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Abstract
VWF is extensively glycosylated with biantennary core fucosylated glycans. Most N-linked

and O-linked glycans on VWF are sialylated. FVIII is also glycosylated, with a glycan struc-

ture similar to that of VWF. ST3GAL sialyltransferases catalyze the transfer of sialic acids in

the α2,3 linkage to termini of N- and O-glycans. This sialic acid modification is critical for

VWF synthesis and activity. We analyzed genetic and phenotypic data from the Atheroscle-

rosis Risk in Communities (ARIC) study for the association of single nucleotide polymor-

phisms (SNPs) in the ST3GAL4 gene with plasma VWF levels and FVIII activity in 12,117

subjects. We also analyzed ST3GAL4 SNPs found in 2,535 subjects of 26 ethnicities from

the 1000 Genomes (1000G) project for ethnic diversity, SNP imputation, and ST3GAL4 hap-

lotypes. We identified 14 and 1,714 ST3GAL4 variants in the ARIC GWAS and 1000G data-

bases respectively, with 46% being ethnically diverse in their allele frequencies. Among the

14 ST3GAL4 SNPs found in ARIC GWAS, the intronic rs2186717, rs7928391, and

rs11220465 were associated with VWF levels and with FVIII activity after adjustment for

age, BMI, hypertension, diabetes, ever-smoking status, and ABO. This study illustrates the

power of next-generation sequencing in the discovery of new genetic variants and a signifi-

cant ethnic diversity in the ST3GAL4 gene. We discuss potential mechanisms through

which these intronic SNPs regulate ST3GAL4 biosynthesis and the activity that affects

VWF and FVIII.
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Introduction
VonWillebrand factor (VWF) in the subendothelium tethers platelets to the site of vascular
injury to initiate hemostasis, and protects coagulation factor VIII (FVIII) from enzymatic deg-
radation [1;2]. VWF also contributes to thrombosis at the site of a ruptured atherosclerotic pla-
que and to platelet aggregation induced by high fluid shear stress in the area of severe vascular
stenosis [3]. VWF and FVIII are synthesized primarily in endothelial cells [4–8]. Baseline levels
of VWF and FVIII vary considerably among individuals and are regulated by genetic and envi-
ronmental factors, including carbohydrate structures on the two molecules.

VWF and FVIII are extensively glycosylated. Each VWF monomer contains 13 potential N-
linked and 10 O-linked glycosylation sites, with 4 additional glycosylation sites in the propep-
tide [9]. Together, the carbohydrates account for ~20% of the molecular mass of a VWF mono-
mer [10] The complex types of biantennary core fucosylated glycans represent ~60% of the
glycans on VWF, as compared to 13% represented by ABO-related glycans [11–13] Most of
the N-linked and O-linked glycans on VWF are sialylated [12;14;15]. Enzymatically desialy-
lated VWF is more adhesive [16;17] has an altered rate of cleavage by the metalloprotease
ADAMTS-13 [18], and is rapidly cleared from the circulation through an asialoglycoprotein
receptor [19]. Hypo-sialylated VWF is detected in the plasma of patients with pre-capillary
pulmonary hypertension and those exposed to sialidase following microbial infection [19;20]
FVIII is also glycosylated, with complex-type biantennary core fucosylated oligosaccharides, of
which 80 to>90% carry at least one sialic acid [21–23] However, the functional importance of
FVIII sialylation remains poorly understood.

Golgi-resident sialyltransferases of the ST3GAL family are type II membrane enzymes that
catalyze the transfer of sialic acids in the α2,3 linkage to termini of N- and O-glycan chains. Six
genes encoding these sialyltransferases have been identified in the mammalian genome
(ST3GAL1-4) [24] Inactivating the murine St3gal4 sialyltransferase gene results in bleeding
associated with an autosomal-dominant reduction in plasma VWF levels, with a minimal
impact on VWF multimeric structures [25] The reactivity of the β-Gal-binding lectin RCA-I to
VWF is increased in plasma from St3gal4-null mice because of an increase in the exposure of
sub-terminal β-linked Gal on glycan branches [25] Similar results have been reported in rabbits
and humans [26] indicating an important role of ST3GAL4 sialyltransferase in the biogenesis
and survival of VWF and potentially of FVIII. The human ST3GAL4 gene is located in the
q23.3-q24 of Chromosome 11 [27], a locus that has been associated with the development of
coronary artery disease [28] The gene spans more than 65 kilobases (kb), with 14 exons ranging
from 61 to 679 nucleotides [27] There are 9 alternately spliced transcripts in the coding region
of the human ST3GAL4 gene, with tissue-specific patterns of expression [29]. The ST3GAL4
RNA is widely expressed in cells and tissues, including megakaryocytes and platelets, with the
highest levels being found in the small intestine and colon [25]. Variations in the human
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1. Human ST3GAL4 gene is highly polymorphic and many of these polymorphic vari-
ants are ethnically diverse in an analysis of the 1000 genomes project database.

2. Six clustered SNPs in the first intron of the ST3GAL4 gene are associated with plasma
VWF level and FVIII activity.
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ST3GAL4 gene remain undefined, and their influence on VWF, FVIII, and other sialylated pro-
teins is not known.

We analyzed genetic and phenotypic data from the Atherosclerosis Risk in Communities
(ARIC) study for the association of single-nucleotide polymorphisms (SNPs) in the human
ST3GAL4 gene with the plasma level of VWF and with activity of FVIII in 12,117 subjects. We
also analyzed ST3GAL4 SNPs from 2,535 subjects of 26 ethnicities from the 1000 Genomes
(1000G) database, which has been interrogated with next-generation sequencing (NGS) tech-
nology for ethnic diversity, SNP imputation and construction of ST3GAL4 haplotypes.

Materials and Methods

Study population
ARIC (https://www2.cscc.unc.edu/aric/desc) is an ongoing prospective cohort study designed
to assess subclinical atherosclerosis and clinical atherosclerotic events [30] Baseline samples
were collected from 1987 to 1989, from 15,792 adults aged 45 to 64 who were selected using
probability sampling from Forsyth County, North Carolina; Jackson, Mississippi; the north-
western suburbs of Minneapolis, Minnesota; and Washington County, Maryland.

The 1000G (http://www.1000genomes.org/) project is designed to identify genetic variants
that have frequencies of at least 1% in multi-ethnic populations using NGS. We analyzed
ST3GAL4 variants from the April 2012 Integrated Variant Set release of the 1000G project
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/ALL.wgs.phase1_release_v3.
20101123.snps_indels_sv.sites.vcf.gz). The data were collected from 2,535 non-diseased sub-
jects of 26 ethnicities and from four continents. Exonic regions of the genomes were sequenced
at a high coverage rate (average>20X), and the whole genome was shotgun-sequenced at a
low coverage rate (2–6X). The false discovery rate was estimated at 1.6% for exonic SNPs, 1.8%
for non-coding SNPs, and<5% for insert-deletions (indels) [31]

VWF antigen and FVIII activity
VWF antigen was determined with a commercial ELISA kit from American Bioproducts (Par-
sippany, NJ) and reported as a percentage of the Universal Coagulation Reference Plasma
(Thromboscreen, Pacific Hemostasis, Curtin Matheson Scientific, Inc, Wooddale, IL) [32] The
VWFmeasurement was taken during the first visits of ARIC subjects when they were recruited,
from 1986 to 1989, and was, therefore, not defined as the international units widely used today.
FVIII activity was measured using a commercial kit (George King Biomedical Inc. Overland
Park, KA), defined as the ability of a testing plasma sample to correct the clotting time of
human FVIII-deficient plasma, and reported as a percentage of normal plasma [33] The reli-
ability coefficient (one minus intra-individual variance, divided by total variance), obtained
from repeated tests on the same individuals over several weeks, was 0.68 for VWF and 0.86 for
FVIII [32;33] The data were adjusted for covariates that are known to influence VWF and
FVIII [33–35] including age, race, gender, body mass index (BMI), hypertension, diabetes,
ever-smoking status, and ABO genotype.

ST3Gal4 SNPs and imputation
We analyzed ST3GAL4 SNPs available from the ARIC GWAS and 1000G databases. The
1000G data allowed us to drastically increase the number of ST3GAL4 SNPs to construct hap-
lotypes using Haploview (http://www.broadinstitute.org/scientific-community/science/
programs/medical-and-population-genetics/haploview). The 1000G SNPs and their haplotypes
were imputed in the ARIC database separately for AA and EA samples using the IMPUTE2
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program (https://mathgen.stats.ox.ac.uk/impute/impute_v2.html). The 1000G project’s phased
genotype data for Europeans (n = 379) and Africans (n = 246) (https://mathgen.stats.ox.ac.uk/
impute/impute_v2.html#reference) were used as references.

Data analysis
All data were analyzed using SAS Proc LIFETEST or SAS Proc PHREG. The association of
ST3GAL4 SNPs with VWF antigen, FVIII activity, and FVIII–VWF ratio were evaluated using
one-way ANOVA to test for mean differences among three genotypes of each SNP and for
each of the four groups defined by race and gender (EA male, EA female, AA male, and AA
female). A multiple linear regression model was used to define a relationship between genotype
and outcome before and after adjustments for the covariates. We also tested ABO blood type
by SNP interaction in the linear model in order to determine whether the association between
SNP and outcome differs significantly by blood type, as these conform to different carbohy-
drate structures on the H antigen. With a Bonferroni adjustment for the number of SNPs
tested, a p< 0.0038 was considered to be statistically significant for the association of a given
genotype with VWF antigen and FVIII activity. A p-value between 0.05 and 0.0038 was consid-
ered to be nominally significant.

For each SNP, we also tested, through an additive model, to determine whether the number
of minor alleles was additive. We also determined the allelic dosing effect by calculating
whether having two copies of the allele had twice the effect of one copy (additive), larger than
would be predicted by twice the effect of one copy (“more than additive”) or smaller effect than
predicted by twice the effect of one copy (“below additive”). Finally, we also used HaploReg
(http://www.broadinstitute.org/mammals/haploreg/haploreg.php) to predict the effect of 13
non-coding variants in intron 1 of the ST3GAL4 gene on the regulatory regions of the gene.

Results

Subjects included in the study
Of the 15,792 ARIC participants, 3,675 were excluded from analysis because they (1) were nei-
ther European American (EA) nor African American (AA) (n = 48), (2) did not give consent
for genetic studies (n = 45), or (3) randomly lacked the following data: FVIII activity, VWF
antigen, or both (n = 280); ST3GAL4 SNPs (n = 2607), or ABO genotypes (n = 640). The final
analysis included 12,117 subjects. Table 1 reports the observed means for VWF, FVIII and the
FVIII–VWF ratio by race and sex group for these subjects. Consistent with previous reports
[35;36] VWF levels and FVIII activities varied significantly among the four race-by-gender
groups. AA subjects had significantly higher VWF levels and FVIII activity than EA subjects
(p< 0.001 and p< 0.003, respectively). Females had slightly higher VWF levels and FVIII
activity than males. The ABO blood groups for the race-by-sex groups are listed in S1 Table.

Table 1. Mean (SD) of VWF antigen and FVIII activity by race and gender.

Overall (N = 12,117) EA-Female (N = 4914) EA-Male (N = 4320) AA-Female (N = 1800) AA-Male (N = 1082) p value (ANOVA)

Factor VIII (%) 130.0 (38.5) 127.2 (34.3) 122.7 (33.6) 149.0 (48.2) 140.9 (43.5) <0.0001

VWF (%) 117.0 (46.9) 110.9 (42.1) 113.5 (43.2) 134.2 (56.6) 130.1 (54.4) <0.001

FVIII-VWF ratio 1.19 (0.31) 1.22 (0.32) 1.15 (0.30) 1.20 (0.34) 1.16 (0.31) <0.001

EA: Americans of European descent and AA: Americans of African descent

doi:10.1371/journal.pone.0160757.t001
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ST3GAL4 SNPs and genotype imputation
A total of 14 SNPs in the ST3GAL4 gene (position: 126,355,645–126,652,917 on Chromosome
11) were identified in the ARIC GWAS database (Table 2; codes for the genotypes are listed in
S2 Table). Among these, the SNPs rs2186717 and rs7928391 were completely linked (S3
Table). All 14 SNPs were genotyped in EA subjects, but only 4 SNPs were genotyped in AA
subjects, and the rest were imputed. Thirteen of these SNPs (92.9%) were intronic, located in
the first intron, and rs2298475 was exonic in exon 5.

To increase the number of ST3GAL4 SNPs for association studies and to investigate their
ethnic diversity, we also examined the 1000G database, which includes genotype data from
2,535 subjects of 26 ethnicities sequenced with NGS [37] Studying the ethnic diversity may be
critical for causal effects of a given genetic variant as several studies [38;39], including our own
[40], have shown that some of known VWFmutations associated with the bleeding disorder
vonWillebrand disease in EA subjects have minor allele frequencies of 10–20% in AA subjects,
making them unlikely to cause the disease in African Americans. The findings suggest that the
functional influence of a given variant can be enhanced or reduced by its association with spe-
cific haplotypes that are defined by ethnically diverse variations. We identified 1,714 variants
in the ST3GAL4 gene, including 986 novel variants whose identifiers were yet to be assigned by
dbSNP. The locations of these SNPs in the ST3GAL4 gene are shown in Fig 1. Eleven of the 14
ST3Gal4 SNPs from the ARIC GWAS database were found in the 1000G database. Table 3 lists
allele frequencies of these 11 SNPs among 10 representative ethnicities from America, Asia,
Europe, and Africa, with 5 of them (46%) having significant ethnic diversity (>10-fold differ-
ence in allele frequencies among ethnicities, marked in grey).

Haplotypes of the ST3GAL4 SNPs were constructed separately for EA and AA subjects (Fig
2). The SNP rs629882 was removed from subsequent analyses because it failed Hardy-Wein-
berg equilibrium testing (p-value = 5.19 × 10−6). We also used 1000G phased genotype data for
European (EUR, n = 379) and African subjects (AFR, n = 246) for genotype imputations. The
concordance rates defined by variations of alternative allele frequency between known

Table 2. Position* and Allele frequency of ST3GAL4 SNPs in ARIC-GWAS.

SNP Location Allele Allele frequency

Major allele (A) Aa Minor allele (a)

rs629882 Intron 1 T/C 9656 (79.8%) 2248 (18.6%) 192 (1.6%)

rs3862628 Intron 1 G/A 6007 (49.6%) 4835 (39.9%) 1269 (10.5%)

rs3862629 Intron 1 C/T 5078 (57.3%) 3279 (37.0%) 502 (5.7%)

rs4601794 Intron 1 A/G 7588 (85.7%) 1219 (13.8%) 52 (0.6%)

rs11220463 Intron 1 A/T 7133 (80.5%) 1624 (18.3%) 102 (1.2%)

rs11220465 Intron 1 G/A 6256 (70.6%) 2369 (26.7%) 234 (2.6%)

rs7118117 Intron 1 A/G 5669 (46.8%) 4954 (40.9%) 1491 (12.3%)

rs2186717 Intron 1 T/C 2314 (26.1%) 4443 (50.2%) 2102 (23.7%)

rs7928391 Intron 1 C/T 2314 (26.1%) 4443 (50.2%) 2102 (23.7%)

rs10790800 Intron 1 A/G 4825 (39.9%) 5415 (44.7%) 1865 (15.4%)

rs7395043 Intron 1 T/C 6434 (72.6%) 2212 (25.0%) 213 (2.4%)

rs12574844 Intron 1 G/A 7462 (84.2%) 1325 (15.0%) 72 (0.8%)

rs11220476 Intron 1 C/T 6434 (72.6%) 2212 (25.0%) 213 (2.4%)

rs2298475** Exon 5 T/C 7476 (84.4%) 1313 (14.8%) 70 (0.8%)

*SNP positions were defined based on UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly (http://genome.ucsc.edu)

**Synonymous SNP (Leu-Leu)

doi:10.1371/journal.pone.0160757.t002
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genotypes of the ST3GAL4 SNPs in ARIC GWAS and their imputed results from 1000G were
96.8% and 97.9% for AA (S4 Table) and EA (S5 Table) subjects, respectively, indicating a high
imputation accuracy.

Association of ST3GAL4 SNPs with VWF antigen
Eleven ST3GAL4 SNPs were significantly associated with the plasma level of VWF antigen
before adjustments for age, BMI, hypertension, diabetes, ever-smoking status, and ABO
(Table 4). The association remained for two completely linked SNPs (rs2186717 and
rs7928391) after adjustment for these covariates. The SNPs rs11220465 and rs4601794 were
associated with VWF levels with nominal significance. The stratified analyses further showed
that only EA females had a statistically significant difference in mean VWF antigen levels
across genotypes for the two linked SNPs. Multiple linear regression modeling for the ABO
and SNP interaction suggested that the association between ST3GAL4 SNPs and VWF was not
modified by ABO blood groups.

Fig 1. SNP density in the ST3GAL4 gene. SNPs were plotted based the 1000 genomes data. The ST3GAL4 gene has a very large first intron, where an
overwhelming majority of SNPs are located.

doi:10.1371/journal.pone.0160757.g001
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Association of ST3GAL4 SNPs with FVIII activity
We also identified 11 SNPs that were significantly associated with FVIII activity across geno-
types before adjustment for the covariates (Table 5). The association with FVIII remained after
adjustment for the covariates for rs2186717, rs7928391, and rs11220465, which were also asso-
ciated with VWF after the adjustments. In addition, rs4601794 again showed nominally signifi-
cant association with FVIII. ABO was not adjusted because it has a very weak influence on
FVIII [41;42] None of the ST3GAL4 SNPs had significant association with the FVIII–VWF
ratio across genotypes (data not shown), but the p-value for rs2186717 and rs7928391 was
0.007 before adjustment for environmental covariates.

Table 3. Ethnic allelic distribution (%) of ST3GAL4 SNPs in 1000G*.

NP FIN TSI CEU YRI LWK ASW CHB JPT MXL CLM

rs629882 84.3 82.9 86.4 99.1 96.5 92.4 49.0 46.6 67.2 80.9

rs3862628 27.8 28.2 24.2 54.6 56.9 47.7 45.6 40.4 15.7 24.5

rs3862629 27.8 28.2 24.2 54.6 56.9 47.0 51.0 42.3 15.7 24.5

rs4601794 7.6 5.1 6.1 1.8 2.0 1.5 25.2 16.3 6.7 5.3

rs11220463 17.2 13.0 13.6 0.5 0.0 3.8 41.3 38.5 11.2 11.7

rs11220465 22.7 14.4 16.2 11.9 26.2 18.2 50.0 48.6 29.1 30.9

rs7118117 32.8 29.2 26.8 57.8 63.9 51.5 54.9 51.4 32.8 42.0

rs7928391 54.0 45.8 52.0 70.6 70.3 65.9 55.8 53.4 42.5 55.3

rs10790800 30.3 30.6 35.4 61.0 54.5 53.0 5.3 4.8 14.2 23.9

rs7395043 18.7 21.3 17.7 2.3 7.4 9.8 57.8 59.1 38.1 22.3

rs11220476 18.7 19.9 17.7 0.9 3.5 9.1 60.7 57.2 38.1 22.3

*This table lists reference alleles for FIN: Finnish from Finland; TSI: Toscani from Italy; CEU: Utah residents with Northern andWestern European ancestry;

YRI: Yoruba in Ibadan, Nigeria; LWK: Luhya in Webuye, Kenya; ASW: African Americans in Southwest US; CHB: Han Chinese from Beijing; JPT: Japanese

from Tokyo;MXL: Mexican Ancestry in Los Angeles; and CLM: Colombian from Medellin Colombia.

doi:10.1371/journal.pone.0160757.t003

Fig 2. Linkage disequilibrium plot and haplotypes. Haplotypes and frequencies of ST3GAL4 SNPs available in ARIC GWAS were analyzed separately
for EA (A) and AA (B) samples.

doi:10.1371/journal.pone.0160757.g002
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We also measured allelic additive effects of these SNP for VWF antigen and FVIII activity
by counting the number of minor alleles for each SNP. We identified several SNPs that were
additive (Table 6). In addition, we also identified SNPs that were “more than additive” or
“below additive”, which indicate that the additive effect was greater or less than what would be
predicted by twice the effect of a single copy, respectively.

Discussion
We analyzed the ARIC database for association of ST3GAL4 SNPs with VWF antigen and
FVIII activity. We also examined the 1000G database for genotype imputation and for ethnic
diversity among ST3GAL4 SNPs. The rationale for the study was: (1) the ST3GAL4 gene
encodes a sialyltransferase that adds sialic acids to termini of N- and O-glycan chains on a gly-
coprotein backbone, (2) VWF and FVIII contain biantennary core fucosylated glycans [11–13]
and are modified by sialyltransferases [12;14;15] (3) removing sialic acids from VWF alters its
biosynthesis and adhesive activity [43;44], and (4) inactivating the ST3GAL4 gene results in a
reduction in circulating VWF antigen in mice due to accelerated clearance [25] In this associa-
tion study of two large adult samples, we made several novel observations.

First, 14 and 1,714 ST3GAL4 SNPs were identified in the ARIC GWAS and 1000G databases
respectively. The finding highlights the power of NGS for discovering new genetic variants.

Table 4. Association of ST3GAL4 SNPs with VWF antigen (%) in ARIC*.

SNP Genotype P value1 P value2

AA Aa aa

rs7118117 106.9 (105.9,108.0) 108.8 (107.7,109.9) 114.3 (111.9,116.8) < .0001

109.2 (108.2,110.2) 107.9 (106.9,109.0) 108.1 (106.1,110.0) 0.23

rs2186717** 101.4 (99.8,103.1) 105.4 (104.2,106.5) 105.4 (103.8,107.0) 0.0002

101.6 (100.2,103.0) 105.3 (104.3,106.3) 105.3 (103.9,106.7) < .0001

rs7928391** 107.3 (105.8,108.8) 108.7 (107.6,109.8) 108.9 (107.5,110.4) 0.28

109.4 (108.0,110.8) 109.0 (108.1,110.0) 106.6 (105.4,107.8) 0.003

rs11220465 99.0 (94.6,103.6) 107.5 (106.0,108.9) 109.1 (108.2,110.1) < .0001

101.7 (97.7,105.9) 108.2 (106.9,109.6) 108.7 (107.9,109.5) 0.006

rs3862629 106.8 (105.8,107.9) 109.1 (107.9,110.4) 113.7 (111.1,116.4) < .0001

109.0(108.0,110.0) 108.0 (106.9,109.0) 107.4 (105.3,109.5) 0.26

rs3862628 113. 9(111.3,116.6) 109.1(108.0,110.3) 107.1(106.0,108.1) < .0001

107.8 (105.7,109.9) 108.0 (107.0,109.1) 109.1 (108.2,110.1) 0.25

rs4601794 109.2 (108.4,110.0) 102.9 (100.7,105.0) 91.6 (81.8,102.5) < .0001

108.6 (107.9,109.3) 106.9 (104.9,109.0) 98.7 (90.0,108.2) 0.04

rs7395043 109.0 (104.1,114.3) 105.5 (103.9,107.1) 109.2 (108.4,110.1) 0.0004

112.9 (107.9,118.1) 108.2 (106.7,109.7) 108.4 (107.6,109.1) 0.21

rs11220476 109.2 (108.4,110.1) 105.5 (103.9,107.1) 109.2 (104.3,114.5) 0.0004

108.3 (107.6,109.1) 108.2 (106.7,109.7) 113.2 (108.2,118.4) 0.17

rs11220463 109.3 (108.5,110.1) 103.9 (102.1,105.8) 102.3 (95.5,109.6) < .0001

108.6 (107.8,109.3) 107.7 (105.9,109.5) 105. 6 (98. 8,112.8) 0.49

rs10790800 106.7 (105.6,107.8) 109.4 (108.2,110.5) 111.3 (109.2,113.4) < .0001

108.8 (107.8,109.9) 108.8(107.8,109.8) 107.0 (105.3,108.7) 0.16

*Values presented are geometric means (95% confidence interval) and the shaded row for each SNP gives the adjusted values (N = 8,859 to 12,117 before

and N = 8,790 to 12,006 after adjustment.

**RS2186717 and RS 7928391 are perfectly linked in EA, but data for RS2186717 is not available for AA subjects.

P values 1before and 2after adjustment for race, sex, age, BMI, hypertension, diabetes, ever smoking status and ABO

doi:10.1371/journal.pone.0160757.t004
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The density of variants in the ~65 kb ST3GAL4 gene is consistent with that of the whole
genome. However, the first intron, which contains approximately 75% of the nucleotides in the
human ST3GAL4 gene [27], contains all but one of the 14 SNPs found in the ARIC GWAS
(Table 2) and an overwhelming majority of the SNPs found in the 1000G database (Fig 1). The
large number of ST3GAL4 variants found in 1000G permitted the construction of specific
ST3GAL4 haplotypes and allowed imputation to increase the detectable variants in the ARIC
GWAS database. The study lays the foundations for studying more variations in the ST3GAL4
gene and their associations with VWF biology and disease states when more data becomes
available from ARIC exome and whole-genome sequencing.

Second, rs2186717, rs7928391 SNPs, and rs11220465 (the first two are perfectly linked)
were associated with VWF levels and FVIII activity after adjustment for environmental covari-
ates (Tables 4 & 5). The intronic SNPs rs2186717, rs7928391 SNPs, and rs11220465 are clus-
tered in a region of less than 4000 bp in the first intron (<2% of the human ST3GAL4 gene).
The SNP rs4601794 shows a weak association, but it is close to the three clustered SNPs so that
their effects, while minor individually, can be additive with or enhanced by other SNPs in spe-
cific haplotypes. In fact, this additive effect was found in 5 SNP for VWF antigen and 6 SNPs
for FVIII activity (Table 7).

Table 5. Association of ST3GAL4 SNPs with FVIII activity (%) in ARIC*.

SNP Genotype P value1 P value2

AA Aa aa

rs7118117 123.0 (122.1,123.9) 125.5 (124.5,126.5) 130.4 (128.4,132.4) < .0001

125.5 (124.6,126.4) 124.6 (123.7,125.5) 123.5 (121.8,125.3) 0.13

rs2186717 118.8 (117.4,120.1) 120.8 (119.9,121.7) 121.6 (120.2,122.9) 0.01

118.6 (117.3,119.9) 120.9 (120.0,121.8) 121.4 (120.1,122.6) 0.006

rs7928391 113.3 (111.6,121.3) 119.6 (118.6,120.6) 125.7(121.8,128.8) 0.0007

128.1 (123.4,133.0) 125.6 (124.2,127.0) 124.6 (124.0,125.3) 0.002

rs11220465 115.3 (112.0,118.7) 124.2 (122.9,125.4) 125.5 (124.7,126.2) < .0001

116.9 (113.3,120.7) 125.0 (123.8,126.2) 125.1 (124.4,125.8) 0.0002

rs3862629 123.0 (122.2,123.9) 125.8(124.8,126.8) 130.4 (128.1,132.6) < .0001

125.3 (124.4,126.2) 124.6 (123.7,125.6) 123.6 (121.7,125.5) 0.26

rs3862628 130.4 (128.2,132.7) 125.7 (124.7,126.7) 123.1 (122.3,124.0) < .0001

123.7 (121.9,125.6) 124.6 (123.7,125.6) 125.3 (124.5,126.2) 0.29

rs4601794 125.6 (124.9,126.3) 119.5(117.6,121.4) 108.9(101.1,117.3) < .0001

125.0 (124.4,125.6) 123.9 (122.1,125.8) 114.3 (106.4,122.9) 0.03

rs7395043 122.7 (118.5,127.1) 122.1 (120.8,123.4) 125.7 (124.9,126.4) < .0001

126.9 (122.5,131.5) 125.5 (124.1,126.8) 124.6 (124.0,125.3) 0.37

rs11220476 125.7 (124.9,126.4) 122.1 (120.8,123.4) 122.8 (118.5,127.1) < .0001

124.6 (124.0,125.3) 125.5 (124.1,126.8) 127.0 (122.6,131.6) 0.37

rs11220463 125.8 (125.1,126.5) 120.0 (118.5,121.6) 115.2 (110.0,120.6) < .0001

125.0 (124.3,125.6) 124.4 (122.8,126.1) 118.3 (112.3,124.6) 0.10

rs10790800 122.8 (121.9,123.8) 125.7 (124.8,126.7) 128.0(126.3,129.8) < .0001

124.9 (124.0,125.9) 125.3 (124.4,126.2) 123.6 (122.7,125.1) 0.17

*Values presented are geometric means (95% confidence interval) and the shaded row for each SNP gives the adjusted values (N = 8,859 to 12,117 before

and N = 8,790 to 12,006 after adjustment.

**RS2186717 and RS 7928391 are perfectly linked in EA, but data for RS2186717 is not available for AA subjects.

P values 1before and 2after adjustment for race, sex, age, BMI, hypertension, diabetes, ever smoking status. ABO was not adjusted.

doi:10.1371/journal.pone.0160757.t005
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None of the SNPs is in a known intron-exon junction, so they unlikely affect RNA splicing.
However, they may regulate ST3GAL4 biosynthesis and activity through other mechanisms.
For example, rs2186717 is in a GT-rich sequence that is prone to homologous recombination
[45] and is a preferred sequence for binding human DNA strand exchange protein, which is
involved in the recombination process [46] Because of its location in the 5’-untranslated
sequence [27] the first intron may also contain binding sites for transcription factors. A GT
rich sequence has indeed been reported to be the substrate for the transcription factor Sp1 [47]
which is reported to be important for transcribing the ST3GAL1 gene [48] Similarly, the tran-
scriptional regulation of the human ST3GAL4 gene results in two mRNA species defined by
transcription-factor binding to sites in the non-coding first exon and first intron [49]. Finally,
using the in silico program HaploReg (http://www.broadinstitute.org/mammals/haploreg/
haploreg.php), we were able to predict the effect of 13 non-coding variants in intron 1 of the
ST3GAL4 gene as regulatory SNPs (SNP effect on regulatory motifs, Table 6). These 13 variants
can potentially modify at least one type of regulatory motif, suggesting that they are likely to
have regulatory functions in haplotype blocks.

The genotype and phenotype associations identified in this study suggest that these SNPs
influence the biogenesis and enzymatic activity of ST3GAL4 sialyltransferase, possibly causing
differential sialylation on VWF and FVIII. Both VWF and FVIII are major sialylated proteins
in the circulation, and their clearances are partly regulated by the asialoglycoprotein receptor-
mediated endocytosis [19;25;50] In addition, ST3GAL4 SNPs may affect the synthesis and sur-
vival of FVIII indirectly by regulating VWF, which forms a protective complex with FVIII in
the circulation. As shown in Tables 4 & 5, the impacts of the individual correlative SNPs on
VWF antigen and FVIII activity are small, but are probably additive because they are closely
clustered. The small effect of the ST3GAL4 SNPs may also be attributed to the compensatory
activity of other homologous sialyltransferases and their alternative spliced forms.

In summary, we have identified novel SNPs in the ST3GAL4 gene that are associated with
VWF levels and FVIII activity. Although predominantly intronic, these SNPs may influence
the synthesis and activity of ST3GAL4 sialyltransferase through different pathways. This asso-
ciation study lays the foundation for biological experiments to determine how these SNPs affect

Table 6. Allelic additive effects of the ST3GAL4 SNPs for VWF and FVIII*.

SNP Additive for VWF Additive for FVIII

RS7118117 Not additive Additive

RS2186717 More than additive Additive

RS7928391 Additive Additive

RS11220465 Below additive Below additive

RS629882 Not additive Not additive

RS3862629 Not additive Not additive

RS3862628 Not additive Not additive

RS4601794 Additive More than additive

RS7395043 Not additive Not additive

RS12574844 Additive Not additive

RS11220476 Not additive Not additive

RS11220463 Not additive Not additive

RS2298475 Additive Additive

RS10790800 Not additive Not additive

*After adjustments for confounding variables.

doi:10.1371/journal.pone.0160757.t006
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the expression and activity of the ST3GAL4 sialyltransferase. It will also be helpful to the study
of variations in other genes in this family of sialyltransferases (ST3GAL1-4) [24] and their
influence on the biogenesis and survival of VWF, FVIII, and other sialylated proteins.
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