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INTRODUCTION

Cardiac magnetic resonance (CMR) imaging is widely used 
in various fields related to cardiovascular diseases (1). The 
main advantage of CMR is its potential for characterization 
of myocardial tissues. Recent technological developments 
have enabled T1-mapping, which allows the instant 
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detection of myocardial abnormalities beyond the ability 
of detection by conventional qualitative assessment. T1 
and T2 mapping CMR sequences are rapidly becoming the 
gold standard and have been integrated into routine CMR 
imaging protocols (2).

The major advantage of T1 mapping sequences is 
their potential for quantitative objective assessment of 
myocardial abnormalities. Conventional signal intensity-
based CMR techniques involve qualitative nonparametric 
sequences. Although these sequences allow semi 
quantitative analysis using region-of-interest (ROI) 
or threshold-based methods, their ability is limited to 
the evaluation of diffuse myocardial changes such as 
myocarditis or diffuse fibrosis (3, 4). In contrast, T1 and 
T1 mappings are parametric quantitative sequences, which 
provide tissue-specific T1 and T2 values. They allow the 
comparison of quantified myocardial parameters with 
normal reference values acquired under the same scanning 
conditions such as scanner type, contrast agent, and scan 
time (5). The other advantage of T1 and T2 mapping is the 

https://doi.org/10.3348/kjr.2017.18.1.113
pISSN 1229-6929 · eISSN 2005-8330

Review Article | Cardiovascular ImagingOriginal Article | Experimental and Others

http://crossmark.crossref.org/dialog/?doi=10.3348/kjr.2017.18.1.113&domain=pdf&date_stamp=2017-1-5


114

Kim et al.

Korean J Radiol 18(1), Jan/Feb 2017 kjronline.org

simplicity of T1 and T2 map acquisition and parametric T1 
and T2 value measurement. Myocardial T1 and T2 maps can 
be generated using the single breath-hold technique (6-8). 

T1 times can be determined either using manual or 
automatic ROIs or by applying automatic thresholds. 
Furthermore, the measurements are obtained directly on 
the maps, wherever they are displayed, and the use of a 
picture archiving and communications system is dispensable 
(9). Native T1, T2, and extracellular volume fraction (ECV) 
values are representative parameters acquired by T1 and T2 
mapping CMR imaging (Fig. 1). In 2013, Moon et al. (5) 
documented the recommendations for T1 mapping sequence 
acquisition and quantification for clinical and research use, 
based on published data and expert consensus.

In the present study, we will review the T1 and T2 
mapping parameters, a few of the available T1 and T2 
mapping sequence techniques, and the clinical feasibility 
of T1 and T2 mapping parameters in various aspects of 
cardiomyopathy.

T1 and T2 Mapping Parameters

Native T1
T1 relaxation time, which is also referred to as spin-

lattice or longitudinal relaxation time, is a biological 
magnetic resonance (MR) parameter. T1 relaxation time 
indicates how quickly nuclei recover towards thermodynamic 
equilibrium along the B0 direction. The value of T1 
relaxation time depends on the rate of energy transfer from 

an excited proton to its surroundings. The native T1 value is 
a tissue-specific time constant used to distinguish different 
tissues. The rate of energy transfer varies according to the 
state of the molecular environment (e.g., molecular size, 
shape, viscosity, temperature, and magnetic field strength). 
T1 values increase with the increase in field strength (10). 
T1 values reported by various studies vary slightly according 
to the sequence used. Normal myocardial native T1 values 
acquired using the modified Look-Locker inversion recovery 
(MOLLI) MR method have been reported to be 930 ± 21 ms 
at 1.5 T and 1052 ± 23 ms at 3T (11). Table 1 presents the 
reference T1 mapping values reported by various studies 
according to the acquisition sequences and field strengths 
(Table 1). The native T1 value of the myocardium is also 
dependent on age and sex—men and older subjects exhibit 
slightly higher values than do women and younger subjects 
(2). Tissues generally contain water and a variety of large 
molecules. Since pathological processes alter the water 
composition or local molecular environment of tissues, they 
also generally alter the T1 values. Representative myocardial 
pathologies leading to T1 changes include diffuse 
myocardial fibrosis (12-14), edema (15-17), inflammation 
(18), infiltrative diseases (9) such as amyloidosis (12, 
13), Fabry disease (FD) (19), and hemosiderosis (20, 21), 
a condition where abnormal substances are deposited in 
the myocardium. Native T1 is thus regarded as a promising 
method for the detection of myocardial abnormalities 
without the necessity of administration of gadolinium 
contrast agent.

Fig. 1. Representative short-axis images of native T1, post-contrast T1 and T2, and extracellular volume fraction (ECV) maps of 
control subject. Pixels in generated map represent corresponding T1, T2, and ECV values of regions of interest in myocardium or other cardiac 
structures. Myocardium and other cardiovascular structures each have tissue-specific T1, T2, and ECV values.
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T2 Relaxation Time
T2 relaxation time, also referred to as spin-spin or 

transverse relaxation time, is another biological parameter 
of CMR imaging. Similar to T1 relaxation time, T2 relaxation 
time is also a tissue-specific time parameter used to 
distinguish between normal and abnormal myocardial 
tissues. The increase in water content of myocardial tissues 
is the main cause for longer T2 relaxation times. Therefore, 
myocardial edema is the main pathology responsible for 
variation in T2 values. T2 mapping sequences are useful for 
the detection of myocardial edema in patients with acute 
myocardial infarction (AMI) (22), myocarditis (23, 24), 
stress cardiomyopathy (23), sarcoidosis (25), and cardiac 
allograft rejection (26). Normal myocardial T2 values 
acquired using steady-state free precession (SSFP) MR 
imaging have been reported to be 52.18 ± 3.4 ms at 1.5T 
(27) and 45.1 ms at 3T (28). 

Extracellular Volume Fraction Values
The myocardium can be divided into its cellular and 

extracellular or interstitial components (29, 30). The cellular 
components include cardiac muscles (involuntary striated 
muscle fibers), which are interconnected by intercalated 
discs, structural components, nuclei, sarcolemma, 
sarcoplasmic reticulum, and vascular and neuronal elements. 
The interstitial component is the complex three-dimensional 
extracellular space in which the cellular components of the 
myocardium are embedded (31); this space comprises fluid, 
collagen, elastin, fibrils, and other glycoproteins (32). The 
interstitium is a complex and dynamic environment, which 
is vital for normal cardiac structure and function. Interstitial 
extracellular space expansion is a distinctive feature of 
myocardial pathology and an important factor in ventricular 
remodeling. It could also be a potential therapeutic target 
(33). Myocardial fibrosis, a common pathology of end-
stage heart diseases and a major independent predictor of 
a major adverse cardiac event (31), is the major cause of 
extracellular space expansion. Other pathologies such as 
edema and inflammation may also cause extracellular space 
expansion. Previously, invasive endomyocardial biopsy was 
the only available method for the quantification of diffuse 
fibrosis (33). However, currently, T1 mapping techniques 
have enabled the quantitative estimation of myocardial 
interstitial remodeling and extracellular space expansion, 
and they are increasingly being used in the evaluation of 
myocardial ECV (33). The robustness of CMR-quantified ECV 
quantification has been proven by several studies (34-36). Ta
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In a state of dynamic equilibrium with regard to contrast 
distribution between the blood cavity and myocardium, the 
partition coefficient for the two structures can be calculated 
from their pre and post-contrast T1 values. The myocardial 
ECV is derived by correcting for the hematocrit level (37). It 
can be calculated using the following equation:

ECV = {(ΔR1 of myocardium / ΔR1 of left ventricular [LV] 
blood pool)} × (1 - hematocrit level), where R1 = 1 / T1 
and ΔR1 = post-contrast R1 - pre-contrast R1.

Post-contrast T1 values are known to vary depending on 
the gadolinium dosage and clearance rate, scanning time, 
body composition, and hematocrit levels. However, ECV 
is known to be a more stable and biologically significant 
biomarker (38, 39).

Myocardial ECVs in healthy volunteers were reported to 
be similar at field strengths of 1.5T (0.25 ± 0.04) and 3T 
(0.26 ± 0.04) (Table 1) (40). According to the consensus 
recommendation of Moon et al. (5), a “bolus only” injection 

is sufficient for ECV measurement, while, for post-contrast 
T1 mapping acquisition time point, a minimum delay of 15 
minutes is recommended for reaching a state of dynamic 
equilibrium (34, 41). According to a recent multi-ethnic 
study of atherosclerosis based on the evaluation of CMR 
data, although women exhibited higher ECV than men, 
they exhibited relatively less ECV change over time (42). 
In healthy subjects, ECV is known to increase slightly 
with age (39). It allows the quantification of diffuse 
myocardial pathologies and exhibits great potential for the 
visualization of fibrosis, edema, amyloid, iron overload, and 
lipids (43).

Technical Review

Evolution of the Cardiac T1 Mapping Sequence
Cardiac T1 mapping has attracted attention as an 

important diagnostic imaging tool. As recently as a few 

Table 2. Imaging Parameters of T1 and T2 Mapping Sequences

Sequence
T1 Mapping (Ref.) T2 Mapping (Ref.)

MOLLI (7) MOLLI (10) ShMOLLI (5) SASHA (6) T2p-SSFP (5) T2p-SSFP (59)
Magnetic field 1.5T 3T 1.5T and 3T 1.5T 1.5T 3T

Preparation
Non-selective 
  inversion 
  recovery

Non-selective 
  inversion 
  recovery

Non-selective 
  inversion 
  recovery

Non-selective 
  saturation 
  recovery

Non-selective
  T2-preparation

Non-selective
  T2-preparation

Flip angle 35° 35° 35° 70° 40° 70°
Image matrix 192 × 128 256 × 180 144 × 192 108 × 192 96 × 160 176 × 144
Acquisition Single shot SSFP Single shot SSFP Single shot SSFP Single shot SSFP Single shot SSFP Single shot SSFP
Bandwidth 
  (Hz/pixel)

1090 1045–1028 1090 1090 1488 1093

Parallel 
  acquisition

SENSE/2 GRAPPA/2 GRAPPA/2 GRAPPA/2 GRAPPA/2 GRAPPA/2

Slice thickness 8 mm 6 mm 8 mm 8 mm 8 mm 6 mm
TI increment 80 ms - 80 ms 76 ms NA NA
Acquisition 
  window

202 ms - 206 ms 175 ms - -

T2-prep time NA NA NA NA 0, 24, 55 (ms) 0, 24, 55 (ms)
Inversion/
  saturation

3 3 3 9 NA NA

Acquisition    
  heartbeats

3, 3, 5 3, 3, 5 5, 1, 1 10 3 3

Recovery 
  heartbeats

3, 3, 1 3, 3, 1 1, 1, 1 0 4 4

Acquisition time 17 RR 17 RR 9 RR 10 RR 7 RR 7 RR
TI/saturation time 100 ms 91 ms 100 ms 119–885 ms NA NA
Echo spacing 2.5 ms 2.6–2.7 ms 2.14 ms 2.6 ms 2.6 ms 2.4 ms

GRAPPA = generalized autocalibrating partially parallel acquisition, MOLLI = modified Look-Locker inversion recovery, NA = not applicable, 
RR = the time inverval between two consecutive R waves in the electrocardiogram, SASHA = saturation recovery single shot acquisition, 
SENSE = sensitivity encoding for fast MRI, ShMOLLI = shortened MOLLI, SSFP = steady-state free precession, TI = inversion time
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years ago, T1 mapping was challenging because of severe 
time constraints related to cardiac and respiratory motion 
(44). Standard inversion recovery (IR) measurement 
requires a long repetition time, approximately five times as 
long as the T1 value, in order to allow complete restoration 
of longitudinal magnetization (45). This measurement 
technique is not applicable to the heart because the 
breath-hold time is insufficient for calculating an accurate 
T1 value, especially since samples are required for at 
least six to ten time points along the T1 recovery curve 
(46). The Look-Locker (LL) sequence was introduced (47) 
for the measurement of T1 relaxation times at multiple 
time points after an initial preparation pulse. It was 
subsequently adapted to the MOLLI (48) sequence. In 
particular, the MOLLI sequence was the first to allow pixel-
wise T1 mapping for cardiac MR imaging. It facilitated 
intuitive interpretation and quantitative analysis using 
high-resolution T1 maps and inspired various T1 mapping 
methods. The recently developed saturation recovery 
(SR) single-shot acquisition (SASHA) and saturation 
pulse prepared heart-rate-independent inversion recovery 
techniques have been shown to outperform MOLLI (7, 
49). Several myocardial T1 mapping methods currently 
incorporate single breath-holding with electrocardiogram 

gating to freeze cardiac motion on a specific phase, 
thus eliminating tissue motion, and employ longitudinal 
magnetization preparation pulses such as inversion or SR 
pulses to yield a heavy T1 weighting. Active T1 mapping 
development is progressing towards achieving improved 
accuracy and precision in as short a scan time as possible. 
We will briefly review representative T1 mapping methods 
including the LL, MOLLI, shortened MOLLI (ShMOLLI), and 
SASHA methods to clarify the basic concepts and limitations 
of each technique. Although this review mainly focuses on 
T1 mapping methods, we will briefly address one of the T2 
mapping methods as well as the parameters for T1 and T2 
mapping sequences (Table 2) to facilitate understanding. 

Look-Locker Sequence
The LL sequence, also known as the “inversion time (TI) 

scout” sequence, has been broadly implemented in most MR 
imaging protocols. In 1970, Look and Locker (47) proposed 
an efficient method for the measurement of T1 time using 
a continuous and periodic train of radiofrequency (RF) 
pulses after the inversion pulse. Conditional upon a number 
of factors, including the type of readout sequence and 
tissue characteristics, longitudinal magnetization recovers 
to steady-state quicker than undisturbed equilibrium 

Fig. 2. Apparent T1* and true T1 recovery. Comparison of longitudinal magnetization using standard inversion recovery and Look–Locker 
(LL) T1 mapping methods. With LL method, T1 recovery to steady state is achieved more rapidly and often denoted as apparent T1 (T1*). IR = 
inversion recovery, RF = radiofrequency
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magnetization (50), as shown in Figure 2.
For this reason, the LL sequence measures the apparent 

recovery time (referred to as T1*) instead of “true T1”, the 
actual longitudinal recovery time. T1* is usually less than 
the true T1.

The apparent recovery curve follows a three-parameter 
exponential recovery model, S(t) = A - B exp (-t / T1*), 
where S(t) is the signal intensity at TI t. The values of A, 
B, and T1* are estimated by curve-fitting using the three-
parameter model. T1* can be corrected by applying an LL 
correction: T1 = T1* (B / A-1) (50).

The LL method acquires approximately 20 images with 
a variety of readout sequences such as the SSFP and fast 
low-angle shot sequences throughout the cardiac cycle, 
without regard for gating to a specific phase in order to 
mitigate cardiac motion during a single long breath-hold 
(51). Therefore, it would be difficult to create a pixel-based 
T1 map from an LL sequence because of the variability of 
heart rate (HR) (52) as well as the partial volume effect (53) 
resulting from physiological motion and misregistration.

Modified Look-Locker Inversion Recovery Sequence
The MOLLI technique was designed to overcome the 

limitations of the LL sequence. It was first brought into 
widespread use for myocardial T1 mapping. The MOLLI 
technique is used to acquire IR-weighted images at 
different prescribed TIs using single-slice, single-shot 
readouts throughout one breath-hold within a cardiac cycle 
in a specific phase, following which the images are sorted 
into a single data set according to consecutive TIs (48). 
The original MOLLI was a 3(3)3(3)5 protocol. This protocol 
code indicates the number of inversion pulses and samples 
and the recovery period—the unbracketed numbers are 
the numbers of images acquired after the inversion pulse, 
and the bracketed ones are the numbers of RR intervals 
for T1 recovery. Figure 3 presents a simple example of a 
MOLLI sequence with a 5(3)3 protocol (54). This protocol 
involves two inversion pulses and a recovery period of 
three RR intervals, with five or three images acquired 
after the first and second inversions. To obtain a pixel-
wise T1 map, the acquired images are sorted according to 
the TI, following which, three-parameter model fitting, 
including LL correction, is performed as described for the 

Fig. 3. Modified Look–Locker inversion recovery (MOLLI) with 5(3)3 protocol. MOLLI method features several modifications intended 
to improve accuracy and precision. This protocol employs two inversions and acquires three or five images after first and second inversions, 
with three RR intervals for T1 recovery. Images are sorted according to inversion time to perform pixel-wise three-parameter fitting. ECG = 
electrocardiogram, RR = the time interval between two consecutive R waves in the electrocardiogram, SSFP = steady-state free precession
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LL method. Although MOLLI uses a gated-SSFP readout, 
the three-parameter model fitting and LL correction are 
adequately effective when using a low flip angle on the 
readout. To achieve a superior signal-to-noise ratio and 
reproducibility, a balanced SSFP readout is employed along 
with aggressive parallel imaging techniques, thus providing 
a narrow acquisition window and minimizing myocardial 
misregistration (44). The sensitivity of MOLLI towards 
HR can be mitigated by employing a single inversion or 
increasing the time between inversions to ensure a more 
complete recovery (10, 40, 54). 

Shortened Modified Look-Locker Inversion Recovery 
Sequence

The ShMOLLI sequence is one modification of the MOLLI 
sequence. It provides a faster acquisition time within a 
short breath-hold duration of only nine heartbeats, in 
contrast to MOLLI, which requires a 17-heartbeat duration 
and is less HR-dependent (6).The ShMOLLI sequence is very 
similar to MOLLI. However, the former does not require the 
full recovery of longitudinal magnetization because of the 

conditional data analysis algorithm, as shown in Figure 4. 
During the process of T1 estimation, the conditional data 
analysis algorithm distinguishes a set of samples according 
to the T1 times using curve-fitting errors. In regions of long 
T1, the set of samples from the first inversion is fitted using 
the three-parameter model, while the samples from the first 
and second inversions are fitted for short T1. For very short 
T1, the samples from all inversions are used. ShMOLLI with 
seven samples might exhibit increased variability because 
of the insufficient number of images for T1 curve-fitting. 
Reduced precision with ShMOLLI is considered a trade-off 
for reduced scan time and breath-hold requirement.

Saturation Recovery Single-Shot Acquisition Sequence
Saturation recovery methods for T1 mapping have begun to 

attract attention as surrogates for IR methods. The SR pulse 
non-selectively saturates the longitudinal magnetization to 
zero, independent of previous acquisitions. Recovery periods 
are, therefore, not required between successive saturation 
pulses because recovery always begins from a saturated 
state. The best-known T1 method is SASHA (7).
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Fig. 4. Shortened modified Look–Locker inversion recovery (ShMOLLI). ShMOLLI method employs conditional analysis algorithm that 
can distinguish between short and long T1 values using curve-fitting errors and, therefore, features shorter scan time than original MOLLI. 
Long T1 samples use set of samples from first inversion to estimate T1, whereas short T1 samples use set of samples from all inversions. ECG = 
electrocardiogram, SSFP = steady-state free precession, TI = Inversion time
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Saturation recovery single-shot acquisition protocols involve 
the acquisition of ten single-shot balanced steady-state 
free precession (bSSFP) images over consecutive heartbeats. 
The first image is initially acquired without any saturation 
preparation, using equilibrium magnetization as an anchor 
point for curve-fitting, and the remaining images are acquired 
after a saturation pulse with a different saturation delay 
over the RR interval (7), as shown in Figure 5. The accuracy 
and precision of the T1 map varies depending on the use 
of a two or three-parameter fitting model. Two-parameter 
model fitting, defined by S(t) = A (1 - exp [-t / T1]), greatly 
reduces variability at the cost of systematic bias resulting 
from the assumption of ideal saturation efficiency. In other 
words, it can improve the precision of the T1 map, but at 
the cost of accuracy. On the other hand, the three-parameter 
model, defined by S(t) = A - Bexp (-t / T1), is unaffected by 
any imperfection in the saturation RF pulse; it is, therefore, 
highly accurate but sensitive to noise. In the fitting model, 
A indicates the scaling factor, and B indicates the saturation 
efficiency (10, 55).

Recent improvements to the SASHA method include the 
application of a variable readout flip angle, two-parameter 
fitting, and high-performance saturation pulses, all of 
which have remarkably improved its accuracy and precision 

(56). To improve the saturation efficiency, an adiabatic or 
optimized RF pulse is needed to more completely saturate 
the residual longitudinal magnetization of the myocardium 
in the B0 and B1 field variations (57).

Accuracy and Precision of T1 Mapping
In T1 mapping techniques, the accuracy and precision of 

the T1 map is influenced by whether or not magnetization 
preparation pulses are used between IR and SR pulses.

The IR pulse inverts the longitudinal magnetization 
vectors from +M0 to -M0. Afterwards, the inverted vectors 
begin their recovery from -M0 to +M0. This wide dynamic 
range can help acquire various IR-weighted images and 
improve the precision of T1 mapping. In contrast, the SR 
pulse is used for nullifying the longitudinal magnetization 
vectors by followed a spoiling gradient pulse. The initial 
part of T1 recovery has poor signal-to-noise ratio because 
of insufficient T1 recovery. The precision of T1 maps 
obtained from SR-weighted images is lower compared to 
that obtained with the IR pulse (10, 58).

In terms of accuracy of T1 maps, SR pulse sequences 
can produce T1 maps of excellent accuracy, because the 
nullifying of the SR pulse relieves the effect of previous 
longitudinal magnetization, thus rendering the T1 map 

Fig. 5. Saturation recovery single shot (SASHA). SASHA method acquires data at successive heartbeats by saturation recovery over RR-
interval at different saturation times, using initial unperturbed image. Accuracy and precision depend on choice of two- or three-parameter 
fitting model. ECG = electrocardiogram, RR = the time inverval between two consecutive R waves in the electrocardiogram
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less sensitive to T2-dependence, magnetization transfer 
effect, and dependence on saturation efficiency. However, 
with IR pulse sequences, the accuracy of the T1 map is 
largely influenced by the degree of restoration of inverted 
magnetization vectors before the succeeding IR pulse. 
Other factors affecting the accuracy of T1 maps with IR 
pulse sequences are T2-dependence, magnetization transfer 
effect, and dependence on inversion efficiency (10, 58).

Myocardial T2 Mapping Technique
T2 mapping is another promising tissue characterization 

technique. Two types of T2 mapping sequences are used 
in cardiac MR imaging—dark-blood turbo spin-echo (TSE) 
and bright-blood T2-preparation pulse-based sequences. 
TSE-based T2 mapping has some limitations, including 
the appearance of ghosting artifacts from blood flow, 
which result in an increase in the appearance of bright 
subendocardial rims, and through-plane motion, which 
results in signal loss and can significantly limit the clinical 
applicability of this method (51, 59, 60). In contrast, 
T2-preparation-based methods are less sensitive to TSE-
associated artifacts (59, 61), and a T2-decay curve can 
be created using spin-spin relaxation to adjust the T2 
preparation time. This method involves two steps—
a T2-preparation module and a rapid imaging sequence 
that includes bSSFP or rapid gradient echo sequence, as 
illustrated in Figure 6. The T2-preparation module comprises 
non-selective 90° and 180° pulses to create spin-spin 

relaxation between two 90° pulses. After preparation, the 
magnitude of longitudinal magnetization depends on the 
degree of T2 decay. This magnitude can be adjusted by 
varying the duration of the T2-preparation module. The 
imaging sequence, either a balanced SSFP or gradient echo 
sequence, is run immediately after preparation. A T2 map is 
generated by two-parameter model fitting, defined by S(t) 
= A exp (-t / T2), where S indicates the signal intensity, A, 
the scaling factor, and t, the T2 preparation time.

Clinical Applications of T1 and T2 Mapping 
Sequences

Non-Ischemic Cardiomyopathy

Dilated Cardiomyopathy 
Dilated cardiomyopathy (DCM) is a cardiac muscle disease 

with unknown or variable etiology. It is characterized by 
ventricular dilation and impaired systolic function without 
evidence of other loading conditions (62, 63). Diffuse 
myocardial fibrosis is a fundamental factor for cardiac 
remodeling (3, 62, 64). The degree of myocardial fibrosis 
is a prognostic factor associated with the progression of 
cardiac dysfunction (65). Late gadolinium enhancement 
(LGE) is a powerful imaging tool that can detect the 
presence, location, and extent of myocardial fibrosis (66). 
In DCM, mid-wall fibrosis, determined by LGE, is predictive 
of the combined endpoint of an adverse cardiac outcome 

Fig. 6. T2 mapping scheme with T2 preparation modules. T2-weighted images are acquired with different T2 preparation times, with same 
trigger delay time (TD), to ensure same cardiac cycle phase during breath-hold. T1 recovery time is needed to allow complete T1 recovery. This 
preparation module employs 90° and 180° pulses to create T2 decay via spin-spin relaxation during T2 preparation time. Module concludes 
with spoiler gradient for removal of residual transverse magnetization. ECG = electrocardiogram, GRE = gradient echo, SSFP = steady-state free 
precession
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(67-70). However, LGE often fails to detect diffuse fibrosis 
in the absence of normal myocardium, since the detection 
of fibrotic myocardium on LGE images is based on the 
difference in signal intensity between fibrotic and normal 
myocardium (3). In fact, many patients with DCM do not 
exhibit myocardial LGE (3, 64, 67). However, patients with 
LGE-negative myocardium with a normal appearance have 
been reported to exhibit significantly higher native T1 and 
ECV values than normal control patients (Fig. 7) (14, 64). 
In patients with DCM, native T1 and ECV values are known 
to be significantly higher and post-contrast T1 values are 
known to be lower compared to those of control subjects 
(14, 71, 72). In addition, patients with DCM also exhibit 
increased T2 values (73-75). Native T1 imaging can help 
differentiate between normal and abnormal myocardia with 
a high level of diagnostic accuracy (71). ECV, which reflects 
the myocardial collagen content in patients with DCM, is 
also useful (76). Native T1 and ECV values correlate with LV 
functional parameters (64, 73) such as LV ejection fraction, 
global strain, and other biomarkers (14). Additionally, ECV 
can detect diffuse subclinical myocardial abnormalities 
even in cases of early-stage DCM (76, 77). The increase in 
T2 signal is possibly due to myocardial edema consequent 
to injury and inflammation related to the process of 
cardiomyopathy (75, 78). Recently, native T1 and ECV values 

were reported to be independent prognostic factors of 
adverse clinical outcome in patients with DCM (37, 79, 80).

Hypertrophic Cardiomyopathy
Hypertrophic cardiomyopathy (HCMP) is the most common 

heritable myocardial disease. It is caused by mutations in 
genes that encode sarcomeric proteins (81). The disease is 
diagnosed morphologically and defined by the presence of 
a hypertrophic, non-dilated LV in the absence of another 
cause of LV hypertrophy (LVH) (63). Myocardial fibrosis 
is also a hallmark of HCMP (82). Cardiac MR imaging is 
useful for the evaluation of myocardial morphology as 
well as the extent of myocardial fibrosis in patients with 
HCMP. Significant increases in native T1 and ECV values 
are observed in regions affected by HCMP. In patients 
with HCMP, T1 mapping is useful for detecting myocardial 
fibrosis while overcoming the limitations of LGE (Fig. 8). 
Native T1 sequences can depict the presence and pattern of 
myocardial fibrosis even in fibrotic areas that go undetected 
by LGE (14, 83). In addition, native T1 values have been 
found to correlate with disease severity and increase along 
with increase in wall thickness in HCMP (14). Post-contrast 
T1 values, which have been correlated with diastolic 
dysfunction, are significantly low in patients with HCMP 
because of diffuse interstitial fibrosis (84). In patients with 
HCMP, the ECV values have also been found to correlate well 
with the collagen volume fraction. Previous studies have 
suggested that ECV could be a potential biomarker of HCMP, 
which could help distinguish between groups with and 

Fig. 7. T1 mapping in dilated cardiomyopathy (DCM). DCM is 
characterized by ventricular dilation and systolic dysfunction without 
other loading conditions. Approximately 30% of patients with DCM 
exhibit mid-wall late gadolinium enhancement (LGE) in regions 
that do not correspond to coronary artery territories. This imaging 
characteristic is known to be prognostic factor for DCM. However, 
many patients do not exhibit LGE—they usually present with increased 
native T1 and extracellular volume fraction values in areas without 
LGE. T1 mapping can detect diffuse myocardial abnormalities in areas 
that appear normal on LGE sequences. 
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Fig. 8. T1 mapping in hypertrophic cardiomyopathy (HCMP). 
HCMP is cardiac muscle disease characterized by abnormal left ventricle 
hypertrophy (LVH) in absence of another cause of LVH. Multifocal late 
gadolinium enhancement (LGE) is usually observed in hypertrophied 
muscles. T1 mapping can detect myocardial abnormalities in areas that 
do not exhibit LGE.
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without sarcomere-related gene mutations (85).

Fabry Disease
Fabry disease is an X-linked glycosphingolipid storage 

disorder caused by mutation of the gene that encodes 
alpha-galactosidase, resulting in deficient enzyme activity 
(86).

The most common cardiac manifestation of FD is LVH, 
followed by conduction disorders, valve dysfunction, 
and arrhythmias, resulting from the accumulation of 
globotriaosylceramide in cardiomyocytes, valves, and the 
conduction system (86). It is important to differentiate FD 
from other myopathies, such as HCMP, that can cause LVH. 
Notably, 50% of patients with FD exhibit the characteristic 
feature of LGE on the inferolateral LV wall (87). 

In addition to the evaluation of LGE, T1 mapping is a 
useful complementary tool for the evaluation of cardiac 
involvement in FD (Fig. 9). Decreased T1 value is a 
distinctive feature of myocardial involvement in FD, and it 
is especially significant in the LV septum. 

This phenomenon occurs because the presence of 
glycosphingolipids in myocytes causes a reduction in the 
T1 value. A previous study demonstrated that the decrease 
in the septal native T1 value is a characteristic feature 
that can help distinguish FD from other cardiomyopathies 
(77). Reduction in native T1 value prior to the onset of LVH 
can be an early marker of FD and has been correlated with 
diastolic and systolic dysfunction (88). In contrast to other 

diseases, FD does not cause variations in the ECV (89).

Amyloidosis
Amyloidosis is a disease characterized by the deposition 

of insoluble misfolded protein aggregates with a 
characteristic β-sheet structure in tissues throughout the 
body (90, 91). Cardiac involvement is common with the 
immunoglobulin light chain (AL) and transthyretin types of 
amyloidosis, and it is associated with poor prognosis (92), 
particularly in the AL type of the disease (93, 94). Cardiac 
amyloidosis, histologically characterized by infiltration and 
expansion of the interstitial space by amyloid proteins, 
is usually diagnosed by an endomyocardial biopsy (95). 
The appearance of global, circumferential subendocardial 
LGE with distribution in non-coronary arterial regions is a 
hallmark of cardiac involvement in amyloidosis. However, 
characteristic LGE patterns appear late in the disease 
course and do not always occur (12). T1 mapping is a 
useful noninvasive method for the diagnosis of cardiac 
amyloidosis. Marked increases in native T1 and ECV values 
are distinguishing features of cardiac amyloidosis (Fig. 10) 
(96, 97). The use of gadolinium contrast agent is relatively 
contraindicated in cases of severe renal failure, which is 
common in patients with systemic AL amyloidosis (98). 
Therefore, native T1 is a useful tool for the diagnosis of 
cardiac amyloidosis. In a previous study, Karamitsos et al. 
(12) proved that native T1 value is reflective of disease 

Fig. 9. T1 mapping in Fabry disease (FD). Left ventricle 
hypertrophy and late gadolinium enhancement (LGE) of inferolateral 
left ventricle wall are characteristic features of FD. However, only 50% 
of patients with FD exhibit LGE. In T1 mapping, decrease in septal 
native T1 value is characteristic feature that distinguishes FD from 
other cardiomyopathies.
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Fig. 10. T1 and T2 mapping in amyloidosis. Global, 
circumferential, subendocardial late gadolinium enhancement (LGE) 
with distribution in non-coronary arterial territory is hallmark of 
amyloidosis. However, characteristic LGE patterns do not always 
occur. In patients with amyloidosis, marked elevations in native T1 
and extracellular volume fraction values are characteristic imaging 
features, which do not overlap with those of other diseases. However, 
T2 values are not increased in patients with amyloidosis.
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severity and correlates well with the indices of systolic 
and diastolic dysfunction. Native T1 is useful for not 
only diagnosis, but also quantification of the amyloidosis 
burden and monitoring of disease progression (99, 100). 
In amyloidosis, ECV is also a potentially useful parameter 
that enables direct measurement of the amyloid burden and 
serves as an early marker for diagnosis, disease monitoring, 
and prognosis. In a recent study, Banypersad et al. (99) 
demonstrated that native T1 values > 1044 ms and ECV 
values > 45% were associated with hazard ratios for death 
of 3.84 (95% confidence interval [CI], 1.53–9.61) and 5.39 
(95% CI, 1.24–23.4), respectively. Therefore, measurement 
of native myocardial T1 and ECV values facilitates the risk 
stratification of patients with cardiac amyloidosis. However, 
T2 values do not exhibit significant changes with this 
condition and, therefore, would not provide much diagnostic 
assistance (101).

Myocarditis
Myocarditis is an acute or chronic inflammatory process 

of the myocardium caused by various toxins, drugs, or 
infectious agents (63). Diagnosis of myocarditis is clinically 
challenging because its clinical symptoms are nonspecific 
and similar to those of other diseases such as the acute 
coronary syndrome. Approximately 75% of patients with 
acute chest pain and elevated serum troponin levels at 
presentation receive a diagnosis of acute myocarditis 
(102). However, such diagnoses were often made on a 
clinical basis because of the lack of a reliable noninvasive 

test (103). The LGE pattern associated with myocarditis is 
predominantly subepicardial and mid-wall (84.4%) in nature 
and localized most frequently to the lateral and inferior 
walls (104). However, LGE in myocarditis is often subtle. 
T1-mapping CMR imaging can be a useful noninvasive tool 
for the diagnosis of myocarditis. In particular, non-contrast 
mapping parameters such as T1 and T2 values are useful 
for the diagnosis of the disease (Fig. 11). In patients with 
myocarditis, native T1 values are significantly elevated 
as a result of the pathological processes of myocardial 
inflammation and edema (4, 18, 105). Native T1 mapping 
imaging is superior to T2-weighted imaging and LGE and 
provides a high level of diagnostic accuracy and high 
positive and negative predictive values (18, 104). Native T1 
imaging can detect myocardial abnormalities to a greater 
extent than T2-weighted imaging and LGE. The authors 
of a previous study suggested that native T1 imaging 
could discriminate between the acute and convalescent 
stages of myocarditis (18). The values of ECV also increase 
in patients with acute myocarditis. Radunski et al. (4) 
evaluated the accuracy of T1 mapping parameters in 104 
patients with myocarditis. Quantification of ECV yielded the 
best diagnostic accuracy among all single CMR parameters 
including native T1 and post-contrast T1 and T2 values, 
ECV, and T2-weighted ratio. However, in another study, the 
diagnostic accuracy of ECV for myocarditis was not found 
to be superior to that of native T1 mapping (102, 106). 
Myocardial T2 mapping is another non-contrast quantitative 
imaging technique used for the evaluation of myocardial 
edema in patients with acute myocarditis, without the 
limitations associated with T2-weighted imaging (23). T2 
mapping enables objective quantification of myocardial 
edema and is less sensitive to motion artifacts, surface-
coil inhomogeneity, and subendocardial blood flow (22). A 
recent study found that myocardial T2 values are useful for 
differentiating acute myocarditis from recent-onset heart 
failure, where the native T1 and ECV values both exhibit an 
increase (107).

Ischemic Cardiomyopathy

Acute Myocardial Infarction
Myocardial infarction (MI) is defined by myocardial cell 

death due to ischemic insult. It is most commonly caused 
by coronary artery disease (108). MR imaging is useful 
in both diagnosis and risk stratification of AMI, based 
on the evaluation of infarct tissue (size, location, and 

Fig. 11. T1 and T2 mapping in myocarditis. Late gadolinium 
enhancement (LGE) pattern in myocarditis is usually observed on 
lateral inferior wall of left ventricle, with subepicardial and mid-wall 
distribution. Non-contrast mapping parameters and T1 and T2 values 
are useful for diagnosis of myocarditis.

Normal

LGE Mapping

Myocarditis



126

Kim et al.

Korean J Radiol 18(1), Jan/Feb 2017 kjronline.org

transmurality), area at risk (AAR), microvascular obstruction 
(MVO), and hemorrhage. Historically, LGE has been the gold 
standard for the evaluation of infarcted myocardium, with 
several studies having validated its efficacy (109), and the 
black-blood T2-weighted IR technique is widely used for 
the detection of edema (110). However, T1 and T2 mapping 
techniques are emerging as useful tools for the evaluation 
of AMI.

Native T1 imaging with an appropriate cut-off value is 
useful for the highly accurate detection of AMI. Native 
T1 imaging can detect acute myocardial edema because 
the free water content prolongs both T1 and T2 values 
(17). Native T1 imaging and T2 mapping provide similar 
quantitative results in the determination of AAR after 
AMI (15, 111). Native T1 mapping can differentiate MVO 
in infarcted myocardium; it is characterized by T1 values 
higher compared to those of remote myocardium but lower 
compared to those of infarcted myocardium (16, 112). T1 
mapping can also provide information regarding the degree 
and severity of myocardial damage. Dall’Armellina et al. (112) 
reported a significant relationship between non-contrast 
T1 mapping and the degree of myocardial damage assessed 
by means of LGE or T2-weighted imaging and noted that 
T1 values could predict functional recovery after AMI. 
In patients with MI, native T1 imaging can detect intra-
myocardial hemorrhage, which exhibits a T1 shortening 
effect (21). Quantitative T2 mapping reliably identifies 
myocardial edema without the limitations associated with 
T2-weighted short tau IR imaging (22). For the evaluation 
of AAR, T2 mapping sequences exhibit good agreement 
with the AAR of a microsphere (15). In AMI, post-contrast 
T1 mapping can provide useful information regarding the 
size of the infarcted myocardium, which is evaluated on the 
basis of T1 shortening in the infarcted myocardium (16). 

Evaluation of ECV by MR imaging provides a more stable 
measurement of the degree of fibrosis in both of infarcted 
and non-infarcted myocardium (113), which might be linked 
to adverse remodeling in cases of AMI (114). 

Chronic Myocardial Infarction
In chronic MI (CMI), MR imaging plays useful roles in both 

diagnosis and risk stratification based on the evaluation of 
edema, scar size, complications, and LV remodeling. As is 
the case in AMI, LGE is the gold standard for the evaluation 
of infarcted myocardium in CMI (108). However, mapping 
techniques can provide valuable information regarding CMI. 
Native T1 and T2 mapping can differentiate chronic and 

acute MI based on the absence of myocardial edema (16). 
Myocardial edema resolves within 6 months after an acute 
insult. Given the very low T1 value of fatty tissue, native 
T1 mapping can detect areas of lipomatous metaplasia in 
CMI (115). Messroghli et al. (16) reported that pre-contrast 
T1 values lack accuracy with regard to CMI delineation. 
However, Kali et al. (116) reported that native T1 values 
could reliably characterize CMI during threshold-based 
detection at 3T. Scar size can be evaluated by T1 mapping 
and ECV. The post-contrast T1 mapping and ECV parameters 
allow the accurate detection of CMI based on an ECV cut-off 
value of 42% (117). Agreement between the infarct sizes 
measured by T1 mapping and delayed gadolinium imaging 
was higher for chronic infarcts than acute infarcts (16).

Other Cardiomyopathies
T1 and T2 mapping techniques are also useful for the 

diagnosis and management of other cardiomyopathies. T1 
mapping is useful for the detection of subclinical myocardial 
changes, which are common in patients with autoimmune 
diseases such as systemic lupus erythematosus (118), 
systemic sclerosis (119), and rheumatoid arthritis (120). 
In patients with muscular dystrophies such as Duchenne 
and Becker muscular dystrophy, T1 mapping enables the 
early detection of cardiac involvement (121). Myocardial 
iron overload is characterized by a decrease in T1 values. 
T1 mapping is, therefore, useful for the quantification of 
cardiac iron (20). T2 mapping is useful in patients with 
cardiac transplants. In a pilot study, Usman et al. (26) 
demonstrated that quantitative T2 mapping is useful for 
the detection of myocardial edema consequent to acute 
rejection and suggested its use as a novel noninvasive tool 
for monitoring patients following transplantation. T1 and 
T2 mapping techniques are also useful for the detection of 
myocardial edema in patients with stress-related takotsubo 
cardiomyopathy (23). 

CONCLUSION

T1 and T2 mapping are rapidly becoming robust 
techniques for application in patients with various 
cardiomyopathies. Currently, T1 and T2 mapping parameters 
play an important role in clinical decisions. Several studies 
have reported the efficacies of these techniques for the 
early and accurate diagnosis of cardiomyopathies. Further 
studies are required to prove the usefulness of these 
biomarkers for treatment monitoring and prognosis.
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