 적용하지 못했다는 점이 제한점이 된다. 하지만, 

제안한 방법이 베이지안 모형 평균화 방법에서 매우 안정적으로 최소 

투여량에 따른 최대 효과를 보이는 투여량에 대한 정보를 제공해 준다는 점은 

향 후 본 연구를 표본 수 산출에 관한 연구로 확장을 고려해 볼 만하다 할 수 

있겠다.  

 

 

 
핵심 되는 말 : 베이지안 이 단계 설계, 최대 효과 투여량, 베이지안 모형 평균화, 예측 확률 

 


