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Abstract

Purpose

Our goal in this study was to find correlations between breast cancer metabolites and con-

ventional quantitative imaging parameters using high-resolution magic angle spinning (HR-

MAS) magnetic resonance spectroscopy (MRS) and to find breast cancer subgroups that

show high correlations between metabolites and imaging parameters.

Materials and methods

Between August 2010 and December 2013, we included 53 female patients (mean age

49.6 years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast

Imaging Reporting and Data System. They were enrolled under the following criteria: breast

lesions larger than 1 cm in diameter which 1) were suspicious for malignancy on mammog-

raphy or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-

guided core-needle biopsy (CNB) 3) underwent 3 Tesla MRI with dynamic contrast-

enhanced (DCE) and diffusion-weighted imaging (DWI) and positron emission tomography-

computed tomography (PET-CT), and 4) had an attainable immunohistochemistry profile
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from CNB. We acquired spectral data by HR-MASMRS with CNB specimens and

expressed the data as relative metabolite concentrations. We compared the metabolites

with the signal enhancement ratio (SER), maximum standardized FDG uptake value (SUV

max), apparent diffusion coefficient (ADC), and histopathologic prognostic factors for corre-

lation. We calculated Spearman correlations and performed a partial least squares-discrimi-

nant analysis (PLS-DA) to further classify patient groups into subgroups to find correlation

differences between HR-MAS spectroscopic values and conventional imaging parameters.

Results

In a multivariate analysis, the PLS-DA models built with HR-MASMRS metabolic profiles

showed visible discrimination between high and low SER, SUV, and ADC. In luminal sub-

type breast cancer, compared to all cases, high SER, ADV, and SUV were more closely

clustered by visual assessment. Multiple metabolites were correlated with SER and SUV in

all cases. Multiple metabolites showed correlations with SER and SUV in the ER positive,

HER2 negative, and Ki-67 negative groups.

Conclusion

High levels of PC, choline, and glycine acquired from HR-MAS MRS using CNB specimens

were noted in the high SER group via DCE MRI and the high SUV group via PET-CT, with

significant correlations between choline and SER and between PC and SUV. Further stud-

ies should investigate whether HR-MASMRS using CNB specimens can provide similar or

more prognostic information than conventional quantitative imaging parameters.

Introduction
Breast cancer encompasses a heterogeneous group of diseases with various histological differ-
entiations, clinical courses, and responses to treatment. Along with early detection, identifying
reliable markers to improve diagnostic accuracy and prognosis is important in the treatment of
breast cancer. In addition to traditional parameters such as tumor size, tumor grade, and
lymph node status, several molecular markers are now used to classify breast cancers into sub-
groups and to predict clinical outcomes [1, 2]. The most frequently used molecular markers are
based on immunohistochemical (IHC) profile expression, such as expression of the estrogen
receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2),
and Ki-67 [3]. High-resolution magic angle spinning (HR-MAS) magnetic resonance spectros-
copy (MRS) has been recently suggested as a promising tool in the diagnosis and characteriza-
tion of breast cancer [4–8]. The technique can be used to measure multiple cellular metabolites
simultaneously and to provide a vast amount of information on biochemical composition by
analyzing tissue samples. Recent studies using HR-MAS MRS have found different concentra-
tions of choline-containing compounds in breast cancer tissue and these different distributions
have been correlated with clinicopathological parameters that predict tumor aggressiveness [7–
9]. A recent study suggested that HR-MAS MRS using core-needle biopsy (CNB) specimens
could predict tumor aggressiveness prior to surgery because several molecular markers signifi-
cantly correlated with histologic prognostic factors [4].

Morphological and functional parameters that are influenced by tumor biology are used to
study and compare imaging techniques. Dynamic contrast-enhanced (DCE) MRI is a well-
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established technique for monitoring contrast enhancement kinetics that reveal the character-
istics of tumor microvasculature. For example, early enhancement and the washout kinetic
curve have been correlated with high histologic grades or ER negativity [10, 11]. Diffusion-
weighted imaging (DWI) represents the biological character of the tumor and apparent diffu-
sion coefficient (ADC) values are used to obtain information on tissue cellularity. A previous
study reported that a lower ADC value was related to the positive expression of ER and nega-
tive expression of HER2 [12]. A lower ADC was also associated with the positive expression of
ER, and PR, increased Ki-67, and increased microvascular density in breast cancer [13]. 18F-
fluorodeoxygluxose (FDG) positron emission tomography-computed tomography (PET-CT)
reflects glucose metabolism and uses a standardized FDG uptake value (SUV) for tumor char-
acterization. SUV correlates with histological grade and expression of ER and PR [14]. Koo
et al. reported higher SUV values in triple negative and HER2 positive cancers than in the lumi-
nal A subtype of breast cancer [15]. Because quantitative parameters in conventional imaging
modalities relate to prognostic factors in breast cancer, it is possible to predict prognosis by
establishing correlations between quantitative imaging parameters and breast cancer metabo-
lites. There have been some attempts to do this with in vivo MRS studies. Total choline levels
using in vivo MRS were well correlated with SUV and prognostic parameters such as nuclear
grade, ER and triple negative status [16], and pharmacokinetic parameters that represent wash-
out in DCEMRI [17, 18]. To our knowledge, no previous studies have compared HR-MAS
MRS with other breast imaging modalities and clinicopathological prognostic factors to dem-
onstrate surrogate biomarkers in breast cancer.

The purpose of our study was to investigate the relationship between breast cancer metabo-
lites and conventional quantitative imaging parameters using HR-MAS MRS and to find breast
cancer subgroups that have high correlations between metabolites and imaging parameters.

Materials and Methods

Patients
This study was approved by the institutional review board of Yonsei University College of
Medicine, and we obtained written informed consent from each patient prior to study
commencement.

Between August 2010 and December 2013, we included 53 female patients (mean age 49.6
years; age range 32–75 years) with a total of 53 breast lesions assessed by the Breast Imaging
Reporting and Data System. The patients were enrolled under the following criteria: breast
lesions larger than 1 cm in diameter that 1) were suspicious for malignancy on mammography
or ultrasound (US), 2) were pathologically confirmed to be breast cancer with US-guided CNB,
3) underwent 3 Tesla MRI with DCE and DWI and PET-CT, and 4) had an attainable IHC
profile from CNB.

US-guided Core-needle Biopsy and Sample Preparation
US-guided CNBs were performed with a 14-gauge dual action semiautomatic core biopsy nee-
dle (Stericut with coaxial guide; TSK Laboratory, Tochigi, Japan) by one of four radiologists
(with 6–13 years of experience). The mean number of tissue samples obtained by US-guided
CNB for each lesion was six (range 5–8). All samples except for one core sample of each lesion
were used for pathologic diagnosis and IHC analysis. For HR-MAS MRS, one core tissue sam-
ple was put in a cryogenic vial and immersed in liquid nitrogen immediately after biopsy. Sam-
ples were stored at –70°C for one to five months prior to HR-MAS MRS.
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Histopathologic Analysis
All 53 lesions were pathologically diagnosed as malignant by CNB prior to treatment. Informa-
tion about pathologic variables, including histologic grade and ER, PR, HER2, and Ki-67 status,
was obtained with the CNB specimen. Fifty patients underwent surgery, and we compared
their final histopathologic results. All tissues were fixed in 10% buffered formalin and embed-
ded in paraffin. Each section was stained with hematoxylin-eosin (H&E) for microscopic
examination by experienced pathologists. The histologic grade of each tumor was determined
using the modified Bloom-Richardson classification [19]. Another section was stained immu-
nohistochemically for ER, PR, and HER-2/neu using commercially available antibodies for ER
(Thermo Scientific, Fremont, CA, USA), PR (Dako, Glostrup, Denmark), c-erbB-2 (Dako), p53
(Dako), and Ki-67 (Novocastra, Newcastle, UK). We defined ER and PR positivity as the pres-
ence of 10% or more positively stained nuclei in 10 high-power fields. The intensity of HER-2
staining was semi-quantitatively scored as 0, 1+, 2+, or 3+. We considered tumors scored as 3
+ to be HER2 positive cases and tumors scored from 0 to 1+ to be negative cases. Borderline
cases (2+) required further investigation using fluorescence in situ hybridization to assess gene
amplification. We scored the IHC staining of Ki-67 by counting the number of cells with posi-
tively stained nuclei and expressed results as a percentage of the total tumor cells. The cut-
point value for positive Ki-67 was 14% [20].

MRI Technique
MR examinations were performed using two 3-TMR scanners (TrioTim; Siemens, Erlangen,
Germany [MR system 1] / Discovery MR750; GEMedical Systems, Milwaukee, WI, USA [MR
system 2]) with 18 and 35 patients, respectively, for each scanner. Imaging was performed with
a dedicated phased array breast coil with the patient in the prone position. After obtaining
3-plane localizer images, we obtained axial T2-weighted turbo or fast spin-echo images (TR/TE
4360/82; matrix 512 × 512 pixels, field of view 340 × 340 mm; section thickness 3 mm for MR
system 1 and TR/TE 4187/102; matrix 416 × 256 pixels, field of view 320 × 320 mm; section
thickness 3 mm for MR system 2) and axial T2 STIR images (TR/TE 4500/76; TI 220 ms for MR
system 1 and TR/TE 5000/70; TI 200 ms for MR system 2). Diffusion-weighted images with a
2D spin-echo echo-planar imaging sequence (TR/TE 9100/80 for MR system 1 and TR/TE
6000/68; TI 250ms for MR system 2) were obtained thereafter. We applied diffusion-weighted
gradients in three orthogonal directions and used two b-values: 0,850 (n = 2) and 0,600 (n = 67).

After DWI MRI, we performed T1-weighted DCEMRI, including one pre-contrast acquisi-
tion and six post-contrast bilateral axial acquisitions (TR/TE 280/2.6; matrix 512 × 343 pixels,
field of view 340 × 340 mm; section thickness 3mm, no intersection gap for MR system 1 and
VIBRANT-Flex Dynamic imaging (TR/TE 4100/1700); matrix 280 × 512 pixels; flip angle 12°;
field of view 320 × 320 mm; section thickness 3mm, no intersection gap for MR system 2). A
gadolinium-based contrast agent (Dotarem; Guerbet, Paris, France/ Magnevist; Berlex Labora-
tories, Wayne, NJ, USA/Gadovist; Bayer Schering Pharma, Berlin, Germany) was injected into
an antecubital vein at a dose of 0.2 cc per kilogram of body weight at a rate of 2 mL/sec using
an automated injector and followed by a 20-mL saline flush. Post-contrast images were
obtained 20 seconds after the start of contrast material injection for MR system 1 or immedi-
ately after contrast material injection with no time delay for MR system 2. The acquisition time
for each post-contrast series was 60 seconds and 75 seconds for MR systems 1 and 2, respec-
tively. Thus, six post-contrast images were obtained at approximately 90, 150, 210, 270, 330,
390 seconds for MR system 1 and at 90, 165, 240, 315, 390, 465 seconds for MR system 2 after
the start of contrast material administration. Temporal sampling of the center of the k-space
for the post-contrast series occurred at approximately 45, 105, 165, 225, 285, 345 seconds for
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MR system 1 and at 45, 120, 195, 270, 345, 420 seconds for MR system 2. For all dynamic stud-
ies, we generated subtraction images. Menstrual cycles were not considered when scheduling
MR imaging examinations.

PET-CT Imaging Technique
PET was performed using a PET/CT system (Discovery STE; GE Medical Systems, Milwaukee,
WI, USA). All patients fasted for at least 5 hours before PET imaging. Image acquisition started
1 hour after intravenous administration of FDG (3.7 MBq/kg body weight). CT scans from the
brain to the pelvis were performed immediately before the PET scans using a multi-detector
spiral CT scanner (3.75 mm slice thickness, pitch of 1.75, 120 keV, and 30–200 mA depending
on the patient’s total body mass). We performed whole-body PET scans, covering an area iden-
tical to that covered by the CT scan. All PET/CT images were interpreted at the workstation
(Advantage Windows workstation; GE Healthcare).

HR-MASMRS Experiments
Wemeasured HR-MAS MR spectra of the tissue samples with a nuclear magnetic resonance
(NMR) spectrometer (VNMRS 600, Agilent, Walnut Creek, CA, USA) operating at a proton
NMR frequency of 600.167 MHz (14.09T). Temperature was set to 19°C. Each experiment
took approximately 20 minutes. Frozen samples were cut and weighed on ice in the NMR labo-
ratory, and placed in an HR-MAS nanotube (Agilent). The total volume of the sample cell was
40μl, and an average of 8.4mg core-biopsy samples were placed in the cell with the remaining
volume filled with D2O containing 2mM of trimethylsilyl propionic acid (TSP). The probe was
an inverse-detection type equipped with a single Z-gradient coil.

The CNB tissue samples were analyzed using the Carr-Purcell-Meiboom-Gill pulse sequence
to impose a T2 filter. All data were collected at a spinning rate of 2 kHz. The spectral acquisition
parameters were as follows: 19.231 K complex data points, 9615.4 Hz sweep width, 2.0 s acquisi-
tion time, 1.0 s relaxation delay, 1.5 s saturation time, 256 number of transients, 10 receiver
gain, and total acquisition time of 16 min 18 sec. Each free induction decay signal was processed
and analyzed using Chenomx NMR Suite 7.1 professional software (Chenomx Inc., Edmonton,
Canada). Post-processing consisted of Fourier transformation, phasing, and baseline correction.
Data quantification was performed by comparing the integrated TSP signal with the signal of
interest in the tumor spectrum and the relative concentrations were recorded.

Image Review and Quantitative Analysis
All MRI examinations were subsequently processed by CADstream (Confirma, Inc., Kirkland,
WA, USA), a commercially available computer-aided detection system. To assess lesion kinet-
ics, we assessed the whole series of DCE MR images. We gave the reviewers information about
tumor location for a more consistent quantitative analysis. To analyze the time intensity curve,
we manually drew regions of interest (ROIs) around the lesions, avoiding necrotic or cystic
components. The kinetic type of lesions were categorized as persistent, plateau, or washout
based on images obtained in the delayed enhancement phase [21]. We calculated the signal
enhancement ratio (SER) of the tumor using the following equation [22]: SER = (S1-S0)/
(S2-S0) where S0, S1, S2 represent the signal intensity on pre-contrast (before contrast material
administration), early post-contrast (90 seconds after), and delayed post-contrast (395–435
seconds after) images, respectively.

The CADstream commercial software (Merge Healthcare, Milwaukee, WI, USA) automati-
cally calculated an ADC map using the signal intensity within the manually drawn ROI. The
ROIs were drawn at the most representative slice of the corresponding location and in
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accordance with the size of the tumor, as reflected in the DCE MRI analysis. Apparent necrotic
or cystic components were avoided by referring to the DCE MRI and T2-weighted images. We
calculated the ADC value as the mean of the voxels within the ROI of the tumor. The multiple
b-value method calculated the ADC using a least-square exponential fitting of all b-value data
within the defined range of b-values. All diffusion-weighted images were first divided by the
lowest b-value image, and the resultant images were based on relative signal intensities. For
each pixel in the image, we performed a linear regression to fit a straight line to the natural log-
arithm of the relative signal intensities over the respective b-values.

Two radiologists reviewed and interpreted all the PET-CT and MRI images in consensus.
Lesions were analyzed semi-quantitatively using the SUV max, defined as the maximum tissue
concentration of FDG (kBq/ml) in the structure delineated by the ROI divided by the activity
injected per gram body weight (kBq/g). The maximum SUV for each visible breast cancer was
automatically recorded by drawing a circular 3-D ROI over the largest area with abnormal
FDG uptake in the breast cancer lesion to cover the entire tumor volume. The SUV max of the
liver was measured as reference for comparison.

Data and Statistical Analysis
We collected patients’ clinicopathological data by reviewing medical records. Clinicopathologi-
cal variables included the pathologic type of each tumor, lymph node metastasis at the time of
diagnosis, status of ER, PR, HER2, and Ki-67 expression, and triple negativity (Table 1).
Tumor size was defined as the size reported on the final pathologic results (n = 27), except for

Table 1. Clinicopathological data of the 53 patients with 53 malignant breast lesions in this study.

Clinicopathological variables Patients (%)

Histologic grade

Low (Grade 1–2) 29 (54.7)

High (Grade 3) 17 (32.1)

N/A 7 (13.2)

Tumor size

�2 cm 25 (47.2)

>2 cm 28 (52.8)

ER status

Negative 17 (32.1)

Positive 36 (67.9)

PR status

Negative 37 (69.8)

Positive 16 (30.2)

HER2 status

Negative 41 (77.4)

Positive 12 (22.6)

Ki-67 status

Low (<14%) 22 (41.5)

High (�14%) 29 (54.7)

N/A 2 (3.8)

Triple status

Negative 12 (22.6)

Positive 1 (1.8)

N/A: not available.

doi:10.1371/journal.pone.0159949.t001
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cases in which the patient received neoadjuvant chemotherapy before surgery (n = 23) or did
not undergo surgery (n = 3). In those patients, tumor size was defined as the size measured
with MRI.

Spectral data acquired by HR-MAS MRS were expressed as relative metabolite concentra-
tions. These metabolites were compared with SER, SUV max, ADC, and histopathologic prog-
nostic factors for correlation. We performed all analyses using IBM SPSS Statistics 21.0 (IBM
SPSS Statistics for Windows, Version 21.0; Armonk, NY, USA). An arbitrary decision was
made to use median values to divide high and low groups for each imaging parameter category.
The Mann-Whitney U test was performed to compare metabolic data between these groups.
We used the Spearman correlation coefficient to show relationships between variables. P-val-
ues less than 0.05 were considered significant.

For multivariate analysis of spectral data, we used Matlab (MathWorks, Natick, MA, USA),
SIMCA-P 11.0 (Umetrics, Sweden), and Excel (Microsoft, Seattle, WA, USA). We performed
partial least squares-discriminant analysis (PLS-DA) to further classify patient groups into sub-
groups to find correlation differences between HR-MAS spectroscopic values and conventional
imaging parameters. We performed additional PLS-DA in luminal subtype breast cancer
because multiple breast cancer metabolites showed correlations with SER and SUV in the ER
positive, HER2 negative, and Ki67 negative groups. We built class discrimination models until
the cross-validated predictability value did not significantly increase to prevent over-fitting of
the statistical model. The statistical model was validated by prediction of unknown samples
using a leave-one-out analysis [23, 24]. We used an a priori cut-off value of 0.5 to evaluate the
prediction results [25]. Signals contributing to group discrimination were identified by an S-
plot, and the corresponding HR-MAS MR spectral data were identified using Chenomx (Spec-
tral database; Edmonton, Alberta, Canada) software and a database built in-house.

Results
The mean tumor size of the 53 breast cancers was 25.8 mm (range, 10–80 mm). The pathologi-
cal types of the tumors were invasive ductal carcinoma (n = 46), invasive lobular carcinoma
(n = 4), invasive carcinoma with ductal and mucinous features (n = 1), invasive carcinoma
with ductal and lobular features (n = 1), and mucinous carcinoma (n = 1).

The high SER (�0.96) group showed higher relative metabolite concentrations than the low
SER (<0.96) group for asparagine, choline, fumarate, histidine, lysine, phenylalanine, and ura-
cil. The low ADC (<1.38) group showed lower relative metabolite concentrations than the
high ADC (�1.38) group for fumarate and glutamate. The high SUV (�5.4) group showed
higher relative metabolite concentrations than the low SUV (<5.4) group for asparagine, fuma-
rate, PC, PE, and uracil (Fig 1 and S1 Table). SER and SUV showed moderate correlation (r� =
0.445) with each other (P<0.001, Spearman correlation).

We produced PLS-DA separation models with the HR-MAS MR spectral data using the
quantitative parameters (SER, ADC, SUV) from conventional imaging. PLS-DA score plots
showed visible discrimination by status of high and low SER, SUV, and ADC with some sam-
ples crossing over the reference line (Fig 2). In luminal subtype breast cancer, compared to all
cases, high SER, ADC, and SUV seemed to be more closely clustered by visual assessment (Fig
3). However, the overall diagnostic performance was not improved except for ADC (Table 2).
Corresponding PLS-DA loadings S-plots showed extreme metabolites that contributed to the
prediction of high and low groups for SER, ADC, and SUV. Higher levels of PC, choline, and
glycine were noted in the high SER group, and a higher level of leucine was found in the low
SER group. Higher levels of glycine and PC were noted in the low ADC group. Higher levels of
PC, choline, and glycine were noted in the high SUV group. Our PLS-DA prediction model
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exhibited high diagnostic performance in predicting high and low groups of conventional
quantitative imaging parameters (Table 2).

As shown in Table 3, we found several metabolite markers via HR-MAS MRS that corre-
lated with SER and SUV with a p value less than 0.05. SER showed positive correlations with
asparagine (r� = 0.41), choline (r� = 0.29), fumarate (r� = 0.41), glutamate (r� = 0.30), histidine
(r� = 0.44), PE (r� = 0.29), phenylalanine (r� = 0.34), tyrosine (r� = 0.32), uracil (r� = 0.50),
and total choline (r� = 0.29). SUV showed positive correlations with asparagine (r� = 0.33),
fumarate (r� = 0.41), glutamate (r� = 0.28), lactate (r� = 0.32), PC (r� = 0.30), PE (r� = 0.36),
uracil (r� = 0.48), and total choline (r� = 0.28). SUV showed a negative correlation with isoleu-
cine (r� = -0.27).

We divided patients into groups by their immunohistochemistry results and compared the
SER, ADC, and SUV correlations with metabolites. Multiple metabolites showed correlations
with SER and SUV in the ER positive, HER2 negative, and Ki-67 negative groups (S2 Table).
The SER of the ER positive group showed positive correlations with asparagine (r� = 0.43), eth-
anol (r� = 0.34), ethanolamine (r� = 0.40), fumarate (r� = 0.53), glutamine (r� = 0.36), histidine
(r� = 0.61), lysine (r� = 0.38), phenylalanine (r� = 0.44), tyrosine (r� = 0.45), and uracil (r� =
0.61). The SUV of the ER positive group showed positive correlations with fumarate (r� = 0.43)
and lactate (r� = 0.34). None of the metabolites in the ER negative group showed correlations
with SER or SUV. In the HER2 negative group, seven metabolites showed positive correlations
with SER, and seven metabolites showed positive correlations with SUV, while one metabolite
showed a negative correlation. In the Ki-67 negative group, five metabolites showed positive
correlations with SER, while one metabolite showed a negative correlation, and four metabo-
lites showed positive correlations with SUV.

Discussion
Recently, several studies have focused on HR-MAS MRS to understand breast cancer [4, 7, 8,
26]. HR-MAS MRS can detect more than 30 metabolites in breast cancer tissue [27]. However,
these metabolites cannot represent the whole breast tumor. Therefore, it is important to com-
pare HR-MAS MRS results with conventional breast imaging modalities that reflect more com-
plete breast cancer characteristics. Validating the correlations between metabolomics found
using HR-MAS MRS and quantitative conventional breast imaging must precede the applica-
tion of HR-MAS MRS in daily practice for breast cancer diagnosis. In our review of previous
literature, we found only a few reports that discussed correlations between different imaging

Fig 1. Heat map of HR-MASMRSmetabolites according to the high and low (A) SER, (B) ADC, (C) SUV
groups. SER: signal enhancement ratio, SUV: standard uptake value, ADC: apparent diffusion coefficient
PC: Phosphocholine, PE: Phosphoethanolamine, GPC: Glycerophosphocholine, m_Ins: myo-Inositol.

doi:10.1371/journal.pone.0159949.g001
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Fig 2. Partial Least Squares-Discriminant Analysis (PLS-DA) score plot and loadings S plot for (A,B) SER, (C,D) ADC, and (E,F) SUV of all
cases.

doi:10.1371/journal.pone.0159949.g002
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Fig 3. Partial Least Squares-Discriminant Analysis (PLS-DA) score plot and loadings S plot for (A,B) SER, (C,D) ADC, and (E,F) SUV of luminal
subtype breast cancer.

doi:10.1371/journal.pone.0159949.g003
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parameters and metabolites in in vivo MRS. The pharmacokinetic parameter kep in DCE MRI
[17, 18] and SUV in PET-CT [16] were correlated with choline levels found with in vivo MRS.
Unlike in vivo MRS, ex vivo HR-MAS MRS obtains high-resolution spectra directly from
biopsy tissue and allows accurate assessment of correlations between quantitative imaging
parameters and metabolites.

We observed higher levels of PC, choline, and glycine in the high SER group in our study.
Out of those three metabolites, choline showed a significant correlation with SER (r� = 0.29),
which is consistent with previous studies that detect higher total choline concentrations in
breast cancer with higher pharmacokinetic parameters (kep) from DCEMRI, suggesting a cor-
relation between choline metabolism and angiogenesis [17, 18]. Total choline compounds were
correlated with SER with borderline significance (p = 0.058). Our study results emphasize a
more specific relationship between choline and breast cancer angiogenesis compared to previ-
ous in vivo MRS studies. Ex vivo HR-MAS MRS can discriminate and quantify PC, GPC, and
choline that contribute to the total choline peak in in vivo studies. An elevated level of choline
might be associated with increased membrane synthesis due to the ongoing tumor cell replica-
tion and angiogenesis required to support tumor growth [17]. Higher contrast washout in DCE
MRI correlates with tumor grade [28], histologic grade, and ER negativity [10]. Despite the
debate on the relationship between the kinetic parameters of DCE MRI and prognostic factors
[29, 30], the SER parameter can sufficiently provide biologic information about angiogenesis
[31]. HR-MAS MRS data from biopsied specimens can predict angiogenesis by analyzing the
endogenous signaling metabolites that are used to determine tumor prognosis. A previous
report also observed a trend toward higher concentrations of choline in poor prognosis breast
cancer samples (p = 0.07) using HR-MAS MRS [4]. Therefore, choline could be a promising
metabolite in predicting angiogenesis and poor prognosis in breast cancer.

We observed higher levels of PC, choline, and glycine in the high SUV group in our study.
PC showed significant correlation with SUV (r� = 0.30). In a previous in vivo MRS study,
Tozaki et al. showed a correlation between SUV and total choline levels, a summation of PC,
GPC, and free choline [16]. PC, a precursor of cell membrane synthesis, composes a large part
of the total choline compound [8]. Therefore, our study correlates well with the previous in
vivo study by emphasizing cell-associated alterations in choline metabolism in breast cancer.
PC increases during malignant transformation through increased phosphorylation by choline
kinase [32, 33]. Also, in a previous ex vivo MRS study, cancer samples that were strongly posi-
tive for Ki-67 showed higher concentrations of total choline compound and PC [4]. High SUV
levels have been related to poor prognostic markers, showing high relapse and mortality [34,

Table 2. Diagnostic performance of PLS-DAmodels in predicting high and low groups of conventional quantitative parameters (SER, ADC, SUV).

TP TP+FN TN TN+FP Sensitivity Specificity Accuracy

All cases

SER 10 12 15 24 0.833 0.625 0.694

ADC 12 18 11 18 0.667 0.611 0.639

SUV 11 15 11 21 0.733 0.524 0.611

Luminal subtype

SER 4 5 12 20 0.800 0.600 0.640

ADC 8 10 11 15 0.800 0.733 0.760

SUV 7 8 8 17 0.875 0.471 0.600

TP: True positive, TN: True negative, FP: False positive, FN: False negative

SER: signal to enhancement ratio, ADC: apparent diffusion coefficient, SUV: standardized uptake value.

doi:10.1371/journal.pone.0159949.t002
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35]. Therefore, high PC levels might indicate rapid cell turnover in breast cancer and show
good correlation with high SUV levels. The SUV max showed positive correlation with lactate
(r� = 0.32) and no significant correlations with glucose or alanine. It was previously reported
that some breast cancer cell lines showed different rates of lactate uptake and different

Table 3. Correlation between conventional quantitative parameters (SER, ADC, SUV) and HR-MASMR spectroscopy values in the 53 breast cancer
specimens.

SER ADC SUV

r* p-value r* p-value r* p-value

Acetate -0.01 0.963 0.11 0.440 0.02 0.860

Alanine -0.05 0.738 0.18 0.207 -0.01 0.951

Arginine 0.10 0.462 0.07 0.632 -0.01 0.963

Asparagine 0.41 0.003 0.13 0.361 0.33 0.016

Aspartate 0.21 0.133 0.19 0.177 0.17 0.213

Betaine -0.13 0.364 0.11 0.445 0.13 0.337

Choline 0.29 0.037 -0.03 0.840 0.17 0.215

Creatine 0.11 0.443 -0.10 0.487 0.15 0.275

Ethanol 0.24 0.083 0.20 0.156 0.05 0.712

Ethanolamine 0.25 0.069 0.18 0.187 0.06 0.654

Fumarate 0.41 0.003 0.22 0.107 0.41 0.002

Glucose 0.04 0.766 -0.03 0.830 0.02 0.898

Glutamate 0.30 0.030 0.26 0.063 0.28 0.042

Glutamine 0.23 0.090 -0.04 0.750 0.14 0.312

Glycerol 0.17 0.230 -0.02 0.906 0.21 0.136

Glycine -0.02 0.889 -0.26 0.059 0.07 0.602

Histidine 0.44 0.001 -0.03 0.844 0.18 0.186

Isoleucine 0.05 0.739 0.03 0.833 -0.27 0.049

Lactate 0.05 0.731 0.06 0.689 0.32 0.019

Leucine 0.03 0.833 0.08 0.577 -0.11 0.437

Lysine 0.22 0.119 -0.09 0.519 0.09 0.522

Methionine 0.20 0.149 0.00 0.996 0.00 0.981

PC 0.25 0.075 -0.06 0.667 0.30 0.030

PE 0.29 0.035 -0.09 0.526 0.36 0.008

Phenylalanine 0.34 0.013 -0.11 0.412 0.05 0.736

Proline 0.14 0.322 -0.09 0.500 0.13 0.345

Serine -0.07 0.602 -0.09 0.522 -0.09 0.544

Taurine -0.05 0.699 -0.26 0.055 0.02 0.905

Threonine 0.04 0.778 -0.24 0.086 0.10 0.473

Tyrosine 0.32 0.020 0.01 0.944 0.08 0.552

Uracil 0.50 0.000 0.16 0.263 0.48 0.000

Valine -0.09 0.515 -0.04 0.754 -0.17 0.229

myo-Inositol -0.07 0.630 -0.12 0.376 -0.01 0.924

GPC -0.10 0.459 0.05 0.719 -0.01 0.948

Total choline 0.29 0.035 -0.075 0.593 0.28 0.039

r*: Spearman correlation coefficient.

SER: signal enhancement ratio, SUV: standard uptake value, ADC: apparent diffusion coefficient

PC: Phosphocholine, PE: Phosphoethanolamine, GPC: Glycerophosphocholine

Total choline: PC + GPC + choline.

doi:10.1371/journal.pone.0159949.t003
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generation rates of its catabolites (glutamate and alanine) [36]. Another study found that con-
version from glucose to lactate and alanine occurred faster in the luminal-like model compared
with the basal-like model of cancer despite the fast growth rate of the basal-like model [37].
Lactate showed significant positive correlation with the SUV max in the ER positive, PR posi-
tive, HER2 negative and Ki 67 negative groups in our study. This stays in accordance with pre-
vious reports that suggest that the tumor growth rate is not necessarily a determinant of
glycolytic activity [37]. On the other hand, Cao et al. reported increased lactate levels in the ER
negative and PR negative groups [26]. At this time, not many studies regarding lactate levels
with molecular types of breast cancers have been published and conclusions based on these
studies are still controversial. It has been reported that in vivo lactate MRS imaging has a
greater dynamic range than 18F-FDG PET and may be more sensitive in evaluating the aggres-
sive potential of primary breast tumors [38]. Future studies that include larger numbers of
patients with each molecular type of breast cancer may demonstrate the correlation between
glycolytic activity and tumor aggressiveness. Isoleucine showed negative correlation with SUV
in our study. This could not be clearly explained based on previous studies [39]. However,
there is a high possibility that this may be due to some complex regulated pathways related to
breast cancer. Previous report has suggested that isoleucine degradation was differentially regu-
lated in breast cancer metabolic pathway. Nevertheless, isoleucine degradation could not be
associated with oncogenesis and may need further evaluation [39]

DWI is useful in differentiating malignant lesions from benign lesions and provides infor-
mation about tumor biology and microstructural features. ADC is strongly affected by the
architecture of tumors, such as cellular density and stromal features [40]. In our study, we
found no significant correlation between metabolites and ADC values, possibly because breast
cancer metabolites represent function and ADC values represent structural information. Gly-
cine and PC were suggested as extreme metabolites related to the low ADC group. In many
previous studies, a low ADC value has been considered as a promising prognostic factor that
identifies highly aggressive breast cancer [41–43]. Although we found no intracellular correla-
tions between ADC and metabolites in this study, we did note high levels of glycine and PC in
the low ADC group, which could contribute to poor prognosis.

We observed higher levels of glycine in the high SER, low ADC, and high SUV groups. Gly-
cine consumption and synthesis is known to correlate with rapid cancer cell proliferation, and
higher expression of the mitochondrial glycine biosynthesis pathway is associated with higher
mortality in breast cancer patients [44]. Also, high levels of glycine have previously been shown
to correlate with poor prognosis in breast cancer using HR-MAS [7, 26, 45, 46]. Previously,
higher levels of glycine were found in ER negative and PR negative tumors than in ER positive
and PR positive patients [26, 47], and higher levels of glycine were also associated with HER 2
overexpression regardless of hormone receptor status [26]. Along with PC and choline, well-
known markers for breast cancer [7, 8], glycine can be a reliable marker in predicting treatment
response in therapeutic monitoring or in suggesting poor prognosis for breast cancer patients.

ER, PR, HER-2, and Ki-67 expression have been shown to play a major role in breast cancer
prognosis [48]. Metabolic differences caused by those hormone and growth receptors are
highly relevant to tumor prognosis. However, the molecular reasons for their overexpression
and amplification remain largely unknown. Previous reports have found some HR-MAS MRS
values to be significantly correlated with known histopathologic prognostic factors [4, 26]. In
the subgroup analysis in our study, multiple metabolites showed higher correlation with SER,
ADC, and SUV in ER positive, PR positive, HER2 negative, and Ki-67 negative patients. In
PLS-DA models for luminal subtype breast cancer, we observed a visual distinction between
the high and low SER, ADC, and SUV groups. Also, high levels of glycine, PC, and choline
were noted in the high SER, low ADC, and high SUV groups in luminal subtype breast cancer,
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indicating poor prognosis. Unlike the correlation study, the diagnostic performance of the mul-
tivariate profile analysis was not significantly better in the luminal subtype than in all cases,
possibly because of our small sample size. Future studies with larger sample sizes might be able
to detect the main metabolite in luminal subtype breast cancers that show typical high SER,
low ADC, and high SUV image patterns, aiding in targeted therapy.

This study has several limitations. First, we included breast cancers of variable sizes, and 14
tumors (26.4%) were more than 3cm in diameter. Larger breast cancers show heterogeneous
histologic features, which could cause variations in metabolite concentrations, angiogenesis,
and tumor metabolism throughout the breast lesion. However, we were unable to compare
HR-MAS MRS values obtained with CNB specimens with the spectroscopic values of the entire
tumor volume. Therefore, our results might not fully represent the metabolic composition of
large tumors. Second, the acquisition parameters in obtaining optimal spectral data for
HR-MAS MR spectroscopy are important. There might have been minimal differences in each
case, even though we tried to maintain the same acquisition parameters for each procedure.
Third, we did not directly compare quantitative imaging parameters with breast cancer prog-
nosis. When interpreting correlations with HR-MAS metabolite results and conventional
imaging, we referred to previous reports that showed correlations between conventional imag-
ing and prognostic factors. Our HR-MAS metabolic results might have limited explanatory
power in predicting prognosis. Further studies should be constructed to compare different
molecular subtypes of breast cancers with an increased number of cases and more survival data
to validate our hypothesis. Fourth, we used a single relatively low b value for each lesion, either
b = 600 sec/mm2 (n = 52) or b = 850 sec/mm2 (n = 1), to obtain ADC values. Therefore, we
recommend caution in generalizing the lack of correlation between ADC values and breast can-
cer metabolites. However, this limitation might be of minimal effect because sensitivity and
specificity are unaffected by the choice of b value even though different b values significantly
affect the ADC of breast lesions, according to Dorrius et al. [49]. Lastly, we acquired our quan-
titative parameters using two different MR systems, which might have introduced heterogene-
ity into our data. We did find differences between the metabolite correlations with SER, and
ADC when we analyzed the two groups separately. However, a large majority of ADC values
were within 5% of values reported in previous studies that used different MR hardware and
sequence parameters [50, 51], supporting the integration of ADC data in our study. A future
study must be planned with a larger number of cases using one MR system for validation.

Conclusion
High levels of PC, choline, and glycine acquired from HR-MAS MRS using CNB specimens
were noted in the high SER group via DCEMRI and the high SUV group via PET-CT, with sig-
nificant correlation between choline and SER and between PC and SUV. Further studies should
investigate whether HR-MAS MRS using CNB specimens can provide similar or more prog-
nostic information than conventional quantitative imaging parameters.
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