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Abstracts

Bayesian Two-Stage Dose-Finding Study for Binary
Endpoints in Phase I clinical trials

Bak, Jean Kyung
Dept. of Biostatistics and Computing
The Graduate School

Yonsei University

In this study, we proposed Bayesian two-stage dose-finding model to identify
the MED for binary endpoint in phasell clinical trials. Our study was motivated

from the idea of the predictive probability with efficacy criterion motivating from
the dose-finding study of Pozzi et al. (2013).

We made calculation of the predictive probability comparing with the pre-
specified threshold in order to identify the MED in phase Il clinical trials. While
we making calculation of the predictive probability, we used the Bayesian Model
Averaging method to solve the problem of the model uncertainty (Raffery and
Volinsky, 1999). In addition, we have experienced the challenge of the integral of
the predictive probability, which has vast difficulty to solve it in Bayesian
perspective. Therefore, to make the predictive probability under the efficacy

criterions, we adopted the Sampling-Importance Resampling (SIR) algorithm first

Vil



proposed by Rubin (1983), which is the method of the approximation to sample
from the posterior distribution even though we could not directly explain the
distribution.

To make semi-parametric model under assuming monotonic constraint of the
mean effect under the five dose groups, we made the stick-breaking construction
with employing the jump-variable. In simulation study, the stick-breaking
construction has an advantage easily to apply the proposed model while adopting
the Bayesian Model Averaging. As a result, we found that the simulation result
from the Bayesian Model Averaging is accurately identified the MED comparing

the result of the different models.

KEY WORDS: Bayesian two-stage design, MED, binary endpoint, predictive probability, success
probability, Sampling-Importance Resampling(SIR) algorithm, stick-breaking construction,

jump-variable, semi-parametric model
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1. Introduction

Clinical trials play a critical role in drug development. Of diverse issues in
clinical trials, dose finding design has been researched for several decades in drug
development. In doing dose finding study, we should well understand with
characteristics of the dose response relationship of any new compound is
important and ubiquitous in many areas of scientific investigation. This is
especially true in the context of pharmaceutical drug development, where it is
mandatory to launch safe drugs which demonstrate a clinically relevant effect.
Selecting a dose too high may result in unacceptable safety problems. On the
contrary, selecting a dose too low may lead to ineffective drugs. Therefore, dose
finding studies perform an important role in any drug development. In fact, most
researchers question about what doses relevantly different from control within
acceptable safety. This question is closely connected to the estimation of a
minimum effective dose (MED), that is the smallest dose with a discernible useful
effect following to ICH-E4 (1994), Ruberg (1995) and Bretz et al. (2010). In
Frequentist approach, if confirmatory pair-wise comparisons with a control are of
main interest, multiple comparisons may be an appropriate to answer the question.
However, in Bayesian approach, there is not yet decided definite answer to the
question even though there are several applies to solve the question.

Phase Il studies are the basis for planning of the next stage clinical trials.
Especially, the major purpose conducting phasellb is to determine the optimal
dose which is going into the next stage clinical trials. An optimal dose is a dose
that is high enough to demonstrate efficacy in the target population. In fact, there
may be diverse strategies to determine the optimal dose, but here we focus on the

Bayesian two-stage dose finding study in phase Il clinical trials. Particularly, we



use the parallel dose comparison study, which several potential doses are selected
and subjects are randomized to receive one of the doses for entire study. At the
end of study, we can look at how each treatment group performed as compared to
the control group. Before we research the Bayesian two-stage dose finding design,
we look around two-stage dose finding design about general approach in phase II
clinical trials. In clinical development of a new treatment, the conventional role of
a phase Il a clinical trial is a “proof of concept” by checking the potential efficacy
of a new treatment. Typically, this kind of drug is the maximum tolerated dose in
cancer trials under the assumption that toxicities are positively associated with
cancer killing activities (Ratain, 1993). In other words, the goal of a Proof-of
Concept (PoC) study is to verify dose efficacy in patients in phase Il a clinical trials.
In reality, developing new pharmacological therapies is extremely expensive and
only few studies may be successful. Therefore, there is a great value in enabling
earlier to check optimal dose and better making decision which dose levels
continue with a drug development study. However, incomplete understanding
of the dose-finding studies is recognized as a major leading to inappropriate or
appropriate doses being taken into phaselll clinical trials. For example, to describe
efficacy optimal dose with over-dispersed count endpoint, Pozzi et al. (2013)
suggested that Bayesian adaptive two-stage dose-finding design in phase II
clinical trials.

In general, there are major several types of primary endpoints such as
continuous endpoint, count endpoint, binary endpoint and so on. In this paper, we
focus on binary endpoint because most patients are classified as a responder or
non-responder to the treatment study at the end of a study. We mention the
situation of that “Why should we use binary endpoint?”. A typical primary

efficacy analysis is to compare with the numbers and proportions of responders
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between treatment groups. The response variable is a binary variable. Even if the
endpoint is continuous, there is an increasing tendency to re-define criteria and re-
classify subjects as a “responder” or a “non-responder”. Ting (2006) introduced an
example case that patients in anti-depressants trials are frequently referred to as
responders if they experience a 50% reduction in the HAM-D score from their
baseline values. In addition, there are many situations that binary response makes
sense. The examples include “alive” or “dead” for patients in a salvage trial. In this
manner, binary outcome in clinical trials is common type no matter which problem
faced we are. Hence, in this study, we discuss the dose finding design to identify
the MED for binary endpoints in phase Il clinical trials. Particularly, we discuss
model based on Bayesian two-stage dose-finding process to choose the MED for

binary endpoints in phase Il clinical trials.

1.1. Two-stage dose finding design in phase II clinical trials

In general, since Simon’s two-stage design (1989) has been proposed, there
have been emerged diverse useful designs such as sample size determination in
phasell clinical trials based on Simon’s two-stage design. In this study, we apply
the concept of Simon’s two-stage design to find the MED in dose finding studies.
Even if Simon’s design has limitation to focus on determining the sample size,
many researchers have cited and utilized the method into their diverse clinical
studies such as dose finding studies. In fact, Simon’s two-stage design was based
on four major procedures such as decision making for hypotheses, adhering strict
sample size to keep the power, and enrollment procedure for patients and

stopping rule with respect to Frequentist perspective.
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In Frequentist approach, Polley (2008) and Cheung (2008) applied Simon’s
two-stage design to find the MED when they compared several dose levels with a
placebo. They mentioned to manage the issue of multiple comparisons due to
handling several dose levels in two-stage dose finding studies. In addition, as a way
of finding solution of the multiple comparisons, Steansson (1988) and Hsu and
Berger (1999) introduced two-stage design for the partitioning test of binary
outcome in Frequentist approach. Based on their statements, there are three
different methods such as the pre-determined step-down method, the sample-
determined step-down method and the sample-determined step-up method in
partitioning test to explain the multiple comparisons in Frequentist perspective.
However, there is no definite method to account for multiple comparisons even
though many researchers have discussed since Duncan (1965) has introduced
several mixed approaches for multiple comparisons that was combined Bayesian
perspective with Frequentist perspective. In addition, Muller et al. (2006) were
mainly used posterior probability and decision theoretic approaches for adjust
multiplicities. Besides, Meng et al. (1987) discussed the multiplicity problem relied
on Bayesian p-value that is the similar approach with traditional significance
testing. Although there are many efforts and approaches in Bayesian ways, it is
fact that there is an argument among researchers who are interested in explaining
the multiple comparisons. Therefore, we do not mention the multiple comparisons
with identifying the MED among the several dose levels.

Lee et al. (2008) presented the decision method when we stop and how to stop
the clinical trials for efficacy or futility based on the predictive probability in
Bayesian approach. Given the interim data, the predictive probability of the
posterior distribution provides the estimation ways how to reject the null

hypotheses in dose finding studies. That is, they mentioned two different

12



assumptions. One assumption could be the decision rule that predictive
probability depended on that the true response rate p; is greater than the null
response rate, py. Another assumption was the decision rule how to stop the trial
for success or futility. In this study, we apply the idea of decision rule using
predictive probability while identifying an appropriate dose level as the MED in
Bayesian perspective. In addition, we adopt the concept of decision making that
was Bayesian two-stage design for phase Il clinical trials with respect to the Single
Threshold Design (STD) for binary endpoint proposed by Sambucini (2008).
Particularly, the design proposed by Sambucini (2008) was based on the predictive
probability of the STD to select the sample size in the experimental study. Before
Sambucini (2008) proposed one of the STD methods, Tan and Machin (2002) firstly
introduced the idea of the Single Threshold Design (STD) in two-stage design
when they decided the sample size, in which a large posterior probability of the
true response rate exceeds a target value when the observed response rate is larger
than the pre-specified target value. They offered to the method of the sample size
calculations through extending different kinds of informative prior distributions
which use informative conjugate prior distributions. Other most researchers
including Herson (1979) mainly have managed the issue of the sample size
determination through the predictive probability in phase Il clinical trials.
However, only few cases are known where the issue of dose finding for binary
outcome relies on the Single Threshold Design (STD) with the predictive
probability in phaseIl clinical trials. For instance, Ivanov, Xiao and Tymofyeyev
(2012) proposed the Bayesian adaptive two-stage design to find the MED for phase
II dosing finding study. They handled both the continuous and binary outcomes
to make decision grounded on the posterior probability of the target dose location

in making decision which dose level could be the MED. More recently, Pozzi et al.

13



(2013) proposed a Bayesian adaptive dose selection design with over-dispersed
count data. They considered the predictive probability as a decision method since
they wanted to explain the future data given the interim data while identifying the
MED in phasell clinical trials. In other words, the study design was taken into
account of one interim analysis to make decision which dose level could be the

MED in Bayesian perspective.

1.2. Purpose

The purpose of this study is to present the method in Bayesian two-stage dose
finding design for binary endpoint in phaselI clinical trials. Especially, we discuss

the dose finding method to identify the MED depended on the Bayesian predictive
probability by comparing with pre-specified criterions. Besides, we also referred
the approach of the inference to select the MED that was found by comparing the
predictive probabilities of several dose groups with a placebo according to
Dunnett (1995) and Williams (1971). Particularly, while modeling with referring to
efficacy criterion for binary outcomes, we take advantage of the convenience of the
approximation method to sample from the posterior distribution with Sampling-
Importance Resampling (SIR) algorithm proposed by Rubin (1983) and Smith and
Gelfand (1992). Under the similar studies figuring out the MED, if we let t denote
the clinically relevant value, i.e.,, the smallest relevant value which shows a
clinically relevant and statistically significant effect, we expect a dose to be better
than a placebo. The approach to find the MED by comparing Bayesian predictive
probability with the pre-specified criterions for binary endpoint in phase II
clinical trial could be a new challenge even though it was motivated by Pozzi et al.

(2013) that was Bayesian adaptive two-stage dose finding study to the MED with
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over-dispersed count data. Therefore, as mentioned above, we utilize the method
of the approximation that draws samples through Sampling-Importance
Resampling algorithm from the posterior distribution to calculate the predictive

probability as a decision rule presented by Pozzi et al. (2013).

1.3. Outlines

In this study, we discussed the model in two-stage dose finding studies for
binary endpoint with respect to the Single Threshold Design (STD) proposed by
Tan and Machin (2002). In addition, there has an approximation method to sample
from the integral of the equation (7) presented by Rubin (1983) and Smith and
Gelfand (1992) in section 2.2.3. Furthermore, Bayesian two-stage design in dose
finding studies in phase II clinical trials was presented with the predictive
probability as a decision rule. The proposed method is provided in chapter 3. To
figure out the MED, simulation studies with the Bayesian Model Averaging
method are presented in section 4.1. Furthermore, identifying the MED via the
simulation studies of eight different models is provided in chapter4. Finally, there

is the conclusion and discussion in chapter 5.
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2. Background

On the average, major considerations and plans with dose finding studies
should be started with the non-clinical development stage. With the clinical
development plan over the entire phase, diverse clinical trial studies are designed
and carried out for several decades. This clinical development study is updated
over time based on newly available information. Specially, estimation of dose-
response relationship might be one of the very important issues in the clinical
development study. Method to find an appropriate dose finding is needed enough
information such as related data and plentiful and diverse expert opinions and
experiences with respect to across all phases of clinical trials.

The crucial stage for finding a proper dose level should be around phase II..
There are two parts in phasell clinical trials. One is phase Il a called Proof-of-
Concept (PoC) and another is phase Il b. Relied on information collected from the
results of phase I clinical studies, many clinical trials in phase Il a should be
planned and carried out Proof-of-Concept (PoC), dose finding studies. A
commonly used Proof-of-Concept study typically has two parallel treatment
groups such as a placebo group and test treatment group using high dose very
close to MTD or the MTD itself. Dose finding studies usually include a placebo
group, plus a few doses of test drug-e.g., low dose, several intermediate doses,
and high dose. Commonly, these kinds of studies have parallel group with fixed
doses in traditional approach. The main objective of the dose finding studies is to
estimate the dos-response relationships for efficacy and safety.

The MED is often defined as the lowest dose with mean response significantly

different from a placebo, which means that the mean effect adds the clinically
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important minimum difference (ICH E4 Guideline, 1994). As mentioned in section
1, the primary objective of phasell clinical trials is often to find the MED which is
statistically significantly superior to a placebo and produces a clinically relevant
effect (Ruberg, 1989 and ICH E4, 1994). As mentioned in section 1.2, we discuss
two-stage dose finding design to identify the MED with respect to binary outcomes
in Bayesian perspective in phaseIl clinical trials. In making decision of the MED
in dose finding studies, we rely on the Bayesian predictive probability of the
posterior distribution following to the pre-specified efficacy and exclusion

criterion.

2.1. Models in two-stage dose finding studies

2.1.1. Notations and Assumption

We assume that ] dose-response relationships are increasing as follows;

dl < dz < "‘<dj,

where d; isaplacebo, dy, -+ ,d;_; arethe intermediate doses to be the MED and
d; is the highest dose. We make notation that the structure of the data such as the
current data Y and the future data Y* with each dose level is presented by Table
1. We notify that Y;; and d;; (i=1,--n;, j=1,---,]) are the response and the
dose level for the ith patient at the jth dose level after finishing a treatment. The
term of ¥; is the response in current data and the term of ¥} is the response in

future data about jth dose level
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Table 1. Data Structure According to Dose Level

Dose Level Current Data (Y) Future Data (V™)
1 Yig = Yo Vi o Vi
2 Yig = Yopo Yig = Vinye
k Ylk Ynkk Yl*k YT;k”lkk
] Yl] Yn]] Yl*] ;l]]

The term of 6; = E[Y;;], i=1,---n;, j=1,-,], is the mean effect of jth dose
levels and @ is the meaning of the parameter vector. Furthermore, according to
the assumption of the mean effect in dose groups proposed by Pozzi et al.(2013),
we assume that the relationship of the mean effects corresponding to each dose

level is given by

The equation (1) indicates that the probability of detection for disease is decreased
by the dose with increasing the mean effect of the dose group after administering

drug. In this study, we have taken account of two-stage dose finding studies to
identify the MED in phasell clinical trials in Bayesian perspective. The decision

which dose could be the MED was based on the predictive probability (PP) to
compare with the pre-specified clinical threshold (t) that is clinically relevant

value obtaining from diverse clinical opinions and experiences of the medical
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experts. There is the brief design flow of the study in Figure 1. The terms of n, m

and N are the sample sizes at the current data, the future data and the entire data,

respectively.

/ First stage \

| Start the trial |
\ Randomize n / Predictive Probability
= pre-specified
[ > threshold(t) ?
: YESJ/
i choosed,;

Interim analysis
Find MED?

Predictive Probability

Second stage mﬂ;;’;fﬂ
Find MED? SR
randomize m Yes’l‘
choose d;

Figure 1. Flowchart of Bayesian Two-Stage Dose Finding Study in phase Il
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2.2. Bayesian two-stage design in dose finding studies.

Generally, most of dose finding study is to identify the most suitable dose
level for medical treatment in clinical trials. As a matter of fact, there are many
uncountable approaches to find the best fitted dose for patients in Frequentist and
Bayesian perspectives. Unfortunately, there is no guarantee which dose level is the
best dose for patients without any toxicity. Therefore, we research Bayesian
method of dose finding design for binary endpoints in phase Il clinical trials.
Typically, dose finding studies in phase Il a clinical trials use a single dose to assess
the efficacy of new drugs, with the goal of screening out those that are ineffective.
After passing the initial efficacy assessment of a new drug in phasell a clinical
study, subsequently, dose finding studies in phase Il clinical trials use multi-
doses to compare the efficacy of the new drugs with a placebo. Therefore, the most
promising dose can be selected for large scale evaluation in late phase studies such
as phaselll clinical trials. That is, dose finding studies in phase II are often
randomized, multi-doses levels with the goal of identifying the most promising
dose to send to large-scale phaselll trials for definitive testing.

Kramar, Potvin and Hill (1996) mentioned multi-stage designs to achieve
getting better results than single stage design. Basically, they pointed out different
multi-stage designs in clinical trials focused on and developed in the sample size
determination. Besides, they mentioned that Gehan (1961) firstly proposed the
multi-stage design and still being widely used in spite of rarely cited. The two-
stage design allows for prompt rejection of an ineffective treatment or drug at the
end of the second stage. In addition, they described that Fleming (1982) developed
multi-stage designs to enable early termination of a trial when treatment or drug

is either clearly effective or ineffective. In particular, Simon (1989) improved
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Fleming's two-stage design by minimizing either the average or the maximum
number of patients required under the hypothesis of treatment ineffectiveness.
Furthermore, Chen (1997) developed a three-stage design to apply Simon’s designs.
As mentioned above, multi-stage designs including two-stage designs have an
advantage which is flexible to apply dose finding studies.

Even though multi-stage designs have better statistical properties than single-
stage designs by employing information gained in the interim data, the Frequentist
analysis of such designs is constrained due to rigid requirement of examining the
outcome at the pre-specified sample size at each pre-determined stage. This lack
of flexibility exposes a fundamental limitation of all such Frequentist-based
methods. Besides, sometimes most researchers can experience such a situation that
there is disparity between the proposed design and sampling plan. Therefore,
some of researchers try to account for all statistical inference through adjustment
method mentioned by Green and Dalberg (1992). Particularly, we are interested in
getting flexibility to make decision which dose could be the MED. This kind of
reason supports the need for more flexible designs.

On the other hand, Bayesian perspective provides a different approach to do
designing and monitoring clinical trials by calculating of the posterior probability
of diverse events given data. In particular, Bayesian perspective has a special merit
in clinical conduct and impart the ability to examine interim data, update the
posterior probability of interesting parameters and make relevant predictions and
sensible decisions. In general, there are three kinds of major testing methods such
as decision making, predictive probability and posterior probability in Bayesian
perspective. But, in this study, we mainly refer to the predictive probability in
section 2.2.1 as we use the predictive probability as a decision rule to make decision

in Bayesian approach.
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2.2.1. The Predictive Probability

Generally, based on the interim data, the predictive probability is gotten by
calculating the probability of a positive calculation to reject the null hypothesis or
alternative hypothesis that the trial should be conducted to the maximum planned
sample size (Lee et al., 2008). The decision to continue or to stop the trial can be
made according to the strength of this predictive probability. In particular, given
the current data, we calculate the predictive probability for future data in dose
finding studies in Bayesian perspective. For instance, according to Pozzi et
al.(2013), the Bayesian predictive probability as a decision rule was calculated for
over-dispersed count data to identify the MED in phase II clinical trials. In
addition, Pozzi et al.(2013) mentioned that how we can define the predictive
probability of the posterior distribution in Bayesian perspective. To begin with,
they assumed that the response Y;; for ith patient at jth dose level, is

distributed as follows;

Y;j ~ poissson(6;).
The likelihood function of posterior distribution of the response Y;; follows a
gamma distribution. That is, by imposing conjugate distribution of the gamma
prior distribution and poisson likelihood function, they showed that the posterior

distribution of the response is given by,

0;|Y ~ Gamma(a;, B),
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where they assumed that the scale parameter {3 is identical across dose groups to
reach identifiability. Thus, the response in future patients, Y}, follows a negative-

binomial distribution;
Y;; ~ negative — binomial(m, 1, 6;),
where r is the number of failure until the experiment is stopped. According to

Pozzi et al. (2013) description, a general definition of the predictive probability of

the response for “Success” as follows;

PP = P{"Success"|Y} = P{Y* € Y,|Y} = fYS p(Y*|Y)dY* (2)
for some success region Ys. To make definition about which is the meaning of the
predictive probability after doing treatment in more detail, they firstly made the
term of “Success” can be defined as follows:

{"Success"} = Yo = {Y": P{6 € Og|Y,Y*} > c},

for some efficacy region O and some threshold c. Then, they have the predictive

quantity (2) becomes

PP = P{"Success"|Y} = f
Ys

p(Y*|Y)dY* = J.I({Y*:P{B € 0|V, Y} > clp(Y*|Y)dY*

The case of the intermediate dose levels, j € {2,-:-,] — 1}, we make decision which

dose will be the MED among the intermediate dose levels in phase II b clinical trials.
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Using the exclusion and efficacy criterions introduced by Pozzi et al. (2013) when
we assume that the dose-response relationship is increasing, we redefine the

exclusions and efficacy criterions as follows;

Exclusion Criterion

9.
P{e—jl > &Y, Y*} > 50%, 3)

Efficacy Criterion

(i)P{Z—j<1

Y, Y*} > 95% (4)

(if) max{P{Z—i’s &Y, Y7, p{Z—j < &|Y, Y} =50% (5)

where §;, & and & (0 < &y, &, &3 < 1) are determined by clinical experiences
and expert opinions given data. The exclusion criterion(3) is the meaning of the
efficacy at the dose level j is not better than placebo to a clinically extent. In the
efficacy criterion(4), we require the dose to be superior to dose 1 with very high
probability. In addition, the meaning of the equation(5) is necessary for the dose

to be either at least &, better than or at most &; worse than dose J.
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2.2.2. Bayesian Model Averaging to Monotone Dose Finding Model

As mentioned in section 2.1.1, the equation (1) is assumption for a single
model. However, we have seen that a major goal of the model selection is to choose
a single model that is considered the best one among all candidate models we
expected. If we want to choose a single model as the best model, all subsequent
decisions are made well under the chosen model without any problem. But, we
often meet with uncertainty about selected an unsuitable single model. The model
uncertainty leads to over-estimation or under-estimation about our inferences and
decisions that are much risky than we expected. Therefore, in this study, we use
the Bayesian Model Averaging method that is averaging different competing
models. Hoeting, Madigan, Rafftery and Volinsky (1999) mentioned that the
Bayesian Model Averaging gives us a coherent mechanism for accounting for this
model uncertainty. Furthermore, they mentioned that the definition of the
Bayesian Model Averaging to describe the uncertainty in model selection for

accounting predictive performance is following to

K
P(event|data) = Z P(event|Mg, data)P(Mg|data), (6)
k=1

where models My (k =1,2,---,K) are considered. That is, the meaning of the
equation (6) is an average of the posterior distributions under all different models
considered which are weighted by the probability about their posterior models,
where Mjy,---, My are the models. According to Congdon (2014), the Bayesian
Model Averaging may be based on MCMC samples from models sampled in

parallel. For the models (M, -, M), we may obtain model weights at each

25



iteration, and estimates of the posterior probabilities for each model, or of model
averaged parameters by averaging over samples. The posterior probability for

model My is following to

P(data|Mg)p(Mg)
=, P(data|M;) P(M;)

P(Mg|data) =

where P(data|My) = [ P(datal6y, My) P(0;|M;)d6), which is the marginal
likelihood of model My, 6y is the vector of parameters of model My. P(8y|Mg)
is a prior density of 6, under model My and P(data|6, M) is the likelihood
and P(M) is the prior probability that My is the true model.

Furthermore, Madigan and Raftery (1993) made an explanation that
averaging all of the models provides better averaging of the predictive ability than
using any single model, My, conditional on M. Therefore, we adopt the concept of
the Bayesian Model Averaging in order to reduce model uncertainty while
identifying the MED in this study. When making inference an appropriate model,
they adopted the Bayesian Model Averaging which is represented by a different
combination to decrease the model uncertainty. With adopting the Bayesian Model
Averaging, it can be fully specified as follows, for patients, i =1,---,n;, dose
groups, j =1,---,] and models k=1,---,K.

Next, by the exclusion and efficacy criterions explained in section 2.2.1, we
can define that the jth predictive probability given each model, My, is given by

PP} = P{P{Z—i< 1|Y]-,Y,-* My} > 95%} n

* 0;
’G"YJ'MK}:P{Q—;S&

(max(Pg < & N M) > SO%Y),  (7)
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which is an appropriate to a formal representation of the efficacy criterion. Thus,
we can choose the dose as the MED if the jth PP > t(pre-specified threshold). In
order to explain the predictive probability of the posterior distribution, we
approximate PP given the different models which are based on the general
framework of the Sampling-Importance Resampling algorithm. In particular, we
provide the detail information about the application of the Sampling-Importance

Resampling to dose finding studies in section 3.3.

2.2.3. Application of Predictive Probability to Dose Finding

Usually, dose finding studies have been included a placebo or control group,
a few doses of the test drug in phaseIlb clinical trials. Naitee (2006) referred to an

ideal dose finding study that should incorporate a wide range of doses from low
to high doses. For instance, Pozzi et al. (2013) assumed that five dose levels such
as a placebo, three intermediate doses and the highest dose. In particular, for three
intermediate dose levels, j € {2,3,4}, they made decision which dose is the MED in
phase Il b clinical trials. Using the exclusion and efficacy criterions presented in
section 2.2.1, they determined the clinical threshold values of §;, & and &3
according to the diverse opinions and experiences of clinical experts. In this study,
we determine that & = 0.7, {; = 0.5 and &; = 1.2 by utilizing the approach of
Pozzi et al. (2013). However, those kinds of clinical thresholds may be changed by
the purpose and characteristics of each clinical study. In particular, in order to
make decision which dose could be the MED, we need to obtain samples from the

posterior distribution. Unfortunately, as Dani (2006) mentioned in his study, it is
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very complicated to directly sample from the posterior distribution for the vast

majority of problems of practical relevance.
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3. Proposed methods

3.1. Model Setting and Assumptions

We propose the Bayesian two-stage model under the monotone constraint of
the mean effects between dose groups to identify the MED in dose finding studies
for binary outcome in phase Il clinical trials. In particular, we use the semi-
parametric model due to the monotonicity between then mean effects of dose
groups presented by Pozzi et al. (2013). We start with what is the model we used
and which distribution follows we used. To reduce the model uncertainty, we
adopt the Bayesian Model Averaging method using ten different model
combinations presented by Pozzi et al. (2013). In addition, we present the
distribution and process of each stage in more detail as follows. As mentioned
above, we assume five dose levels including a placebo, three intermediate doses
and the highest dose for binary endpoint. First, we let 0 be the unknown
probability parameters and Y;; (i =1,-+,n;, j =1,-+,5) be the binary response
variables that could be success or failure.

In this study, our proposed method has been based on the general framework
of the distribution that we use a conjugate prior distribution 6;~beta(a;, B;) for
binary endpoint in Bayesian perspective. When we have Yy, Yy, 116;~Ber(6;),

we can get

for Y; = Z:Z .Y and the likelihood function of posterior distribution of the

success rate follows a beta distribution. That is, by imposing conjugate distribution
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of the beta prior and multiplying the conjugate beta prior 6;~beta(a;, ;) and
binomial likelihood, Y ;~bin(n;, 8;), we obtain the posterior distribution of the

success rate in first stage as follows;

leyj ~ beta(aj + Yj,ﬁ] + le - Y])

Thus, in second stage, the number of the success in the potential future patients

m=N —n, Y} is distributed as a beta-binomial distribution;

J
Y; ~ beta — binomial(m, a; + Y, B; + n; — V).

In particular, in order to explain the posterior distribution, we should consider
what the shape of the prior distribution is in more detail. As mentioned above, we
use the conjugate beta prior distribution 8;~beta(a;, ;) for binary outcome in
Bayesian perspective. For convenience, we want to fix another parameter £; on
B. Thus, we explain re-parameterization method about the parameters in

Appendix.

3.2. Monotone Dose Finding Model in Bayesian Perspective

To obtain the predictive probability of the equation (7) in section 2.2.2, we explain
the method presented by to Pozzi et al. (2013). In particular, in this study, we adopt
the ten different models presented by Pozzi et al. (2013) as follows;
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M5:91:92:93204205 M6:01:92293294:05 (8)

Ten different models of the equation (8) are averaged with the Bayesian Model
Averaging in Bayesian perspective.

To model the monotonic constraint under mth model and to make an
explanation of the distribution of the interesting parameter vector a =
(a1, @y, a3, a4, as5) about five dose levels, we adopt the concept of the jump variable

such as §;) = log(aj) —log(a;+1) and we put a truncated normal?) prior on

Osum = Zj—l 6j,k = log(al) - log(as) ~TN (Usym, 5sum)’

where K is ten different model presented in the equation (8), k=1,---,10.
Besides, if we assume the monotonic dose response relationship about five dose
levels, there is the relationship between five dose groups after taking logarithm of
the interesting parameter about five dose levels in ten different models of the

equation (8).

1) We use a truncated normal distribution for a particular parameter, so that we can restrict the range of
parameter regions but have some belief about its mean and variance (Ando, 2010). The prior is chosen to

maximize the average information in the data density relative to that in the prior.
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where a; > aj;; to make definition &, = log(aj) — log(aj+1) >0 . After
completing the jump variables about each model in equation (5) of section 2.2.2,
we make a stick prior about each model. Then we made stick-breaking
construction about the stick prior. The stick-breaking construction brings about
semi-parametric model due to monotonic constraint of dose response relationship.
The stick priors are made by corresponding to the relationship of the model and
their order statistics that s;, ~U(0,1) j=12,3 and k=1,---,10. Finally, we

summarize the different configurations of the §’s in jump X model matrix as

follows;
MMy My Mo Mo My My My Mg |
0 013 014 O 0 0 0 0 d110
A= 032 033 024 0 6 0 G5 0 0

63,2 63,3 0 53,5 53,6 0 0 53,9 0
S42 0 0 845 0 8470 0 0

Ishwaran and James (2001) remarked that the overall treatment effect &y, is
partitioned along each column using a “stick-breaking” construction involving
independent uniform variables. Eventually, after putting a prior on the collection
of models, the stick-breaking construction allows us to average over all of ten
different models without any parametric assumption on the dose response curve.
That is, it is fact that we adopt the Bayesian Model Averaging in the equation (1)
as a Bayesian semi-parametric model. This model made with the Bayesian Model

Averaging is used to draw samples from the posterior distribution.
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3.3. The Sampling-Importance Resampling(SIR) to Dose Finding
Model

We adopt the Sampling-Importance Resampling algorithm to approximate
the posterior distribution m(6|Y) of the parameters 6 given the interim data to
compute the predictive probabilities to be used for making an interim decision.
First, we let the parameters, 6, be obtained from the prior density p(8) in the
interim posterior. That is, we can tell p(8) = n(6]Y). However, our primary
concern is to approximate the integrals of equation (8) in section 2.2.3 by averaging
over many possible future outcomes Y* in stage 2.

To approximate the integrals of the equation (7), we select a posterior sample,
(0)(1), e (0)M)) (0)(N ) given the model with the Bayesian Model Averaging. To
simulate future outcomes Y* in stage 2, we draw a pair (@) from this sample,
and utilize this parameter to simulate one post-interim posterior data set 13-*(1),

where j € {2,3,4} is the dose to be explored; we also include future placebo and

the responses of the five doses in this data set. The probability of data set )G.*(l)
given the pair, (0)™, p()G-*(l)| (0)™) is computed r=1,--,R. We draw the

samples with the importance ratios or weights as follows;

1(6,Y)
% 1(6;Y)
(5 @) xp)™)
%5 (5P ©)9) x p((6))
(@0
% p(r V1 (©)0)

T
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which is the interim posterior sample uniformly distributed with probability
p((@,p)P)=1/N, r=1,-,R

Next, we should check a sample (8)™ to be satisfied with the decision
criterions such as efficacy criterion presented in section 2.2.1 directly. With
satisfied the efficacy criterions in sample ()™ s, we can approximate the

equation(7) is following to

P{Success in dose j|Y*, M} }

= f P{Success in dose j|(0),Y*, M} P{(0),Y", M }d(0)

1 N
~ Nz 1{(8)™ Success in dose j} x wy,

i=1

=pp'® [Success in dose j].

We repeat this procedure for 1 until we can recognize very large number, say R.

Finally, we can identify the lowest dose d satisfying the efficacy criterions.
(1 1
PF;' ® = Zzlf=1 I{ n{success}{PPj{l}[Success] > c}}.

For convenience, we summarize the algorithm as follows:
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Step 1: Select dose j;

Step 2: Sample ()@, (8)@, -+, (@)™, -+, (@)™ from the post-interim posterior
distribution;

Step 3: Draw (8)® from the sample of the posterior distribution at interim stage

of the entire sample size N;

Step 4: Simulate one data set Yj*(l)| 6Y;
Step 5: Apply Sampling-Importance Resampling to compute p (Yj*(l)| @™,
r=1,---,R w, and PF}*U) [criterion] for each criterion success is defined

upon;

Step 6: Repeat steps from 3 to 5

3.4. Procedure at Second Stage

As described above, we provide the Bayesian two-stage dose finding method
to find the MED based on the predictive probability comparing the pre-specified
threshold (t) for binary outcome in phasell clinical trials. As we can see figure
1, which is the entire design flow, we randomize a placebo, three intermediate
doses, j = {2,3,4} and the highest dose at the second stage. In this stage, we make
a test which dose is the MED under the predictive probability to compare to the
pre-specified threshold. However, if we do not make decision in the end of the
study, we should make decision whether to stop for efficacy, or stop for futility

relied on the opinion of the clinical experts.
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4. Simulation Study

In this study, fundamental approach of the simulation studies was conducted
to certify which dose level is the MED in phase Il clinical trials. Therefore, in this
section, we performed the simulations to evaluate the performance of the
proposed method under two different scenarios that we can make decision which
dose level could be the MED using the Bayesian Model Averaging method with
ten presented models about five dose levels presented by Pozzi et al. (2013).

In addition, we conducted the simulations to evaluate the performance of the
presented eight different models, respectively, to check which model is useful to
find the MED or not useful without using the Bayesian Model Averaging. In
simulation setting with the Bayesian Model Averaging and eight different models,
we identify the true dose level before conducting the simulation to find the MED
about each scenario. After conducting the simulation, we compare the true dose
with the identified MED we found. As a result, we could check that the method
we used at each scenario is well to detect the MED of the Bayesian Model
Averaging and eight different models.

Before we identify the MED, we find the true dose about each scenario in
order to check which case of the scenario of the model is well find the MED. For
example, there is an example case of the scenario how we can find the true dose
before conducting the simulation under the efficacy criterion presented in section
2.2.1. There is the Table 2 in the method to find the true dose.

In order to identify the MED, we make ten scenarios in Table 3. Each scenario
is distributed in binomial distribution with the probability of the success p; called

the mean effect, 6;. The scenarios 1 and 2 are used for the Bayesian Model
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Averaging to find the MED. The scenario 3, 4, 5, 6, 7, 8, 9 and 10 are used for eight

different models to identify the MED.

Table 2. Method to find the True Dose

04 6, 03 04 05
Binomial Probability 0.5 0.45 0.4 0.28 0.24
Z—i for success probability 1 0.9 0.8 0.56 0.48
Z—: for success probability 2.08 1.87 1.67 117 1

Note: The term of 6, is the mean effect of a placebo, 6; is the mean effect of the j dose,
05 is the mean effect of the highest dose. As we mentioned the efficacy criterions in section

2.2.2, we can decide the true dose satisfying in which

J
5

z— is less than 1.2.

Table 3. Scenarios of the Mean Effect

0;
5. is at least greater than 0.5 and
1

0, 0, 05 0, 05
Scenariol 0.5 0.45 04 0.28 0.24
Scenario2 0.45 0.38 0.25 0.22 0.21
Scenario3 0.5 0.35 0.3 0.26 0.22
Scenario4 0.51 0.51 0.4 0.29 0.245
Scenario5 0.55 0.45 0.3 0.255 0.255
Scenario6 0.45 0.24 0.21 0.21 0.21
Scenario?7 0.5 0.5 0.5 0.26 0.22
Scenario8 0.58 0.58 0.3 0.26 0.26
Scenario9 0.45 0.45 0.26 0.19 0.19
Scenariol0 0.45 0.45 0.45 0.24 0.205

Note: The term of 8, is the mean effect of a placebo, 6,, 83, and 6, are the mean effects
of the intermediate doses d, 85 is the mean effect of the highest dose.
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We assume that five dose levels such as a placebo, three intermediate doses
and the highest dose was used to identify the MED with model. To begin with, we
generate observations from random variable, Y;; ~ bin(n;,0;), for patients i =
1,---,n; atdoselevels, j=1,--,5 through the checking the sufficient condition as
ten different models in equation (7) presented in section 2.2.2. The observable data

set is determined by following steps;

Step 1: Generate data set following to binomial random variable in 5 dose levels,
which is Y;; ~ bin(n;, 0;) for patients i = 1,---,n; at dose levels, j=1,-+,5. Each
value of the probability of the success 6; is composed in accordance with efficacy

criterions in section 2.2.1.

Step 2: Using the observable data set in step 1, based on the clinical thresholds, t =
03, t=0.4 and t= 0.5, we run MCMC algorithm with the Bayesian Model
Averaging method that we iterate 10,000 times, burn-in is 1,000 and thin is 60. We
get that total sample size is 150 in first stage about both in the Bayesian Model
Averaging of ten models and eight different models. Besides, we do 100 iterations
about Bayesian Model Averaging of ten models and eight different models to

identify the MED about each sample.
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4.1. Simulation Results using the Bayesian Model Averaging

In order to identify the MED with Bayesian Model Averaging, we conducted
the simulation study of two different scenarios relying on the relationship of the
mean effect of the dose levels. To check the effect of corresponding to the difference
of the clinical thresholds, we did simulation when the clinically thresholds were
t= 0.3, t=0.4 and t= 0.5 in accordance with each scenario.

In the table 4, based on the definition of efficacy criterions in section 2.2.2, we

8

recognize that the true dose is dose 4 because it is satisfied with that —= is at least
1

greater than 0.5 and Z—: is less than 1.2, simultaneously. Therefore, we regard the
dose 4 as the true dose before finding the MED. After conducting the simulation
study, we can certify that the dose 4 as the MED is fitted of the true dose when we
have t=0.4 and t= 0.5 except for t = 0.3 in scenario 1. In addition, we can
find that there was an under-estimated tendency in identifying the MED

In the table 5, based on the definition of efficacy criterions in section 2.2.1, we

recognize that the true dose is dose 3 because it is satisfied with that 9—’ is at least

1

greater than 0.5 and ? is less than 1.2, simultaneously. Therefore, we regard the
5

dose 3 as the true dose before finding the MED. After conducting the simulation
study, by the simulation result of scenario2, we certify that the dose 3 is the MED
that this result is fitted of the true dose when we have t = 0.3, t= 0.4 and t=0.5.
In addition, we can find that there was an under-estimated tendency in identifying

the MED
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Table 4. Assumption: the true dose is dose 4 based on Scenario 1 (6; = 0.5, 6, =

04’5, 03 = 04’, 94 = 028, 05 = 024)

Threshold (t) Dose Mean Effect Frequency (%) MED
1 0.5 4(0.4)
2 0.45 10(1)
0.3 3 0.4 45(45)
4* 0.28 36(36)
5 0.24 5(0.5)
1 0.5 1(01)
2 0.45 8(0.8)
0.4 3 0.4 38(38)
4* 0.28 48(48)
5 0.24 5(0.5)
1 0.5 0(0)
2 0.45 3(0.3)
0.5 3 0.4 36(36)
4* 0.28 53(53)
5 0.24 8(0.8)

*: true dose; @ : MED
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Figure 2. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t= 0.3,
t=0.4 and t= 0.5 in Scenario 1
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Table 5. Assumption: the true dose is dose 3 based on scenario 2 (6; = 0.45, 6, =

038, 03 = 025, 64 = 022, 95 = 021)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.45 4(0.4)
2 0.38 17(17)

0.3 3* 0.25 68(68)
4 0.22 11(11)
5 0.21 5(0.5)
1 0.45 0(0)
2 0.38 11(11)

0.4 3* 0.25 64(64) ®
4 0.22 23(23)
5 0.21 2(0.2)
1 0.45 0(0)
2 0.38 11(11)

0.5 3* 0.25 61(61)
4 0.22 28(28)
5 0.21 0(0)

* - true dose; @; MED
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Figure 3. The histogram of the
posterior distribution of the
success probability to be fitted with
efficacy criterion in t=0.3, t=
0.4 and t= 0.5 in Scenario 2



4.2. Simulation Results in eight different models

As mentioned in section 4.1, we certify that the simulation of the Bayesian
Model Averaging is to show accurately identifying to the MED. If so, we are
interested in which model among ten different models may well fitted to figure
out the MED. Therefore, in order to check and compare with the simulations
results which method is to test stably the MED between different models and the
Bayesian Model Averaging, we conduct the simulation study relying on the eight
different models presented by Pozzi et al.(2013) and we did simulation when the
clinically thresholds are t = 0.3, t = 0.4 and t = 0.5 about each scenario.

In the table 6, according to the definition of efficacy criterion in section 2.2.2, we

J

recognize that the true dose is dose 4 because it is satisfied with that 2= is at least
1

8

greater than 0.5 and 2~ is less than 1.2, simultaneously. Therefore, we regard the
5

dose 4 as the true dose before finding the MED. After conducting the simulation
study, by the simulation result of scenario 3, we certify that the dose 4 as the MED
is fitted of the true dose when we have t = 0.3, t = 0.4 and t = 0.5.

In the table 7, according to efficacy criterions, we recognize that dose 4

. e . 0; . 0; .
is satisfied with that 9—1 is at least greater than 0.5 and 9—1 is less than 1.2,

1 5

simultaneously. Therefore, we regard the dose 4 as the true dose before
tinding the MED. After conducting the simulation study, by the simulation
result of scenario 4, we certify that the dose4 as the MED is fitted of the true

dose when we have t=0.3, t=0.4 and t = 0.5.
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Table 6. Assumption: the true dose is dose 4 based on scenario 3 (6; = 0.5, 6, =

0.35, 65 = 0.3, 6, = 0.26, 85 = 0.22)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.5 0(0)
2 0.35 2(0.2)

0.3 3 0.3 25(25)
4* 0.26 70(70)
5 0.22 3(0.3)
1 0.5 1(0.1)
2 0.35 1(0.1)

0.4 3 0.3 17(17)
4* 0.26 80(80)
5 0.22 1(0.1)
1 0.5 0(0)
2 0.35 0(0)

0.5 3 0.3 32(32)
4* 0.26 67(67)
5 0.22 1(0.1)

* - true dose; @: MED
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Figure 4. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t = 0.3,
t=0.4 and t= 0.5 in Scenario 3
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Table 7. Assumption: the true dose is dose 4 based on scenario 4 (6; = 0.51, 6, =
0.51, 65 =04, 6, =0.29, 65 = 0.245)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.51 2(0.2)
2 0.51 0(0)

0.3 3 0.4 11(11)
4* 0.29 76(76)
5 0.245 11(11)
1 0.51 1(0.1))
2 0.51 0(0)

0.4 3 0.4 7(0.7)
4* 0.29 81(81)
5 0.245 11(11)
1 0.51 0(0)
2 0.51 0(0)

0.5 3 0.4 2(0.2)
4* 0.29 87(87)
5 0.245 11(11)

* - true dose; @; MED

Freq
Freq

050 075
Probability of Success

050 075
Probability of Success
t=0.5

Figure 5. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t= 0.3,
t=10.4 and t= 0.5 in Scenario 4.
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In the table 8, according to efficacy criterions, we recognize that dose3 is

satisfied with that % is at least greater than 0.5 and % is less than 1.2.
1 5

Therefore, we regard the dose 3 as the true dose before finding the MED. After

conducting the simulation study, by the simulation result of scenario 5, we certify

that the dose3 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4

and t=0.5.

In the table 9, according to efficacy criterions, we recognize that dose2 is

s . 0; . 0 .
satisfied with that 9—1 is at least greater than 0.5 and 9—’ is less than 1.2.

1 5

Therefore, we regard the dose2 as the true dose before finding the MED. After
conducting the simulation study, by the simulation result of scenario 6, we certify
that the dose2 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4
and t=0.5.
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Table 8. Assumption: the true dose is dose 3 based on scenario 5 (6; = 0.55, 6, =

0.45, 0, = 0.3, 6, = 0.255, 8 = 0.255)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.55 2(0.2)
2 0.45 4(0.4)

0.3 3* 0.3 76(76)
4 0.255 18(18)
5 0.255 0(0)
1 0.55 1(01)
2 0.45 0(0)

0.4 3* 0.3 83(83)
4 0.255 16(16)
5 0.255 0(0)
1 0.55 0(0)
2 0.45 0(0)

0.5 3* 0.3 90(90)
4 0.255 10(10)
5 0.255 0(0)

*: true dose; [@: MED

Freq

0% 075
Probability of Success

t=0.5

Freq

8

0% 075
Probability of Success

Freq
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Figure 6. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t = 0.3,
t = 0.4, t= 0.5 in Scenario 5
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Table 9. Assumption: the true dose is dose 2 based on scenario 6 (6; = 0.45, 6, =
0.24, 8; = 0.21 6, = 0.21, 65 = 0.21)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.45 1(0.1)

2% 0.24 65(65)
0.3 3 0.21 34(34)

4 0.21 0(0)

5 0.21 0(0)

1 0.45 0(0)

2* 0.24 58(58)
0.4 3 0.21 42(42)

4 0.21 0(0)

5 0.21 0(0)

1 0.45 0(0)

2* 0.24 71(71)
0.5 3 0.21 29(29)

4 0.21 0(0)

5 0.21 0(0)

* - true dose; @: MED

t=0.3 t=0.4

12000

8000~

Freq
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050 o075 100 125 000 025 050 o075
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Figure 7. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t = 0.3,
t= 0.4, t = 0.5 in Scenario 6
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In the table 10, according to efficacy criterions, we recognize that dose4 is

satisfied with that Z—i is at least greater than 0.5 and z—; is less than 1.2.
Therefore, we regard the dose 4 as the true dose before finding the MED. After
conducting the simulation study, , by the simulation result of scenario 7, we certify
that the dose4 as the MED is fitted of the true dose when we have t = 0.3, t = 0.4
and t=0.5.
In the table 11, according to efficacy criterions, we recognize that dose3 is
0 0

satisfied with that —= is at least greater than 0.5 and 2- is less than 1.2.

1 5

Therefore, we regard the dose 3 as the true dose before finding the MED. However,
after conducting the simulation study, by the simulation result of scenario 8, we
certify that the dose4 as the MED is fitted of the true dosein t = 0.3 except for t =
0.4 and t=0.5. In addition, we can find that there was an over-estimated

tendency in identifying the MED
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Table 10. Assumption: the true dose is dose 4 based on scenario 7 (6; = 0.5, 6, =
0.5, 83 =0.5 6, = 0.26, 65 = 0.22)

Threshold (t) Dose Mean Effect Frequency (%) MED
1 0.5 3(03)
2 0.5 0(0)
0.3 3 0.5 0(0)
4* 0.26 55(55)
0.22 42(42)
1 0.5 2(0.2)
2 0.5 0(0)
0.4 3 0.5 0(0)
4* 0.26 50(50)
5 0.22 48(48)
1 0.5 0(0)
2 0.5 0(0)
0.5 3 0.5 0(0)
4* 0.26 58(58)
5 0.22 42(42)

* - true dose; @: MED

t=0.3

Freq
Freq

- -

050 075 100 125 000 025 050 075
Probability of Success Probability of Success

t=0.5

Figure 8. The histogram of the
posterior  distribution of the
success probability to be fitted
with efficacy criterion in t= 0.3,
t= 0.4, t = 0.5 in Scenario 7

050 o075
Probability of Success

49



) SHAICSa

Table 11. Assumption: the true dose is dose 3 based on scenario 8 (8; = 0.58, 6, =
0.58, 65 =0.3 6, = 0.26, 65 = 0.26)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.58 1(0.1)
2 0.58 0(0)

0.3 3* 0.3 59(59)
4 0.26 40(40)
5 0.26 0(0)
1 0.58 0(0)
2 0.58 0(0)

0.4 3* 0.3 36(36)
4 0.26 64(64)
5 0.26 0(0)
1 0.58 0(0)
2 0.58 0(0)

0.5 3* 0.3 49(49)
4 0.26 51(51)
5 0.26 0(0)

* - true dose; @: MED

t=0.4
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Figure 9. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t= 0.3,
t=0.4, t= 0.5 in Scenario 8
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In the table 12, according to efficacy criterions, we recognize that dose3 is

satisfied with that Z—i is at least greater than 0.5 and z—; is less than 1.2.
Therefore, we regard the dose 3 as the true dose before finding the MED. After
conducting the simulation study, by the simulation result of scenario 9, we can
certify that the doseb is the MED but there is no fitted dose comparing with true
dose. As a result, we can’t find the MED in scenario9 because dose5 was not
considered the MED in advance.

In the table 13, according to efficacy criterions, we recognize that dose 4 is

bj 8

satisfied with that 2= is at least greater than 0.5 and _- is less than 1.2.
1 5

Therefore, we regard the dose 4 as the true dose before finding the MED. After
conducting the simulation study, by the simulation result of scenario 10, we can
certify that the dose3 is the MED but there is no fitted dose comparing with true
dose. In addition, we can find that there was an under-estimated tendency in

identifying the MED
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Table 12. Assumption: the true dose is dose 3 based on scenario 9(6; = 0.45,
0, = 0.45, 65 = 0.26 6, = 0.19, 6 = 0.19)

Threshold (t) Dose Mean Effect Frequency (%) MED

1 0.45 16(16)
2 0.45 0(0)

0.3 3* 0.26 0(0)
4 0.19 0(0)
5 0.19 84(84)
1 0.45 5(0.5)
2 0.45 0(0)

0.4 3* 0.26 0(0)
4 0.19 1(0.1)
5 0.19 94(94)
1 0.45 1(0.1)
2 0.45 0(0)

0.5 3* 0.26 0(0)
4 0.19 0(0)
5 0.19 99(99)

* - true dose; @: MED
t=0.3 t=0.4

050 075 25 200 025 050 075
Probability of Success Probability of Success
t=0.5

Figure 10. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t = 0.3,
t=0.4, t=0.5 in Scenario 9
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Table 13. Assumption: the true dose is dose 4 based on scenario 10 (8; = 0.45, 6, =
0.45, 63 = 0.45 6, = 0.24, 65 = 0.205)

Threshold (t) Dose Mean Effect Frequency (%) MED
1 0.45 17(17)
2 0.45 0(0)
0.3 3 0.45 83(83)
4* 0.24 0(0)
5 0.205 0(0)
1 0.45 5(0.5)
2 0.45 0(0)
0.4 3 0.45 95(95)
4* 0.24 0(0)
5 0.205 0(0)
1 0.45 1(0.1)
2 0.45 0(0)
0.5 3 0.45 99(99)
4* 0.24 0(0)
5 0.205 0(0)

* - true dose; @; MED

t=0.4

Freq
Freq

5000~

050 075 100 125 000 025 050 075
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Figure 10. The histogram of the
posterior distribution of the
success probability to be fitted
with efficacy criterion in t = 0.3,
t= 0.4, t = 0.5 in Scenario 10
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5. Conclusion and Discussion

Pozzi et al. (2013) suggested that the Bayesian adaptive two-stage dose finding
design to identify the MED in phasell clinical trials based on the predictive

probability when we have over-dispersed count endpoints. Our proposed method
was the dose finding method to find the MED for binary endpoints. Unfortunately,
there were a few cases of adoption into the clinical trials even though we are
interested in binary outcomes such as response or no response to treatment
intervention. In particular, our proposed method was the semi-parametric model
with monotonic constraint of the mean effect of the five dose groups. In addition,
our proposed method adopted the Bayesian Model Averaging which is averaging
presented ten different models to decrease the model uncertainty. Furthermore,
pre-specified efficacy criterions were included into our proposed method to make
decision which dose level is the MED.

To accomplish our goal in this study, the prior distributions for satisfied with
efficacy criterions and their predictive distributions were defined with the efficacy
criterions mentioned by Pozzi et al. (2013). We met a challenge to overcome draw
samples from the posterior distribution. However, this problem had a variety of
difficulties to obtain sample directly from the posterior distribution. Therefore, we
approximate the integral of the posterior distribution through the Sampling-
Importance Resampling algorithm proposed by Rubin (1983) and presented by
Smith and Gelfand (1992).

Two different simulation scenarios were used to test our proposed model in
adopting the Bayesian Model Averaging. For two simulation scenarios, the clinical
threshold was set to t=0.3, t=0.4 and t= 0.5, respectively. As well, eight

different simulation scenarios were used to test our proposed model in each
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different model of the mean effect of the dose groups, respectively. The likelihood
data sets were sampled from the binomial random distribution for each case.

After checking the model relevancy to identify the MED, the cases of the
adoption of the Bayesian Model Averaging were well accurately suited to identify
the MED coincided with the true dose. On the contrary, the case of each different
model was not stable to identify the MED coincided with the true dose.

Unfortunately, there was limitation to show the appropriateness of our
proposed model. One was that we did not adopt in diverse real data to test our
proposed model. Another was to find the most suitable scenario in generating the
binomial random variables in order to be satisfied with the efficacy criterions.

In the future study, it will be more useful approach if we extend the sample

size determination to identify the MED to apply in phaseIl clinical trials.
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Appendix

For convenience, in order to handling only one parameter a; with fixing the
parameter, f(;, we use the re-parameterization method. For binary response
variable, Y;; given the probability of the success p;;, is binomial distributed:
Y;j~bin(n;,p;). In addition, we regard that hyper-parameter of the binomial
distribution, p;, is beta distributed since we employ a conjugate beta prior

distribution of the binomial distribution, p;j~beta(a;, B;). Thus, because of the

aj 8
, Weuse a; x

mean of beta distribution, 8§; = —— f
a]-+[>’] 1—9]'

with increasing 6. Finally,

we can find that % is monotonically increasing. That is, with increasing 6;, «;
is monotonically increasing. We have the a;’s are proportional to the mean effect
8;. For the beta distribution with two parameters a; and f;, we should make
simple expression which can account for shape parameter a; with fixing §; on
B. Without logical description, we could not explain the model with ease. Therefore,
we use the re-parameterization concept to describe only one parameter among

aj = (aq, az, Az, Ay, As) of the beta prior distribution. We know that the beta

distribution is given by

_ F((Zj-i—ﬁj) a

. i—1 —1
n(p); @, B;) = r(a;)r(ﬁj)p'] A-ppfitt, 0<p;<1,

where a; >0, f; >0 and I'(-) is the gamma function. The mean and variance of

p; are, respectively,
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aj

E(p;) =
N ajbBj
Var(p]) - (aj+/3j)2(aj+/3’j+1)'

aj
a'j+[i’j

To make re-parameterization of beta density, we let the mean effect 6; =

and precision parameter be ¢; = a; + ;. Because a; = u;j¢; and B; = (1 —6;)¢;,

we can re-write as follows;

E(py) = 6
7eh
var(p;) = 1+q;j,

where V(Hj) = 0;(1 — 6;). Therefore, we can get a new beta density as follows;

) 3 () 0j¢j-1
f(pji 6.9) = r@arrazayen P

1 —pp=oI®t, 0 <p; < 1.

If we let 0; = .
.

B, and ¢; = a; + B, we find that p; ~ beta(6;¢,(1 — 6)¢) and
] F]

0; <1 s .
- with increasing 6},

1-6;

0; .
6;a; + 6, = a;. Thus, we have a; = 1_—2}_[)’. Using a; «

9;

we find that
1-6

- is monotonically increasing. That is, when 6; increases, «; is
J
monotonically increasing. The parameter (3 is assumed identical across dose
groups to reach an identifiable condition; log(f) ~N (0, aﬁ), which correspond to
B around one on average. Next, we should consider the method that the parameter

a; of the beta prior distribution is to be fitted well in the semi-parametric model

through the Bayesian Model Averaging under the monotonic constraint.
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