Abstract

Establishment of Turns-Amplitude Cloud of Normal Adults

Sang Chul Lee, M.D., Yoon Ghil Park, M.D., Ph.D., Seong-Woong Kang, M.D., Ph.D., Jae Ho Moon, M.D., Han Seung Kim, M.D., Ki Deok Park, M.D., Won Ah Choi, M.D.

Department of Rehabilitation Medicine, Rehabilitation Institute of Muscular Disease, Yonsei University College of Medicine

Objectives: The automatic analysis of the EMG interference pattern reflects motor units induced all range of power. Therefore, comparing to MUAP analysis, it has many advantages including much easier to apply to incorporeable patients, minimal errors by practitioners, and faster to obtain results and process informations. The aim of this study is to establish the turns-amplitude clouds of normal adults with using interference pattern.

Methods: Healthy adults whose age from 20 to 59 years old participated in this study. The interference patterns were analyzed of the biceps brachi, vastus medialis, and tibialis anterior muscle. The interference patterns were measured at 20 sites in each muscle and turns-mean amplitude was analyzed. With turns/amplitude ratio, normal clouds of gender related turns-amplitude were obtained.

Results: The turns amplitude ratio of the biceps brachi, vastus medialis, and tibialis anterior muscle were obtained in male and female. The establishment of normal clouds of gender related -turns-amplitude were obtained.

Conclusion: By using normal cloud patterns of turns-amplitude, automatic interference pattern analysis may contribute to diagnose myopathy and neuropathy in incorporeable patients.

Key Words: Turns-amplitude, Normal cloud, Interference pattern, Quantitative EMG
을 객관적으로 해석하고, 검사자간의 오차를 최소화하고 검사방법이이나 검사시간, 시간에 따른 결과를 비교하고 통계처리를 하는 데 유용하게 사용될 수 있다. 또한 비정상 소견을 찾아내 뿐 아니라 병변의 심한 정도나 대체 기간 및 에너지를 판단하는데도 도움이 된다. 5

근전도는 정량적으로 표현하기는 노력은 Buchthal 등이 운동단위 활동전도를 분석하여 신경-근 절연의 전도에 이용하면서 시작되었다. 1 이로써 자세한 여러 가지 세부적인 정량적 근전도 방법을 (quantitative electromyography, QEMG) 중 대표적인 것이 근전도 간섭양상 분석(interference patterns, IP)의 전환전-전곡분석 방법(turns-amplitude analysis)으로 Willison 9의 전환에 정의된 후, 많이 사용되었으며 이에 대한 변형된 여러 가지 방법들이 시도되어 왔다. 6 8 강한 근 수축에 의한 근성 무작위 휘가 많아지고 발화율이 증가되거나 각각을 구별할 수 없게 되므로, 근육분석에서는 약간의 근 수축에서의 운동단위 활동전도와 전환을 동원하여 전만 간섭사를 보이나, 신경병증에서는 근모근의 전환단위의 소작자가 간섭양상이 감소한다. 7

Willison은 간섭양상 분석에서 근성 무작위 휘가 연속된 전환자 이의 정점과 정점 (peak to peak)으로, 전환율 연속된 경점과 정점 사이에 전극의 적도를 100 μV 이상의 차이를 보일 때에만 정상하다고 하였다. 이는 근 성유의 활성의 동시성 을 정하며 근성 근육에 근심유 활동전도에 의해 결정된다. 전환의 정점에 있어서 전극주변의 50 μV 혹은 30 μV 이상으로 하면 간섭양상 분석 시 근육 신경제 절연의 전도에 더욱 민감하게 하였으나 이러한 전환적인 정점의 수는 시간이 지나지 않았다. 7 9 국내에서는 김 등이 신경-근 절연전에서 전환전-간섭양상 분석을 통해 두 근간 높은 민감도를 보였다. 10 11

이 전환전-간섭양상분석법은 여러 가지 변형된 방법인 약 100의 논리가 있다. 그 중 간섭양상의 음의 세포의 근력 유효도 정도에 대해서 검사 고정된 일정수준의 근력을 유지하는 것보다는 규정되지 않는 임의의 근력을 적용한 근전도 간섭양상을 이용하는 방법이 보편화되는 추세이다. 12 14

근 수술 정도를 고려하지 않고 전환전-간섭양상을 할 수 있는 방법으로 소음의 개발이 있는 것, 연장된 근육의 여러 부위에서 3-5단계의 근육수축을 하면서 전환에 대한 평균간섭점의 산도(scalar plot)를 작성하여 90%이상이 속하는 범위를 정상 cloud라 정의하고, 20-30% 검사에서 10% 이상 정상 cloud를 보이면 비정상으로 간주하였다. 14 15 근육분석에서는 정상 cloud의 아래쪽, 15 16 신경병증에서는 위쪽으로 산란하게 된다. 이는 신경병증과 근육병증의 전도에서 운동단위 활동전도 분석보다 더욱 예민하다. 17

국내 연구에서 김 등 18이 20-60세의 정상 성인을 대상으로 상완두근 및 대뇌근간경간력에서의 초당 전환점 수와 초당전환점 총전축간의 개별자연 분포의 정상범위를 구하였으나, 이는 근지표층이 아닌 총전축을 사용하였고, 또한 명확한 cloud를 설정하지 않아 실제 정량적 근전도 검사 시의 참고 자료로는 제한점을 가지고 있었음. 따라서 본 연구에서는 정상 성인군의 성별, 근육병 전환점-전축 cloud를 설정하여 이후 정량적 근전도 간섭양상분석을 통한 신경-근 질환의 정량화 신경직은 실험 및 치료에 대한 반응을 평가하고, 고신경 검사에서 흔히나 이하인 환자와 근전도 검사에 이용하고자 하였다.

연구대상 및 방법

1. 연구대상

20세에 5세까지의 어학적 검사, 신경전도검사 및 근전도검사에서 이상 소견이 없는 정상 성인들로서, 남자 상완두근(biceps brachii)의 경우 27명, 남자 내측 대퇴골전(biceps femoris)의 경우 1명, 남자 전장골근(tibialis anterior)의 경우 26명, 여자 상완두근(23명), 여자 내측 대퇴골근의 경우 22명, 여자 전장골근의 경우 25명으로 대상하였다.

2. 연구방법

1) 근전도 검사방법

정량적 간섭양상검사는 폐검사가 정상에 두려워 시행되었으며, 내측 대퇴골근 검사의 경우 캐이드를 대예 무릎을 약간 구부린 상태에서 검사하였다. 17

기록장치는 단국전도기(TECA Corp., Pleasantville, NY, USA)을 사용하였으며, 근전도기는 Synergy 8 (Oxford Medelec, Wiesbaden, Germany)를 이용하였다. 여자주파수의 범위는 10 Hz에서 10 kHz로 설정하였고, 지속시간(sweep time)은 500 msec었다. 본 근전도기에서 얻을 수 있는 지표인 전환수 (number of turns), 평균 전도수(mean amplitude)는 자동측정되었다. 전환은 연속된 정점과 정점 사이의 적도로 100 μV 이상의 차이를 보일 때로 정의하였다.

근전도 기록은 단국전도기를 근육의 중앙부에 삽입한 후에 loud speaker로 crescent sound가 들리도록 천천히의 위치를 조정한 후 단계적으로 근육수축을 증가시켜 간섭양상을 얻었으며, 각각의 근육에서 총 20회의 간섭양상을 얻었다. 근육수축 단계는 흔히가 생각하는 최소에서 최대의 힘으로 정하였다. 수축시에 근 파라로 주거나 지원계가 줄이기 위해 수축 간 촉음기를 가하였다. 11 체지위를 달리기 위해 전후 혹은 좌우로 적어도 5 mm 이상
2) 정상 cloud의 설정

상환이두근에서는 남녀 각각 564례, 622례의 간성양상 (epilepsy)을, 내측 대퇴경근에서 각각 421례, 584례를, 전방골근에서 각각 501례, 631례를 얻었다 (Table 1).

정량적 간성양상분석에 의하여 얻어낸 전환수 및 평균 진폭으로 Stålberg 등이 기술했던 동일한 방법을 이용하여 남녀 각각의 상환이두근, 내측 대퇴경근, 전방골근에서의 정상 cloud를 설정하였다.

3) 자료 분석

먼저 전환점-진폭간의 보다 적합한 회귀방정식을 향상 재용 로그값으로 정화하여 선형 회귀분석을 시행하였다(Fig.1.A). 이렇게 하여 얻어진 회귀방정식으로부터 회귀 직선 및 이로부터 ±2 표준오차내의 범위를 전환점-진폭의 정상범위로 정하고(Fig.1.B), 이를 다시 지수함수로 변환하여 전환점-진폭간의 cloud를 설정하였다(Fig.1.D).

결 과

단극침전극으로 기록한 전환점의 범위는 16/sec에서 1108/sec이었고, 평균 진폭의 범위는 66 μV에서 2,719 μV이었다.

전환점과 평균 진폭의 상용로그값 간의 선형 회귀방정식의 결정계수(R2)는 남자의 경우, 상환이두근에서 0.4332, 내측 대퇴경근에서 0.4509, 전방골근에서 0.4103, 여자의 경우 상환이두근에서 0.3027, 내측 대퇴경근에서 0.5409, 전방골근에서 0.2671이었다. 이때 모든 회귀방정식들은 유의미한 0.05보다 작아 독립변수에 의한 종속변수의 회귀편향이 인정되었다. 따라서 전환점과 평균진폭의 상용로그값 간의 회귀 방정식을 기준으로 삼아 이로부터 ±2 표준오차내의 범위를 정상범위로 정하였고(Fig.1.B). 이를 다시 전환점과 평균 진폭의 기수 함수로 변환하여 전환점-진폭 cloud를 설정하여 도면에 나타내었다(Fig.1.D). 진폭값 수가 크고, 평균 진폭 값이 클수록 회귀방정식으로부터 빠져 전 점도가 심하였다(Fig.1.B). 전환점과 평균 진폭의 지수함수를 표시한 후(Fig.1.C), 전환점 값의 산란성을 전체 진폭점 값의 99%에 해당하는 값으로 정하여 도면에 수직선으로 표시하였다. 평균 진폭 값의 산란성은 정상 범위에 해당하는 가장 높은 값으로, 하한선은 역시 정상범위에 해당하는 가장 작은 값으로 cloud의 경계를 정하였으며(Fig.1.D), 이는 모두 Stålberg 등이 cloud를 설정한 방법과 동일하게 생겼다.

고찰

정량적 간성양상의 분석은 신경이나 근육의 질병에 의한 간성양상 변화를 정량적으로 분석하여 진단에 도움을 줄 수만 아니라, 근육 활동성(muscle activity), 근육 피로, 만성 근육통, botulism toxin으로 치료한 이상간격근의 평가 등에 유용하며, 검사자들 간에 오차를 줄일 수 있고, 각 검사실 사이 혹은 동일 환자의 시간에 따른 비교도 할 수 있다. 또한 운동단위 활동전위 분석은 단지 적은 힘(weak effort)으로 유도된 운동 단위의 생리학적 변화 등을 알 수 있는 반면 간성양상 분석은 모든 힘의 범위(whole force range)에서 유도된 운동 단위를 반영한다.

Table 1. Summary of Linear Regression Analysis between log (MA) and log (NT)

<table>
<thead>
<tr>
<th>Muscle</th>
<th>Sex</th>
<th>Number of Data (Epoch)</th>
<th>Slope</th>
<th>Intercept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biceps</td>
<td>Male</td>
<td>564</td>
<td>0.60773</td>
<td>2.88030</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>622</td>
<td>0.48470</td>
<td>3.53970</td>
</tr>
<tr>
<td>Vastus medialis</td>
<td>Male</td>
<td>421</td>
<td>0.54383</td>
<td>3.55194</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>584</td>
<td>0.55243</td>
<td>3.28115</td>
</tr>
<tr>
<td>Tibialis anterior</td>
<td>Male</td>
<td>501</td>
<td>0.46613</td>
<td>3.86959</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>631</td>
<td>0.39553</td>
<td>4.03803</td>
</tr>
</tbody>
</table>

1. MA: Mean amplitude
2. NT: Number of turns
양성분석은 대상의 78%에서 근육병에 부합하는 소견을 보였으나, 웅동단위 활동전위 분석에서는 67%만이 근육병 소견을 보였다. Sporadic inclusion body myositis 환자를 대상으로 한 연구에서도 간접양상의 분석에서 더욱 높은 민감도를 보였다고 하였다. 그러나 근육병 환자의 경우에는 정량적 검사에서 위음성 결과를 초래할 수 있는 데, Fuglsang-Frederiksen 등은 검사 시 점의 정도(force level)가 cloud의 민감도에 영향을 주며 대상 근육병환자의 반수에서 최대 극력의(maximum force) 10~30% 범위에서는 근육병에 협상한 소견이 최대 극력의 50%가 넘으면서는 정상 범위 안으로 진입되어 이상 소견이 보호해지는 것을 관찰하였다. Nandedkar 등은 최대 극력에 가까워지면 전환수-전폭값이 예측에 Stålberg 등이 정의한 cloud의 범위를 넘어서게 되어 신경병변으로 해석될 수 있음을 보고하였다.

전환점과 평균전폭의 개별자료(raw data)들은 전폭은 근력에 비례하여 증가하지만, 전환점의 경우, 근력이 최대근력의 일정 분율 이상의 근력에 도달할 때까지는 근력에 비례하여 증가하나 그 이상의 근력에서는 더 이상 증가하지 않는 경향을 보인다. 따라서 전환점과 진폭간의 2차원 도면은 직선형 분포가 아닌 곡선 분포를 하며, 각 진환점에서 전폭들의 분산이 진환점 수에 따라 모두 다르므로 개별 자료들의 분석으로 얻어지는 단일적도(전환점에 대한 평균전폭의 비)를 이용한 단순 통계처리가 적합하지 않음이 알려지면서 이들의 정상 cloud 개념이 각광받게 되었다.\[11,14,26\]

Nandedkar 등은 정상 cloud의 모양이 개별자료의 분포 및 cloud 설정 시 사용되는 수학적 함수의 종류에 의해서 달라진다고하면서, Stålberg 등이 기술했던

Fig. 1. Development of the cloud. (A) Scatter plot of turns and amplitude data. (B) Linear regression and ±2 standard deviation of log amplitude versus log turns. (C) The ±2 standard deviation lines in B are redrawn on the normal material in A. (D) Normal limits obtained by setting upper limits on turns and amplitudes.

1. Amp: Amplitude
2. Log(Amp): Logarithm of Amplitude
3. Log(Turns): Logarithm of Turns
The shape and size of the cloud are determined by the examiner according to the method of Stålberg et al. However, the shape of the cloud is not always the same, and the examiner may modify it depending on the specific conditions. In the present study, the shape of the cloud was determined by the examiner based on the specific conditions. The shape of the cloud was determined by the examiner based on the specific conditions. The shape of the cloud was determined by the examiner based on the specific conditions. The shape of the cloud was determined by the examiner based on the specific conditions. The shape of the cloud was determined by the examiner based on the specific conditions.

Fig. 2. Turns-amplitudes normal cloud. (A) Male biceps. (B) Female biceps. (C) Male vastus medialis. (D) Female vastus medialis. (E) Male tibialis anterior. (F) Female tibialis anterior.

1. Amp: amplitude
하였을 때, 형성된 cloud의 범위가 줄게 나타났는데, 이는 환자의 균력을 통제하지 않음으로 해서 개발자로 가해진 균력에 해당하는 진폭과 전환점의 범위를 포함하지 않았기 때문이며 이는 균력이 매우 강한 정상인의 경우, 최대 균력을 추출한 신경성 반응으로 인해 상승수가 나타날 가능성도 있지만, 대부분의 검사에서 타당성과 높은 민감도를 보이는 것으로 알려져 있다. 25

본 연구에서는 근전도검사 시 단독점전극을 사용하였는데, 이는 중심점전극(concentric needle)을 사용 시와 비교하면, 전환점 및 전폭값이 다르므로 인하여 cloud 실행 시 동일하지 않은 결과가 사용될 것으로 예상된다. Stålberg 등 26은 신경양성 분석 시, 주어진 전환수에서 단독점전극을 사용하는 경우에 중심점전극에 비해 전폭값이 평균 1.3배 높아 cloud의 전폭 상한값이 더 높다고 하였다. Howard 등 27은 단독점전극, 중심점전극을 사용하여 측정한 운동단위활동전위의 특성을 분석한 연구에서 전폭, 상승시간, 전환수 등은 단독점전극에서 더 크지만 지속시간과 firing rate는 차이가 없다고 하였다. 한편 Nandedkar와 Sanders 28는 전폭, 전위, 상승시간, 전환수 등은 단독점전극에서 더 크지만 지속시간과 전폭 대면의 비는 두 전극 간에 차이가 없다고 하였고, 비교 단독점전극의 기록변이 더 크지만 지속시간이 동일한 것으로 미루어 볼 때, 빌리 있는 근육유일수록 활동전위의 전폭이 급격히 감소되어 측정되기 때문에 중심점전극보다 더 특이적이라고 주장하였다. 맥 등 29은 사용된 점전극의 종류에 따라 운동단위 활동전위의 각 지표 값이 달라지기 때문에 정상 분석 시 점전극의 종류에 특정한 경상치를 참조하여야 한다. 주로 단독점전극을 사용하는 국내의 상황에서는 이를 이용한 정상 참고치가 더욱 필요하며, 고정적 근전도 검사 시 실수로 정상범위가 필요할 경우, 점전극을 바꾸지 않고도 바로 실시할 수 있기 때문에 임상에서 확립 쉽게 이용할 수 있다고 주장하였다.

점전극-전폭간의 cloud 외에도, amplitude-activity cloud와 NSS-activity cloud를 이용한 간접양성 분석이 신경병증이나 근육변증의 진단에 더욱 민감하다는 보고가 있는데, 21) 향후 설정된 cloud로 실제 민감도와 특이도의 대비 연구가 지속되어야 할 것이다. 소아의 경우 검사 시 손응봉도가 더욱 어려짐을 고려할 때, 앞 으로 연령별 정상 cloud 설정을 포함한 간접양성분석 연구가 이루어져야 할 것으로 생각된다.

결 론

개발적으로 이러한 근전도 분석방법의 하나로 제시될 수 있는 경량적 근전도 방법의 임용으로 정상 성인의 성별, 근육별 전환점-전폭 cloud 설정하였으며, 이는 심화 연구를 통하여 소아를 포함한 검사의 순응도가 높아지는 환자에서 진단적 도움이 되리라 판단된다. 또한 신경근육체 점전의 정확한 진단이나 점전의 진행 및 치료에 대한 반응을 평가하는 방법으로 융합하게 사용될 수 있을 것으로 보인다.

향후 운동단위 활동전위 분석과 비교 연구를 통하여 심도적인 검사의 대체 또는 두 검사의 병용을 통한 검사의 타당성과 민감도를 높이는 방법이 모색되어야 할 것이다.

참고문헌

11. 김진호, 한태영, 성명현: 신경병증과 근육병증에서의 근

29. 박은숙, 진중만, 정세일, 박승현, 장성호, 이재형: 정상인과 양측 근전도를 이용한 간섭장성의 비교. 대한 근전도·전기조직학회지 1996; 20: 945-951.