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Abstract

Background & Aims—Known Genetic factors explain only a small fraction of genetic variation 

in colorectal cancer (CRC). We conducted a genome-wide association study (GWAS) to identify 

risk loci for CRC.

Methods—This discovery stage included 8027 cases and 22577 controls of East-Asian ancestry. 

Promising variants were evaluated in studies including as many as 11044 cases and 12047 

controls. Tumor-adjacent normal tissues from 188 patients were analyzed to evaluate correlations 

of risk variants with expression levels of nearby genes. Potential functionality of risk variants were 

evaluated using public genomic and epigenomic databases.

Results—We identified 4 loci associated with CRC risk; P values for the most significant variant 

in each locus ranged from 3.92×10−8 to 1.24×10−12: 6p21.1 (rs4711689), 8q23.3 (rs2450115, 

rs6469656), 10q24.3 (rs4919687), and 12p13.3 (rs11064437). We also identified 2 risk variants at 

loci previously associated with CRC: 10q25.2 (rs10506868) and 20q13.3 (rs6061231). These risk 

variants, conferring an approximate 10%–18% increase in risk per allele, are located either inside 

or near protein-coding genes that include TFEB (lysosome biogenesis and autophagy), EIF3H 
(initiation of translation), CYP17A1 (steroidogenesis), SPSB2 (proteasome degradation), and 
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RPS21 (ribosome biogenesis). Gene expression analyses showed a significant association (P <.05) 

for rs4711689 with TFEB, rs6469656 with EIF3H, rs11064437 with SPSB2, and rs6061231 with 

RPS21.

Conclusions—We identified susceptibility loci and genes associated with CRC risk, linking 

CRC predisposition to steroid hormone, protein synthesis and degradation, and autophagy 

pathways and providing added insight into the mechanism of CRC pathogenesis.
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INTRODUCTION

Colorectal cancer (CRC) is one of the most frequently diagnosed malignancies in the world, 

including most Asian countries.1 Genetic factors play an important role in the etiology of 

both familial and sporadic CRC.2 Through family-based studies, multiple CRC 

susceptibility genes have been identified, including APC, MLH1, MSH2, MSH6, PMS2, 
BMPR1A, SMAD4, POLE, POLD1, GREM1, NTHL1, LKB1/STK11 and MUTYH.3 

Deleterious germline mutations in these genes, however, account for less than 5% of CRC 

cases in the population. It is believed that many common, low-penetrance genetic risk 

variants exist for CRC and, collectively, these variants explain a substantial proportion of 

genetic variation for CRC. Genome-wide association studies (GWAS) have become a 

powerful tool to uncover genetic susceptibility factors for complex diseases. To date, more 

than 40 CRC GWAS risk loci have been identified,4–21 which have expanded our 

understanding of the etiology of CRC. However, these common risk variants, along with 

known CRC susceptibility genes, explain only a small fraction of genetic variation for 

CRC.22

It has been demonstrated that GWAS conducted in non-European populations are valuable in 

identifying genetic variants for complex traits.8, 11 Because of different genetic architectures 

and environmental exposures, studies in non-European populations can often discover 

important genetic risk variants that are otherwise difficult to identify.8, 11 Furthermore, these 

studies can uncover risk variants specific to the study population. To search for new CRC 

susceptibility loci, we conducted a large, multi-staged genetic study including 19,071 cases 

and 34,624 controls of East Asian ancestry. To investigate the generalizability of our 

findings to other populations, we evaluated the newly-identified risk variants in16,984 cases 

and 18,262 controls of European ancestry.

Materials and Methods

Study population

This study was conducted as part of the Asia Colorectal Cancer Consortium (ACCC), 

including a total of 19,071 cases and 34,624 controls of East Asian ancestry from 14 studies 

conducted in China, South Korea and Japan (Supplementary Table 1). The details of these 

studies are described in the supplementary materials. Compared to our previous GWAS 

studies,8, 11 we expanded the discovery effort by including the Japan Biobank (BBJ) study 
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(2,814 cases/11,358 controls) and three additional studies (3,519 cases/5,989 controls) 

genotyped with a customized exome array, the details of which are described in the 

genotyping section. Specifically, the discovery stage consisted of 8,027 cases and 22,577 

controls, including 4,888 cases and 10,243 controls from six studies conducted among 

Chinese in Shanghai and Guangzhou, 2,814 cases and 11,358 controls from a study 

conducted among Japanese in Japan and 325 cases and 976 controls from a study conducted 

among Koreans in South Korea. Replication stage 1 consisted of 6,532 cases and 8,140 

controls, including 677 cases and 1,114 controls conducted among Chinese in Guangzhou, 

236 cases and 472 controls from a study conducted among Japanese in Japan and 5,619 

cases and 6,554 controls from three studies conducted among Koreans in South Korea. 

Replication stage 2 included 4,512 cases and 3,907 controls from a study conducted among 

Chinese in Beijing. All study protocols were approved by the relevant institutional review 

boards and all study participants provided written informed consent.

The studies in European descendants comprised 16,984 cases and 18,262 controls recruited 

in North America, Europe and Australia, which are included in three consortia; the Genetics 

and Epidemiology of Colorectal Cancer Consortium (GECCO), the Colorectal 

Transdisciplinary (CORECT) Study, and the Colon Cancer Family Registry (CCFR). The 

details of these studies have been described previously.10

Genotyping and imputation in the discovery stage

Genotyping and quality control (QC) for studies in the discovery stage have been described 

previously.8, 11 Briefly, genotyping for five of the eight studies included in the discovery 

stage were completed using Affymetrix or Illumina SNP arrays (Supplementary Table 2). In 

previous studies conducted in the ACCC, imputation was conducted using the CHB and JPT 

HapMap 2 panel as the reference.8, 11 To increase the coverage of genotypes in this study, 

we imputed genotypes for each of these five studies with data from the 1000 Genomes 

Project Phase I Release (Version 3) as the reference. Only SNPs with minor allele frequency 

(MAF) > 5% and a high imputation quality (R2 > 0.70) were included. After QC filtering, 

approximately 4 million genotyped or imputed SNPs on 22 autosomes remained for 

analysis. Genotyping for the remaining three studies included in the discovery stage was 

completed using Illumina Infinium assays with 59,317 variants as the customer add-on 

contents onto the Illumina HumanExome Beadchip. Of the 302,218 variants included in this 

array, 44,428 have an MAF of 5% or higher. We did not impute genotypes in these three 

studies given the low-density coverage of the genome by these common variants. After QC 

filtering, 40,647 SNPs with an MAF of 5% or higher remained for the analysis. Little 

evidence of substantial population stratification was found in any of the eight studies 

included in this stage (the inflation factor for each study was < 1.05).

SNP selection and genotyping in the replication stages

No apparent heterogeneity across the eight studies included in the discovery stage was 

noted, and thus a fixed-effects meta-analysis was performed to obtain the overall summary 

statistics for the association of genetic variants with CRC risk. We selected SNPs for further 

evaluation according to the following criteria: (i) P ≤ 0.0001 in the discovery stage; (ii) 

consistent direction of association across all eight studies included in the discovery stage (P 
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for heterogeneity > 0.05), (iii) in no or moderate linkage disequilibrium (LD) (r2 < 0.30 in 

East Asians) with any known CRC risk variant or SNPs that had been evaluated in our 

previous replication stages.8, 11 A total of 38 independent association signals were identified. 

For each signal, we selected the SNP with the most significant P-value for replication. Of 

these 38 SNPs, 36 were successfully genotyped and evaluated in an independent sample of 

6,532 cases and 8,140 controls (replication stage 1). SNPs that showed evidence of 

association (one-sided P < 0.05) in replication stage 1 and in the same direction of the 

association as seen in the discovery stage were further evaluated in another independent 

sample of 4,512 cases and 3,907 controls (replication stage 2) (Supplementary Table 3).

Using the iPLEX Sequenom MassARRAY platform, genotyping for replication stage 1 and 

2 studies was conducted at the Vanderbilt Molecular Epidemiology Laboratory and the 

Fudan-VARI Center for Genetic Epidemiology Core lab, respectively. Four negative controls 

(water) and eight positive quality controls (HapMap or duplicate samples) were included in 

each 384-well plate. We filtered out SNPs with (i) genotype call rate < 95%, (ii) genotyping 

concordance rate < 95% in positive control samples, (iii) an unclear genotype call or (iv) P 
for Hardy-Weinberg equilibrium < 10−5 in controls. We calculated the mean concordance 

rate using data from positive quality control samples. The mean concordant rate was 99% 

with a median value of 100% in each of the five participating studies included in replication 

stage 1 and was 98% with a median value of 98% in the replication stage 2 study.

Genotyping of samples in GECCO, CORECT, and CCFR was conducted using Illumina and 

Affymetrix Arrays. The details of genotyping, QC and imputation have been reported 

previously.5, 10

Gene expression and protein abundance evaluation of candidate genes

The gene closest to each of the risk variants identified in this GWAS was selected for 

evaluation of its expression level in correlation with the risk variant in adjacent normal 

tissues from 188 CRC patients of East-Asian descent. The details of quantitative real-time 

polymerase chain reaction analysis and quantitative western blotting are provided in 

Supplementary Methods.

Statistical analysis

Associations between SNPs and CRC risk were evaluated on the basis of the log-additive 

model using mach2dat,23 PLINK version 1.0.7,24 R version 3.0.2 (See URLs) and SAS 

version 9.4. Per-allele odds ratios (ORs) and 95% confidence intervals (CIs) were derived 

from logistic regression models, adjusting for age, sex and the first ten principal components 

when appropriate. Association analysis was conducted separately for each study. Because 

there was no apparent heterogeneity across participating studies, fixed-effects meta-analyses 

were used to obtain summary results for each stage and for all stages combined with the 

inverse-variance method using METAL.25 SNPs associated with CRC risk at P < 5×10−8 in 

the combined analysis were considered genome-wide significant. Stratified analyses were 

performed to assess whether the associations differ by tumor sites (colon or rectum), 

ethnicity (Chinese, Korean or Japanese) and sex (men or women). We estimated 

heterogeneity across studies and subgroups with Cochran’s Q test. We estimated haplotype 
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frequencies with the expectation maximum algorithms in the Haplo. stat package (see 

URLs) in R (version 3.0.2) and conducted haplotype analyses when two or more SNPs were 

identified at the same locus.

Details of the eQTL analysis using data from East-Asian patients and the analysis of the 

SPSB2 isoform using data from The Cancer Genome Atlas project are provided in 

Supplementary Methods.

Bioinformatics analyses

To identify putative functional variants for newly identified loci, all variants in LD (r2 > 

0.20) with the risk variant in each locus were identified using data from the 1000 Genomes 

Project (phase1 release v3.0). Non-coding variants were mapped to the 15 chromatin states 

across multiple normal colorectal mucosal tissues derived by the Roadmap Epigenomics 

(REMC) project 26 and to the epigenomic maps of histone markers (H3K4Me1, H3K4Me3, 

and H3K27Ac) across CRC cell lines derived by the Encyclopedia of DNA elements 

(ENCODE) project.27 We focused on variants in promoters or enhancers. We identified the 

corresponding genes as the target genes for variants in promoters. We identified the 

interacting genes for variants in enhancers using data of enhancer- transcription start site 

(TSS) association from the Functional ANnoTation Of the Mammalian Genome 5 

(FANTOM5) project, which evaluated correlations of the transcriptional activity of the 

enhancer and putative target genes. 28 Coding variants were evaluated using the SIFT29 and 

PolyPhen-2 algorithms.30 We proposed the most likely candidate gene at each locus 

according to the following criteria: 1) functional evidence; 2) distance to the risk variant; 3) 

results from eQTL analysis; 4) biologic functions and potential roles in cancer according to 

previous literature.

Results

Combined analyses of data from the discovery and replication stages revealed seven SNPs 

associated with CRC risk at the genome-wide significance level (P < 5×10−8), including 

rs4711689 at 6p21.1 (TFEB), rs4919687 at 10q24.3 (CYP17A1), rs11064437 at 12p13.3 

(SPSB2), rs2450115 and rs6469656 at 8q23.3 (EIF3H), rs10506868 at 10q25.2 (VTI1A), 

and rs6061231 at 20q13.3 (RPS21) (Table 1). SNP rs10506868 at 10q25.2 was correlated 

with a risk variant (rs12241008, r2 = 0.60, D′ <1 in East Asians) identified in a recent 

GWAS study,7 and thus this locus was not further evaluated in the subsequent analysis of 

this study. Interestingly, rs10506868 is located in intron 6 of the VTI1A gene, a fusion 

partner of a CRC susceptibility candidate gene, TCF7L2, identified in our previous GWAS 

study.8

Associations with CRC risk in each of the six risk variants were, in general, consistent 

across all studies with little evidence of heterogeneity (Figure 1). Stratified analyses by sex 

and tumor site showed little evidence of heterogeneity (Supplementary Table 4). Except for 

rs11064437 at 12p13.3 (P = 0.0003), no apparent heterogeneity was found for the 

association of variants with CRC risk by ethnicity. The heterogeneity with rs11064437 was 

primarily driven by its null association in studies in South Korea (OR = 1.01, P = 0.73).
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We next evaluated the association of the six newly identified CRC risk variants in 

populations of European ancestry using data from 16,984 cases and 18,262 controls. With 

the exception of rs4711689 and rs11064437, all other SNPs were associated with CRC risk 

at P < 0.05 and in the same direction as observed in East Asian studies (Table 2). There was 

evidence of heterogeneity in the association of CRC risk with rs4919687, rs4711689 and 

rs6061231 between populations of European ancestry and East Asian ancestry (P < 0.01). 

The effect allele frequency (EAF) for all six risk variants differs substantially between 

European descendants and East Asians (Tables 1–2). For example, for rs11064437, the EAF 

is 0.75 for East Asians while it is 0.996 for European descendants, which may explain the 

non-significant finding for this SNP in populations of European ancestry.

SNPs rs2450115 and rs6469656 lie approximately 24kb apart at 8q23.3, and were correlated 

only moderately (r2= 0.20, D′ <1 in East Asians). The association with either of these SNPs 

remained statistically significant (P = 9.60×10−6 for rs2450115 and P = 8.30×10−4 for 

rs6469656) in the conditional analysis including both SNPs in the same model 

(Supplementary Table 5), suggesting that there may be two independent association signals. 

Furthermore, the haplotype (TA) comprising the risk allele of both SNPs was significantly 

associated with a 1.20-fold increased risk of CRC (P = 1.34 ×10−15) compared to the 

haplotype (CG) comprising the low-risk allele of both SNPs. These two SNPs lie close to 

rs16892766 (6.6kb centromeric for rs2450115 and 17 kb telomeric for rs6469656), a CRC-

associated variant identified in a previous GWAS in European descendants.17 However, 

rs16892766 and any of its highly correlated SNPs are monomorphic in East Asian 

populations. Thus rs16892766 was not in LD with either of the two risk variants identified in 

our study. Even in European-ancestry populations, these two SNPs also are poor surrogates 

for rs16892766 (r2 = 0.02, D′=1 for rs2450115 and r2 = 0.01, D′<1 for rs6469656). 

Interestingly, neither rs2450115 nor rs6469656 was reported to be associated with CRC risk 

in two previous fine-mapping studies of 8q23.3 for CRC risk in European descendants.31, 32 

In our study with a larger sample size, we showed that rs2450115 and rs6469656 were 

associated with CRC risk in European descendants (P = 0.0003 and 0.02, respectively, Table 

2). These two SNPs are in LD with each other in European descendants (r2 = 0.40, D′=1), 

and only SNP rs2450115 remained statistically significant in the conditional analysis 

including both SNPs in the model (P = 0.007 for rs2450115 and P = 0.78 for rs6469656).

We analyzed the expression levels of the nearest genes in adjacent normal tissues obtained 

from 188 CRC patients of East Asian ancestry and performed expression quantitative trait 

locus (eQTL) analysis. CYP17A1 expression is largely confined to adrenal and gonadal 

tissues in adults, and thus was not detected in our samples. The remaining four genes 

evaluated were all highly expressed in normal colorectal tissues. Of the two variants 

evaluated at 8q23.3, only rs6469656 was significantly correlated with EIF3H expression at P 
< 0.05 (Figure 2). For the remaining three loci, each of the risk variants was statistically 

significantly correlated with its nearest gene at P < 0.05 (Figure 2, Supplementary Table 6). 

At 8q23.3, we also evaluated the expression of the UTP23 gene, a candidate gene suggested 

by a previous fine-mapping study at this locus.31 However, we did not find any statistically 

significant correlation of risk variants at 8q23.3 with UTP23 expression (P = 0.90 and 0.74, 

respectively, for rs2450115 and rs6469656). To evaluate the correlation of mRNA and 

protein levels for the four genes whose expression levels were significantly associated with 

Zeng et al. Page 6

Gastroenterology. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the risk variants, we analyzed the protein level for each of these genes in adjacent normal 

tissues obtained from 16 patients (Supplementary Figure 1). The null hypothesis was that 

there would be no correlation between mRNA and protein levels. The correlation (r) 

between mRNA expression and protein level was −0.76, 0.64, −0.42 and 0.58 for TFEB, 

EIF3H, SPSB2 and RPS21, respectively (P = 0.05, 0.12, 0.07 and 0.24, respectively).

To evaluate whether the expressions of these genes were deregulated in tumor tissues, we 

evaluated the differences between tumor and normal tissues in the expression level of the 

EIF3H, UTP23, SPSB2, TFEB and RPS21 genes using data from the 188 patients 

mentioned above. With the exception of TFEB, expression levels of the other four genes 

were significantly higher in tumors (P < 0.005, Supplementary Table 6). For TFEB, the 

expression level in tumors was significantly lower than normal tissues (P = 9.26 ×10−11, 

Supplementary Table 6).

We used publically available functional genomic data to further annotate the risk loci 

identified in our study. We observed an overlap of promoter and enhancer sequences at each 

locus and identified multiple potential target genes. Combining results from eQTL analyses, 

functional annotation, and literature review, as provided in detail in the discussion section, 

we proposed the likely candidate gene: TFEB at 6p21.1, EIH3H at 8q23.3, CYP17A1 at 

10q24.3, SPSB2 at 12p13.3 and RPS21 at 20q13.3. The results of in silico functional 

annotation of the newly identified loci and literature review on potential roles of candidate 

genes are summarized in Table 3 and Supplementary Table 7. Regional association plots and 

functional genomic landscapes of these loci are presented in Figure 3 and Supplementary 

Figure 2.

We evaluated the association of all GWAS-identified CRC genetic susceptibility loci with 

data available in our study (Supplementary Table 9). We replicated all 10 risk loci initially 

identified in GWAS conducted in East Asians at P < 5 × 10−8. Of the 27 risk variants 

initially identified in European descendants, 21 were associated with CRC risk at P < 0.05 in 

East Asians in the same direction as reported previously. In particular, variants at 1q41, 

8q24.21, 10p14 and 18q21.1 were associated with CRC risk at P < 5 × 10−8. SNPs 

rs6691170, rs16892766, rs35360328, rs3184504, rs73208120, rs72647484 and rs17094983 

are monomorphic in East Asian descendants, and thus we were not able to evaluate their 

associations in our study. We also did not evaluate the X-chromosome SNP rs5934683, for 

which the genotype data were not available in our study.

Discussion

In this multiple-staged GWAS with a total of 19,071 cases and 34,624 controls, we identified 

four novel risk loci for CRC (6p21.1, 8q23.3, 10q24.3 and 12p13.3) and new variants in two 

previously GWAS-identified loci (10q25.2 and 20q13.3). Using gene expression data from 

188 CRC patients of East Asian ancestry, we identified potential candidate genes including 

TFEB, EIF3H, SPSB2 and RPS21.

At 12p13.3, rs11064437 lies at a splice receptor site within intron 1 of SPSB2. The T allele 

of rs11064437 changes the splice site from TC (canonical site AG33 on the reverse strand) to 
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TT, and is predicted to disrupt the splicing and introduce a transcriptional isoform with a 

shortened untranslated region at exon 2 (Supplementary Figure 3). Using data in colon 

tumor tissues from TCGA, we found a suggestive association of the T allele of rs11064437 

with the relative abundance of this isoform (P = 0.11, Supplementary Figure 4). In addition, 

some of the highly correlated variants were mapped to an active promoter region of SPSB2 
in normal colorectal cells (Supplementary Figure 2). These findings, together with results 

from the eQTL analysis in CRC patients, suggested that variants at 12p13.3 might contribute 

to CRC risk by regulating the expression of SPSB2. Previous studies have shown that 

alternative splicing of untranslated regions of exons can affect the stability34 and translation 

efficiency of pre-mRNAs.35 Similarly, it is possible that rs11064437 may affect post-

transcriptional regulation of SPSB2. Misregulated pre-mRNA splicing, which produces 

aberrant isoforms, has been found to contribute to tumorigenesis.36 Therefore, rs11064437 

may be one of the causal variants for the association observed at this locus. Future 

experiments evaluating SPSB2 splicing diversity and its relevance for the observed 

association are needed to elucidate the role of this variant. SPSB2 encodes a protein with a 

suppressor of cytokine signaling domain that functions as an E3 ubiquitin ligase and a SPRY 

domain that recognizes substrate for ubiquitination and degradation.37 This protein is 

predicted to regulate the expression of interacting proteins by targeting them for 

ubiquitination and subsequent proteasomal degradation.38 For example, SPSB2 specifically 

interacts with the inducible nitric oxide synthase (iNOS), promotes its degradation and 

decreases the NO production.38 Selective inhibitors of iNOS have been proposed for 

chemoprevention of CRC.39 Nonetheless, there were other potential target genes at this 

locus, such as ENO2, CDCA3 and USP5 (Supplementary Table 7).

At 6p21.1, rs4711689 lies in intron 6 of TFEB. This SNP and its highly correlated SNPs 

were mapped to a region with enhancer activities in normal colorectal tissues 

(Supplementary Figure 2). Using enhancer-promoter interaction data derived by the 

FANTOM5 project, we identified TFEB as a potential target gene (enhancer near rs4711689 

(chr6:41672431-41703298) and TFEB expression pairwise correlation r =0.33, FDR < 2.2 

×10−16). Together with the eQTL analysis at this locus, we proposed that TFEB was a likely 

candidate gene at this locus. TFEB encodes a basic helix-loop helix leucine zipper 

transcription factor, which has been found to be oncogenic for melanoma,40 renal cell 

carcinoma41 and some sarcomas.42 However, the role of TFEB in CRC is unknown. Recent 

studies have shown that this gene is a master regulator of the autophagy-lysosome pathway 

and of energy metabolism.43 Deregulated autophagy has been linked to cancer initiation and 

progression.44 These pieces of evidence further support our hypothesis that TFEB is the 

likely candidate gene at this locus. Notably, TFEB activation is regulated by mTORC1 

signaling45, which is thought to be one of the fundamental mechanisms for sustaining tumor 

growth in CRC.46 It is possible that TFEB may contribute to CRC risk, at least in part, by 

mediating downstream effects of the mTORC1 pathways. Our results, along with those from 

previous studies, support a new role for TFEB and provide clues for future studies on the 

contribution of autophagy deregulation to colorectal etiology.

At 10q24.3, rs4919687 lies in intron 1 of the gene CYP17A1. This gene encodes a 

membrane-bound dual-function monooxygenase that catalyzes both 17α-hydroxylase and 

17, 20-lyase activities to produce androgenic and estrogenic sex steroids, which is the key 
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branch point in steroidogenesis. Epidemiological studies suggest that steroid hormones may 

be associated with risk of CRC and other cancers.47 Thought to affect steroid hormone 

levels, CYP17A1 variants, particularly promoter variant rs743572, have been extensively 

studied in association with risk of hormone-related cancers; 48, 49 however, the results were 

very inconsistent. Interestingly, this promoter variant (rs743572) is correlated with the risk 

variant rs4919687 identified in our study (r2 = 0.24, D′<1 in East Asians and r2 = 0.67, D′=1 

in European descendants). We herein provide, for the first time, convincing evidence for an 

association of CYP17A1 gene variants with CRC risk, suggesting that steroid hormones may 

indeed play a role in the etiology of CRC.

At 8q23.3, two risk variants were identified in our study. Consistent with results from our 

eQTL analyses, rs2450115 and its correlated variants were mapped to a region of a 

quiescent state in both normal and cancerous colorectal cells (Supplementary Figure 2), 

suggesting that these DNAs may be largely inactive, while some variants that are highly 

correlated with rs6469656 were mapped to active promoter regions of the gene EIF3H 
(Supplementary Figure 2). Thus, it is likely that some of these variants might be involved in 

the transcriptional regulation of EIF3H. Together with the evidence from the eQTL analysis, 

we identified EIF3H as a likely target gene for variants at this locus. EIF3H encodes a 

subunit of the eukaryotic translation initiation factor 3. An oncogenic role of this gene was 

demonstrated by its ability to transform NIH-3T3 cells into their malignant forms.50 Recent 

studies have shown that EIF3H promoted cancer cell growth by stimulating protein 

synthesis.51 Another possible candidate gene at this locus is RAD21 (Supplementary Figure 

2), which encodes a subunit of cohesin that involves chromosome segregation and DNA 

repair. A recent study showed that RAD21 was a pivotal mediator of APC heterozygous loss, 

the event initiating colorectal tumorigenesis.52

At 20q13.3, rs6061231 lies 5.2kb upstream of the gene RPS21, and 36kb telomeric to 

rs4925386 (r2 = 0.15, D′ <1 in East Asians and r2 = 0.44, D′ <1 European descendants), a 

risk variant identified in a previous GWAS conducted in populations of European ancestry.27 

However, rs4925386 showed a much weaker association with CRC risk (OR = 1.05, P = 

0.06) than rs6061231 (OR = 1.20, P = 2.06 ×10−6) in our analysis of 2,098 cases and 6,172 

controls of East-Asian ancestry for which these two SNPs were genotyped (Supplementary 

Table 8). The association with rs6061231 remained statistically significant, while the 

association with rs4925386 diminished in the conditional analysis including both SNPs in 

the model (Supplementary Table 8), indicating that the association signal at 20q13.3 was 

better captured by rs6061231 in East Asians. SNP rs6061231 and some of its highly 

correlated SNPs were mapped to a 5′ flanking region of RPS21 (Supplementary Figure 2), 

suggesting that these variants might affect the transcriptional activities of RPS21. In line 

with evidence from eQTL analysis, these epigenomic data supported the hypothesis that 

RPS21 was the likely target gene. RPS21 encodes a ribosomal protein that is a component of 

the 40S subunit of ribosomes. However, its role in tumorigenesis remains unclear. A recent 

study that characterized differences in eQTLs between tumor and matched normal colon 

tissues showed that RPS21 had a significantly higher allelic-specific expression somatic 

event rate and suggested that this gene was a potential driver in CRC.53 This finding further 

supported that RPS21 played a role in CRC etiology.
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In the analysis comparing mRNA and protein levels in adjacent normal tissues, we observed 

a positive correlation of the mRNA level and protein abundance for the EIF3H and RPS21 
genes. For the TFEB and SPSB2 genes, however, their mRNA and protein levels were 

inversely correlated, although the correlation for the SPSB2 gene was not statistically 

significant. Although we could not rule out the possibility of chance finding for the inverse 

correlation, TFEB and SPSB2 are regulatory proteins that are likely to be unstable but have 

stable mRNAs in steady-state cells. As suggested by previous studies,54 such proteins are 

predisposed to rapid translational regulation, and thus may sometimes show an inverse 

correlation of their mRNAs. On the other hand, EIF3H and RPS21 are structural proteins 

with stable mRNAs and proteins, for which mRNA levels may explain a majority of the 

variation in protein levels, according to previous studies of proteomics in colon tumors cells 

and other mammalian cells. 55

By comparing the expression level of candidate genes in tumors with adjacent normal 

tissues, we showed that these genes were deregulated in tumor tissues, suggesting a possible 

role of these genes in the development of CRC. For example, the down regulation of TFEB, 

the master regulator of autophagy, in tumor tissues compared to adjacent normal tissues 

suggests a decreased level of autophagy in the tumors, which was consistent with previous 

studies showing that autophagy was suppressed in certain cancer cells.56 Furthermore, it has 

been proposed that TFEB is a druggable target for autophagy induction therapy57 that has 

been suggested as a treatment for some cancers. 58

We found that more than three quarters of the risk variants initially identified in GWAS 

conducted in European descendants were directly replicated in East Asians at P < 0.05, 

indicating that European and East Asian descendants share most of the genetic risk variants 

for CRC. However, the strength of the association for some of these risk variants was weaker 

in East Asians than European descendants. Furthermore, approximately 25% of the risk 

variants identified initially in studies of European descendants were not replicated in our 

study, including 7 SNPs that are monomorphic in Asians. Not replicating some of the known 

risk variants is expected given the difference in LD patterns between Asian and European-

ancestry populations. It is likely that other variants in these loci may be associated with CRC 

risk, and fine-mapping studies are needed to identify these variants.

Our study has several limitations. Multiple participating studies did not collect information 

for family history of CRC, preventing us from evaluating the possible interaction between 

family history and these risk variants with adequate power, particularly since the prevalence 

of family history of CRC is low in the study populations. We evaluated eQTLs only for the 

genes closest to the risk variants identified in this study. However, it is possible that these 

risk variants might be correlated with other genes. Future studies are needed to fully uncover 

the biologic mechanism for the associations observed at these novel loci.

In conclusion, to our knowledge, this is the largest GWAS conducted to date to search for 

novel genetic susceptibility loci for CRC. Our study provides strong evidence for possible 

roles of SPSB2, TFEB, EIF3H, CYP17A1 and RPS21 in the etiology of CRC. These genes 

are involved in different aspects of cellular homeostasis, from translational initiation, protein 

synthesis, to proteasomal degradation and lysosomal biogenesis and autophagy, highlighting 
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the connection of homeostatic regulation and CRC etiology. Aberrant regulation of intestinal 

epithelial homeostasis plays an important role in the initiation and progression of CRC. Our 

study has provided additional insights into the genetics and biology of CRC. Results from 

our study will be helpful for future studies to uncover molecular mechanisms of CRC 

tumorigenesis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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CYP17A1 cytochrome P450, family 17, subfamily A, polypeptide 1

EIF3H Eukaryotic Translation Initiation Factor 3, Subunit H

GWAS genome-wide association study

RPS21 ribosomal protein S21

SNP single nucleotide polymorphism

SPSB2 splA/ryanodine receptor domain and SOCS box containing 2

TFEB transcription factor EB

VTI1A vesicle transport through interaction with t-SNAREs 1A
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Figure 1. Forest plots for newly identified CRC risk variants (a) rs4711689, (b) rs2450115, (c) 
rs6469656, (d) rs4919687, (e) rs11064437, (f) rs6061231
Per-allele OR estimates are presented as boxes with the area proportional to the inverse 

variance of the estimates. Horizontal lines represent the coverage of 95% confidence 

intervals (CIs).
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Figure 2. Expression quantitative trait locus (eQTL) analyses in samples of normal colorectal 
mucosa adjacent to the tumor obtained from 188 CRC patients of East Asian ancestry
a. TFEB relative expression and genotypes of rs4711689; b. EIF3H relative expression and 

genotypes of rs6469656; c. SPSB2 relative expression and genotypes of rs11064437; d. 

RPS21 relative expression and genotypes of rs6061231.
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Figure 3. Regional association plots of the risk loci (a) rs4711689 at 6p21.1i;(b) rs2450115 at 
8q23.3;(c) rs6469656 at 8q23.3; (d) rs4919687 at 10q24.3; (e) rs11064437 at 12p13.3; (f) 
rs6061231 at 20q13.3
In each plot, the log10 (P-values) (y axis) for the association of SNPs with CRC risk are 

shown according to their chromosomal positions (x axis) in NCBI Build 37. Blue lines 

represent the estimated recombination rates from the 1000 Genomes Project (Phase 3). 

Arrows indicate genomic locations of genes within the 1Mb regions centered on the newly-

identified risk variants. The color of the SNP represents its LD (r2) with the index SNP at 

each locus. Only results from the GWAS studies (4,508 cases /16,588 controls in total) are 

shown. The plots were generated using the online tool LocusZoom.59
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