The Relationship between Age and Pleural Fluid Adenosine Deaminase Activity in Pleural Tuberculosis

1Department of Internal Medicine, 2Brain Korea 21 Project for Medical Sciences, and 3Institute of Chest Diseases, Yonsei University College of Medicine, Seoul, Korea

Jin Wook Moon1, Chang Hoon Han1, Shin Myung Kang1, Moo Suk Park1, Sang Yeon Hwang1, Min Kwang Byun1, Wou Young Chung1, Hye Jin Hwang1, Young Sam Kim1,3, Sung Kyu Kim1,2,3, Joon Chang1,3, Sung Kyu Kim1,3

Adenosine deaminase (ADA) is an enzyme that metabolizes purine nucleotides, and it is known that ADA activity is higher in patients with pleural tuberculosis than in the healthy population. This study aimed to evaluate the relationship between age and ADA activity in pleural fluid of patients with pleural tuberculosis.

METHODS

A total of 80 patients were enrolled in this study, and the study was divided into two groups based on age. The relationship between age and ADA activity in pleural fluid was analyzed using independent sample t-tests and linear regression analysis.

RESULTS

The mean age of the 80 patients was 58.5 years, and the mean ADA activity in pleural fluid was 71.2 ± 27.6 IU/L. The ADA activity did not significantly differ between the two age groups (p=0.69). The results of linear regression analysis showed that age was not significantly related to ADA activity (r²=0.05, p=0.59).

CONCLUSION

The results of this study suggest that ADA activity in pleural fluid can be used as a marker for the diagnosis of pleural tuberculosis, and that the relationship between age and ADA activity in pleural fluid is not significant.

Key words: Age, Adenosine deaminase, Pleural effusion, Tuberculosis

INTRODUCTION

For most cases of tuberculous pleural effusion, the number of the organisms in the pleural effusion is very small, so the conventional methods for the detection of Mycobacterium tuberculosis are often of no use. The culture is positive in less than 25% of cases and even the pleural biopsy shows granulomatous inflammation only in approximately 60% of cases.

Even though the combination of the microscopic examination and the culture of pleural biopsy specimens was reported to increase the diagnostic rate up to 90%, it is time-consuming. The diagnosis of the cases with tuberculosis at an earlier stage would be advantageous because they are less contagious and have lower morbidity and mortality. The early diagnosis of pleural tuberculosis has been greatly improved by the use of the biochemical markers such as adenosine deaminase (ADA), interferon-γ, and lysozyme. Among them, the determination of the ADA level in pleural fluid appears to be the most promising for the diagnosis of pleural tuberculosis because of its ease, rapidity, and cost-effectiveness. ADA is found in most cells, but its major role is concerned with the proliferation and differentiation of lymphocytes, especially T-lymphocytes. For this reason, ADA has been thought of as a marker of the
cell-mediated immunity including the delayed hypersensitivity reaction which is the key mechanism of tuberculous pleural effusion.

Immunosenescence, the progressive decline in the immune function that develops with aging, has largely been attributed to the alterations in the T-cell immunity. Substantial changes in both the number and the function of T-cells have been reported with an advancing age. For the number of T-cells, one of the most consistent changes with an advancing age, is a decrease in the proportion of naive T-cells with a concomitant increase in the proportion of activated/memory T-cells. The observed functional changes include decreased responses to T-cell receptor stimulations, impaired T-cell proliferative capacities, decreased number of interleukin-2-producing CD4+ T-cells, and decreased interleukin-2 receptor expressions. These latter findings probably explain the loss of the proliferative capabilities of T-cells from the aged individuals.

In this study, we hypothesized that the pleural fluid ADA activity might be lower in the elderly patients and investigated whether we should apply a different cut-off value to them for the diagnosis of pleural tuberculosis.

**METHODS**

**Study Population and Samples**

We retrospectively reviewed the patients older than 18 years who were diagnosed with tuberculous pleural effusion at the Severance Hospital, over a 4-year period (June 2000 – June 2004). The diagnostic criteria used were as follows: positive *M. tuberculosis* culture of pleural effusion, and/or histopathologic finding consistent with tuberculosis on pleural biopsy. Among them, the immunocompromised patients due to the underlying diseases such as diabetes mellitus, liver cirrhosis, uremia, malnutrition, leukemia, and lymphoma, were excluded. The patients taking immunosuppressive medications such as corticosteroid, cyclosporine, cyclophosphamide, azathioprine, and mycophenolic acid, were also excluded.

We reviewed the pleural effusion ADA level, the differential cell count from pleural effusion and peripheral blood, the pleural effusion lactate dehydrogenase (LDH) level, and the pleural effusion/serum LDH ratio.

**AFB Smear and Culture of *Mycobacterium tuberculosis***

The Ziehl–Neelsen staining and the 3% Ogawa medium culture were performed with the pleural effusion specimens and the sputa.

**Determination of Adenosine Deaminase (ADA) Activity in Pleural Effusion**

The ADA activity was determined by the colorimetric method described by Giusti. The ADA level below 45 IU/L was considered as negative in this study.

**Statistical Analysis**

The pleural effusion ADA activity, pleural effusion LDH level, pleural effusion/serum LDH ratio, pleural effusion leukocyte and lymphocyte count, peripheral blood leukocyte and lymphocyte count from the patients older than 65 years were compared with those from the younger patients by student’s t-test. The sensitivity of the pleural effusion ADA activity was compared between the two age groups by Fisher’s exact test. The relationship between age, pleural...
effusion lymphocyte count, and pleural fluid ADA activity was examined using multiple linear regression analysis. The differences were considered statistically significant if \( p \)-value was less than 0.05.

**RESULTS**

Subjects’ Characteristics

A total of 80 patients were included, who consisted of 22 females and 58 males. The patients’ age ranged from 19 to 85 years. The pleural effusion *M. tuberculosis* culture was positive in 30 (37.5\%) cases. Pleural biopsy was not performed in 8 (10.0\%) patients due to a small amount of pleural effusion. Out of the 72 biopsy-performed cases, 62 (86.1\%) showed the pleural histopathology consistent with tuberculosis. The pleural effusion ADA activity was between 10.4 and 133.0 IU/L.

The subjects included 21 patients older than 65 years and 59 patients younger than 65 years. The female patients were 4 (19.0\%) of 21 and 18 (30.5\%) of 59 in each group (\( p > 0.05 \)). The pleural effusion *M. tuberculosis* culture was positive in 7 (33.3\%) of 21 and in 23 (39.0\%) of 59 patients, respectively (\( p > 0.05 \)). Pleural biopsy was performed to 19 (90.5\%) of 21 and to 53 (89.8\%) of 59 patients in each group.

The pleural biopsy pathology was consistent with tuberculosis in 16 (84.2\%) of 19 and in 46 (86.8\%) of 53 biopsy-performed patients, respectively (\( p > 0.05 \)). The pleural effusion ADA level was above 45 IU/L in 18 (85.7\%) of 21 and in 50 (84.7\%) of 59 patients (\( p > 0.05 \)). The lactate dehydrogenase (LDH) level in the pleural effusion specimen was 1008±542 IU/L and 1020±552 IU/L, respectively. The pleural fluid to serum LDH ratio was 2.29±1.50 and 2.54±1.58 in each group (\( p > 0.05 \)) (Table 1).

**Comparison of Pleural Effusion ADA Activity, Pleural Effusion Leukocyte and Lymphocyte Count, Peripheral Blood Leukocyte and Lymphocyte Count between Two Age Groups**

The pleural effusion ADA level was 71.2±27.6 IU/L in the elderly group and 68.5±25.8 IU/L in the younger group (\( p = 0.69 \)). The pleural effusion leukocyte count was 1189±1892/\( \mu \)L and 2014±2158/\( \mu \)L, respectively (\( p = 0.19 \)). The pleural effusion lymphocyte count was 932±1500/\( \mu \)L and 1777±1568/\( \mu \)L in each group. It was slightly lower in the elderly group even though the result was not statistically significant (\( p = 0.07 \)). The peripheral blood leukocyte count was 7543±3180/\( \mu \)L and 6898±2215/\( \mu \)L, respectively (\( p = 0.31 \)). The peripheral blood lymphocyte count was 844±

---

**Table 1. Clinical characteristics of the patients**

<table>
<thead>
<tr>
<th></th>
<th>&gt; 65 years old (n=21)</th>
<th>≤ 65 years old (n=59)</th>
<th>( p )-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of females (%)</td>
<td>4 (19.0%)</td>
<td>18 (30.5%)</td>
<td>0.40*</td>
</tr>
<tr>
<td>No. of cases with positive PE MTB culture (%)</td>
<td>7 (33.3%)</td>
<td>23 (39.0%)</td>
<td>0.79*</td>
</tr>
<tr>
<td>No. of cases with positive pleural pathology (%)</td>
<td>16/19*(84.2%)</td>
<td>46/53†*(86.8%)</td>
<td>0.72§</td>
</tr>
<tr>
<td>No. of cases with ADA &gt;45 IU/L (%)</td>
<td>18 (85.7%)</td>
<td>50 (84.7%)</td>
<td>1.00§</td>
</tr>
<tr>
<td>PE LDH (IU/L) (mean±SD)</td>
<td>1008±542</td>
<td>1020±552</td>
<td>0.93ll</td>
</tr>
<tr>
<td>PE/Serum LDH ratio</td>
<td>2.29±1.50</td>
<td>2.54±1.58</td>
<td>0.56ll</td>
</tr>
</tbody>
</table>

LDH: lactate dehydrogenase, MTB: Mycobacterium tuberculosis, PE: pleural effusion

*16 of the 19 biopsy-performed patients showed the histopathologic findings consistent with pleural tuberculosis.

†46 of the 53 biopsy-performed patients showed the histopathologic findings consistent with pleural tuberculosis.

‡Pearson’s chi-square test was used.

§Fisher’s exact test was used.

llStudent’s t-test was used.
Table 2. Comparison of ADA activity and cell counts between two groups*

<table>
<thead>
<tr>
<th></th>
<th>&gt; 65 years old (n=21)</th>
<th>≤ 65 years old (n=59)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pleural effusion ADA level (IU/L)</td>
<td>712 ± 27.6</td>
<td>685 ± 25.8</td>
<td>0.69†</td>
</tr>
<tr>
<td>Pleural effusion WBC count (μL)</td>
<td>1189 ± 1982</td>
<td>2014 ± 2158</td>
<td>0.19†</td>
</tr>
<tr>
<td>Pleural effusion lymphocyte count (μL)</td>
<td>932 ± 1500</td>
<td>1777 ± 1568</td>
<td>0.07†</td>
</tr>
<tr>
<td>Peripheral blood WBC count (μL)</td>
<td>7543 ± 3180</td>
<td>6898 ± 2215</td>
<td>0.31†</td>
</tr>
<tr>
<td>Peripheral blood lymphocyte count (μL)</td>
<td>844 ± 527</td>
<td>1251 ± 424</td>
<td>0.001†</td>
</tr>
</tbody>
</table>

*The values are expressed as mean ± standard deviation.
† Student’s t-test was used.

527/μL in the elderly group and 1251±424/μL in the younger group (p=0.001) (Table 2). The multiple linear regression analysis of the relationship between age, pleural effusion lymphocyte count, and pleural fluid ADA activity did not show a significant correlation, either ($r^2=0.05$, $p=0.59$) (Fig. 1).

DISCUSSION

ADA catalyzes the conversion of adenosine and deoxyadenosine to inosine and deoxyinosine, respectively. Because ADA is primarily concerned with the proliferation and differentiation of T-lymphocytes, the pleural effusion ADA activity is thought to reflect the cellularity of activated T-lymphocytes in the pleural compartment. According to some previous reports, the serum ADA level was lower in the patients with severe combined immunodeficiency, and it was higher in the patients with increased cell-mediated immunity due to typhoid fever, infectious mononucleosis, viral hepatitis, chronic liver disease, etc. According to Hsu et al., the diagnostic value of ADA in the immunocompromised hosts with tuberculous pleural effusion was not as significant as in the immunocompetent hosts. On the contrary, Riantawan et al. showed that the diagnostic value of the pleural effusion ADA activity was not different between the human immunodeficiency virus (HIV)–seropositive and the HIV–seronegative patients.

We partitioned the patients into two groups, one older than 65 years and the other younger. The results indicated that the pleural effusion ADA level did not correlate with the patient’s age. The mean value and the sensitivity of the pleural effusion ADA level did not show statistically significant differences between the two age groups. The pleural effusion lymphocyte count was slightly lower in the elderly patients even though not statistically significant, and the peripheral blood lymphocyte count was much lower in the elderly patients with a statistical significance. This might suggest that the activated lymphocyte count in the pleural effusion is
similar between the two age groups in spite of the difference in the total lymphocyte count. In the future, therefore, it would be necessary to compare the activated lymphocyte counts between the two age groups, possibly by means of the stimulation of the lymphocytes with the mycobacterial antigens such as culture filtrate proteins and purified protein derivatives.

From these results, we can assume that it is reasonable to apply the same cut-off value of the pleural fluid ADA level with the same clinical significance, to both the elderly and the younger patients, for the diagnosis of pleural tuberculosis. Our results were in some accordance with Riantawan et al.'s study which showed that the pleural effusion ADA level of the HIV-seropositive patients did not differ from that of the HIV-seronegative ones²⁶.

In this study, we included only the cases of confirmed tuberculous pleural effusion with positive *M. tuberculosis* culture of pleural effusion and/or histopathologic finding consistent with tuberculosis on pleural biopsy. We excluded the patients with probable pleural tuberculosis who had one of the following: positive *M. tuberculosis* culture of biologic specimens other than pleural effusion, and/or positive response to anti-tuberculous medications without other possible causes of pleural effusion. And hence the *M. tuberculosis* culture–positive and the pleural pathology–positive rate were higher than those in the previous studies in which the cases with probable pleural tuberculosis were also enrolled.

A lot of Korean elderly people are thought to have been exposed to *M. tuberculosis* in their early lives and are suspected to be in the state of latent infection. This might have induced the activation of the memory T-lymphocytes when developing pleural tuberculosis in the elderly group. Even though the number of the naïve T-lymphocytes was decreased in the elderly, these memory T-lymphocytes might have proliferated and released ADA in the pleural space, to the same degree as in the younger patients.

In conclusion, it is assumed that we can apply the same cut-off value of the pleural effusion ADA activity with the same clinical significance, to both the elder and the younger patients, for the diagnosis of pleural tuberculosis. Considering the limitations of a retrospective study, further prospective studies including much more cases will be necessary in the future.

References


