Isolation of *Mycoplasma pneumoniae* and Antimicrobial Susceptibilities of the Isolates (III). Myung-Woong Chang, Kwang-Hyuk Kim, In-Dal Park, Gap-Young Song, Sung-Won Kim, Eun-young Lee, Moon-Chan Kim, Myung-Hoon Cho, Kyu-Earn Kim and Choong-Eon Choi. Department of Microbiology, Kosin University College of Medicine, Department of Internal Medicine, Pusan Adventist Hospital, Department of Pediatrics, Pusan St. Benedict Hospital, Kim Moon-Chan Pediatrics, Yeonje Family Medicine, Department of Pediatrics, Yongdung Severance Hospital, Yonsei University and Department of Pediatrics, Internal Medicine, Gu-Ho Hospital – The 994 throat swabs obtained from 688 adults and 306 children patients with respiratory diseases were examined for *Mycoplasma pneumoniae* infection by culture method. Antimicrobial susceptibilities of the resulting 123 *M. pneumoniae* isolates were evaluated by testing minimum inhibitory concentrations (MICs) of erythromycin, minocycline, tetracycline, josamycin, sparfloxacin, ofloxacin, and ciprofloxacin by a broth micro-dilution method. The erythromycin resistant strains of *M. pneumoniae* was determined above 1.0 μg/ml of MIC for erythromycin. The erythromycin resistant strains of *M. pneumoniae* was confirmed resistant gene mutation of the portions of genes 23S rRNA (domain II and V), and ribosomal protein L4 and L22 by PCR amplified and their nucleotide sequences were compared to those of the susceptible strain M129. The isolation rate of *M. pneumoniae* was 12.9% (89/688) for the adults and 11.1% (34/306) for the children. The MICs of *M. pneumoniae* isolates were 0.12 μg/ml for minocycline, 0.25 μg/ml for sparfloxacin, 0.5 μg/ml for ciprofloxacin, ofloxacin, and tetracycline, respectively, and 2.0 μg/ml for josamycin and erythromycin, respectively. The isolation rate of erythromycin resistant *M. pneumoniae* isolates from patients was 49.4% (44/89) for the adults, 47.1% (16/34) for the children, and 48.8% (60/123) for the total. No mutation could be detected in the ribosomal protein L22 region, but all strains were mutated in the ribosomal protein L4 as two point mutation M144V. Two point mutations in domain V of 23S rRNA were selected in the presence of erythromycin resistant *M. pneumoniae* isolates, such as one strain was G2057C mutant, two strains were A2059C mutants, three strains were C2611G mutants, four strains were A2058C mutants, five strains were A2058T mutants, twenty strains were A2059G mutants, and twenty-five strains were A2058G mutants, respectively. These results show that erythromycin was not the most active compound against *M. pneumoniae* infection in Korea and clinical studies of macrolides in human patients are demanded.

Key words – *Mycoplasma pneumoniae*, Antimicrobial susceptibility, Erythromycin Resistant Mutants

Macrolides are antibiotics that inhibit bacterial growth by binding to the 50S ribosomal subunit, preventing the formation of the functional 70S ribosome. They bind to the 23S ribosomal RNA (rRNA) in the 50S subunit, preventing the transcription of messenger RNA (mRNA) and causing the inhibition of protein synthesis. The 23S rRNA domain V is essential for the interaction of macrolides with the 50S subunit, and mutations in this domain are associated with resistance to macrolides. Macrolide-resistant strains of *M. pneumoniae* have been shown to have mutations in the 23S rRNA domain V, resulting in reduced binding of macrolides and decreased susceptibility to these antibiotics. These mutations can be classified into two types: point mutations in the 23S rRNA domain V and insertions or deletions in the domain. The most common mutations involve the substitution of a guanine nucleotide by an adenine or cytosine nucleotide at position 2058 or 2059 in the 23S rRNA sequence. These mutations result in the formation of a new stem-loop structure that prevents the binding of macrolides to the 50S subunit. Additionally, some strains have acquired resistance by developing new mechanisms of resistance, such as the production of enzymes that modify the target site or the synthesis of secondary metabolites that interfere with the binding of macrolides. The detection of macrolide-resistant *M. pneumoniae* is important for the appropriate treatment of respiratory infections caused by this organism.

재료 및 방법

사용균주
Mycoplasma pneumoniae (ATCC 29342) 표준 균주를 대조군으로 사용하였다[5,6].

환자의 가역물 제취

환자의 폐경련단 1곳과 부산시내에 있는 종합병원 3곳의 내과와 소아과 및 임산교내기관 소아과 의사와 가정의학과 의사와 인턴에 의하여 동물의 가역물로부터 가역물에 의한 분리 혹은 분리로써 2ml의 Chanock's glucose 배양액에 충분히 영양액을 방여든 후 연속은 바로 바리고 이것을 가역물 원액으로 하였다[5,6,7].

M. pneumoniae의 분리 배양 및 동정

가역의 가역물을 원액 20 μl를 2 ml의 Chanock's glucose 배양액에 담아있는 well plate에서 10^1-10^4까지 계산 하며 37℃에서 3주간 배양하였다. 배양액의 배양을 배양한 후, 배양액을 투영하여, 배양액의 색깔이 투명하고, 적음에서 화색으로 변하였으며 M. pneumoniae가 증식된 것으로 추정하고, 색깔이 변한 최저회색배율의 역기수를 색깔변화단위(color change unit: CCU)로 하였다. M. pneumoniae 배양액은 계산된 결과를 얻고, 각각의 색깔액을 10 μl 취하여 Chanock's glucose 한정배양에 접종하여 가습상자에 넣어 37℃에서 3주간 배양하여 접종의 형성 유무를 확인하였다. 형성된 접종은 달 적혈구주 세포 kilomet라 양성이고, arginine 이용 시식 음성이고, M. pneumoniae 항혈청에 대한 대사자지식 양성인 것을 M. pneumoniae로 판정하였다[5,7,24].

분리된 M. pneumoniae의 항생물에 대한 감수성

호흡기 질환 환자로부터 분리 동정된 M. pneumoniae 60 균주를 10 ml의 Chanock's glucose 배양기에 3시간 배양하여 균수가 10^6 cfu/ml이 되도록 조정한 후 각 항생물에 환류한 2 ml의 배액에 각각 20 μl씩 접종하여 3주간 균의 증식 유무를 확인하였다. 항생물은 erythromycin (Sigma, USA), tetracycline (Sigma, USA), minocycline (Cheil Food & Chem Co., Seoul), sparfloxacin (Cheil Food & Chem Co., Seoul), ofloxacin (Cheil Food & Chem Co., Seoul), ciprofloxacin (Cheil Food & Chem Co., Seoul), josamycin (Yamanouchi Pharm. Co., Tokyo)를 사용하였으며, 각 항생물은 최고 농도가 32 μg/ml이 되도록 녹인 후 각 배액에는 16, 8, 4, 2, 1, 0.5, 0.25, 0.125, 0.062, 0.031, 0.015 μg/ml이 되도록 체류하였다.

각 항생물의 최저배양저항농도(MIC)과 최저살균농도(MBC)의 판정은 항생물이 들어있지 않는 대조군 체험에서 균이 증식된 시점(4~7일 후)에 각 항생물이 항체된 체험에서 증식이 억제되는 최저농도를 MICO로, 접종 3주 후 균의 증식이 억제된 최저농도를 MBC로 판정하였다[5,6,26].

PCR법에 의한 erythromycin 저항성 변이 균주의 확인

Erythromycin 1.0 μg/ml 이상의 농도에 저항성 균주들을 각각의 MIC농도의 배치 5 ml에 배양한 후 12,000 rpm 5로 15분간 원심한 다음 인산화액(RBS)으로 2번 세척하였다. 빨간색의 좌측부분을 50 ml로 조제하여 110℃에서 10분간 가열한 후, 12,000 rpm으로 15분간 원심하여 그 상층액을 PCR 반응에 사용하였다. 추출한 DNA 음용에 Taq polymerase(TaKaRa Taq, Japan)와 10X PCR buffer, deoxynucleotide triphosphates, 1.5 mM MgCl2를 첨가하고, 해당 primer을 각각 한 개씩 MiniCycler(MJ Research, U.S.A)에서 반응시켰다(Table 1 참조). 먼저 94℃ 10분간 전 코어한 후 94℃에서 1분, 55℃에서 1분, 72℃에서 1분의 시간으로 30회 반복 반응시키고 마지막에 72℃에서 10분간 연장 반응시켰다. 이할은 1.5% 아가로스 젤에서 전기영동한 후 ethidium bromide에 있어서 결과를 관찰하였다. 각 primer 부위 PCR 산물의 유전자 염기서열을 분석하여 erythromycin에 감수성인 M. pneumoniae M129 균주와 비교 분석하여 동일변이 부위를 확인하였다[9,16,18,19].

결과

M. pneumoniae 균주 분리

2002년 12월부터 2005년 2월 현재까지 부산 A병원 내원
Table 1. Oligonucleotides used in this study

<table>
<thead>
<tr>
<th>Primer target and designation</th>
<th>Primer sequence(5'-3')</th>
<th>position</th>
</tr>
</thead>
<tbody>
<tr>
<td>23S rRNA domain II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mp25S II-F</td>
<td>CGTCGGGTGCAATATGACCTT</td>
<td>560^</td>
</tr>
<tr>
<td>Mp25S II-R</td>
<td>TGCCGGCCATATGACCTTT</td>
<td>886^</td>
</tr>
<tr>
<td>23S rRNA domain V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MP25S V-F</td>
<td>TAACTATAAGGCTTCTAAGG</td>
<td>1911^</td>
</tr>
<tr>
<td>MP25S V-R</td>
<td>ACACCTAGATGCTTACCG</td>
<td>2762^</td>
</tr>
<tr>
<td>Ribosomal protein L4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFL4-F</td>
<td>GAACACGTTGAGAAACTGCC</td>
<td>46^</td>
</tr>
<tr>
<td>MFL4-R</td>
<td>TTGTGCAAGGCTTCCCA</td>
<td>465^</td>
</tr>
<tr>
<td>Ribosomal protein L22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFL22-F</td>
<td>CGGCAAGTCAAGCTTCAAGC</td>
<td>99^</td>
</tr>
<tr>
<td>MFL22-R</td>
<td>CGCTTTTGCAGCTGCCA</td>
<td>502^</td>
</tr>
</tbody>
</table>

^E. coli numbering, ^M. pneumoniae numbering.

Erythromycin에 저항성 균주 확인
환자에서 분리된 M. pneumoniae 123 균주 중에서 erythromycin이 1.0 µg/ml 이상의 농도에서 증진되는 균주를 erythromycin에 대한 저항성균주로 선별하였으며, 그 결과는 Table 4와 같다.
환자에서 분리된 erythromycin 저항성 M. pneumoniae 균주의 분포를 보면 1 µg/ml에 저항성인 균주가 총 11 균주(25.0%), 소아에서 4균주(25.0%) 있으며, 2 µg/ml에 저

Table 2. Isolation of M. pneumoniae from the throat swabs of the patients with respiratory diseases from December of 2002 to February of 2005.

<table>
<thead>
<tr>
<th>Age</th>
<th>Hospital</th>
<th>cases</th>
<th>Culture positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Adventist</td>
<td>450</td>
<td>79 (17.6)</td>
</tr>
<tr>
<td></td>
<td>Yeonje</td>
<td>99</td>
<td>7 (7.1)</td>
</tr>
<tr>
<td></td>
<td>Guho</td>
<td>49</td>
<td>3 (6.1)</td>
</tr>
<tr>
<td></td>
<td>Kosin</td>
<td>57</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Hansol</td>
<td>33</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>688</td>
<td>89 (12.9)</td>
</tr>
<tr>
<td>Children</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St. Benedict</td>
<td>161</td>
<td>34 (21.1)</td>
</tr>
<tr>
<td></td>
<td>Kim's</td>
<td>97</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Yonsei</td>
<td>48</td>
<td>0 (0)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>306</td>
<td>34 (11.1)</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>994</td>
<td>123 (12.4)</td>
</tr>
</tbody>
</table>

Table 3. Comparison of the in vitro activity of the antimicrobial agents against 123 strains of M. pneumoniae isolates

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>MIC (µg/ml)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td>MICO</td>
<td>MICO</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.25~0.5</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>0.25~0.5</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Minocycline</td>
<td>0.015~0.25</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>0.06~0.25</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>Sparfloxacin</td>
<td>0.06~0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Josamycin</td>
<td>0.015~0.8</td>
<td>0.12</td>
<td>2.0</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.015~0.8</td>
<td>0.015</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 4. Erythromycin resistant M. pneumoniae isolated from patients with respiratory diseases compared with adult and children

<table>
<thead>
<tr>
<th>MIC (µg/ml)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>11/44 (25.0)</td>
<td>9/44 (20.5)</td>
<td>11/44 (25.0)</td>
<td>13/44 (29.6)</td>
<td>44/89 (49.4)</td>
</tr>
<tr>
<td>Children</td>
<td>4/16 (25.0)</td>
<td>1/16 (6.3)</td>
<td>6/16 (37.5)</td>
<td>5/16 (31.3)</td>
<td>16/34 (47.1)</td>
</tr>
<tr>
<td>Total</td>
<td>15/60 (25.0)</td>
<td>10/60 (16.7)</td>
<td>17/60 (28.3)</td>
<td>18/60 (30.0)</td>
<td>60/123 (48.8)</td>
</tr>
</tbody>
</table>
항성을 띠는 균주가 성인에서 9균주(20.5%), 소아에서 1균주(6.3%)였으며, 4μg/ml에 저항성인 균주가 성인에서 11균주(26.0%), 소아에서 6균주(37.5%)였으며, 8μg/ml에 저항성인 균주가 성인에서 13균주(29.6%), 소아에서 5균주(31.3%)였으며, 총 분리균주 123주 중에서 60균주(48.8%)가 erythromycin 저항성 균주이었다.

Erythromycin 저항성 M. pneumoniae의 염기서열 분석

Erythromycin의 저항성에 관여하는 유전자인 23S rRNA domain II, V와 ribosomal protein L4, L22 부분을 PCR로 확 인한 후 각각의 PCR 산물의 염기서열을 분석하여 erythromycin에 감수성이 있는 M. pneumoniae 129 균주의 염기서열과 비교한 결과는 Table 5와 Fig. 1과 같다.

Erythromycin에 저항성인 M. pneumoniae 60균주 중에서 23S rRNA domain V의 G2057C 부위에 돌연변이가 일어난 균주가 1주(1.7%)이었으며, A2059G 부위에 돌연변이가 일 어난 균주가 2주(3.3%)이었으며, C2611G 부위에 돌연변이 가 일어난 균주가 3주(5.0%)이었으며, A2058T 부위에 돌연 변이가 일어난 균주가 1주(6.7%)이었으며, A2059G 부위에 돌연변이가 일어난 균주가 2주(33.3%)이었으며, A2058G 부위에 돌연변이가 일어난 균주가 25(41.7%)이었다. Erythromycin 저항성인 M. pneumoniae 60균주 중에서 23S rRNA domain II 부위에 돌연변이가 일어난 균주는 2주(3.3%)이었으며, 한 균주는 T742C 부위에, 다른 한 균주는 T799C 부위에서 thymine이 cytosine으로 돌연변이가 일어났음을 알 수 있었다. Erythromycin에 저항성 M. pneumoniae 60균주는 모두가 ribosomal protein L4 영역에서 methionine이 valine으로 돌연변이가 일어났으나, ribosomal protein L22 영역에서 는 돌연변이가 일어나지 않았음을 확인할 수 있었다.

![Fig. 1. 23S rRNA mutation to erythromycin resistant M. pneumoniae isolates in Korea.](image-url)
pneumoniae균주의 48.8%가 erythromycin에 저항성 균주라는 것을 알 수 있었다.

고 참

요 약

2002년 2월부터 2005년 2월까지 성인 및 소아 호흡기질환자 994명의 상기도 도말에서 M. pneumoniae 균주를 분리하고, 분리 균주의 ciprofloxacin, ofloxacin, minocycline, tetracycline, sparofloxacin, josamycin, erythromycin에 대한
감수성 검사를 실시하였으며, 분리된 균주의 23S rRNA domain II와 V에서 erythromycin 저항성 변이가 일어났는지를 PCR
과 유전자 염기서열분석으로 erythromycin에 감수성인 M. pneumoniae 균주의 염기서열과 비교분석하여 확인하였다. 호
흡기감염증에서 M. pneumoniae의 분리율은 123/994 (12.4%)이었으며, 분리된 M. pneumoniae 균주의 monocyclic, sparo-
floxacin, tetracycline, ciprofloxacin, ofloxacin, josamycin, erythromycin MIC 범위는 각각 0.015~0.25, 0.06~0.5, 0.06~
0.25~0.5, 0.25~0.5, 0.015~8.0, 0.015~8.0 μg/ml이었다. 분리 동정된 M. pneumoniae 균주 중에서 erythromycin에
저항성인 균주가 60주(48.8%)였으며, 모두가 ribosomal protein L4 영역과 23S rRNA domain V에 내성변이가 일어났으며,
이 중 27주는 23S rRNA domain II에도 변이가 일어난 균주
도 있었다. 국내에서 분리되는 M. pneumoniae 균주의 48%가
erythromycin에 저항성인 균주이므로 앞으로 이 균에 의한
패혈의 치료에 주의가 요구된다.

감사의 글
본 연구는 보건복지부 보건의료기술연구개발사업의 지원에 의하여 이루어진 것임. (01-PJ10-PG-01GM03-0002)

참고 문헌
mycoplasma activities of new quinolones, tetracyclines, and macrolides against Mycoplasma pneumoniae. Antimicrobial
Agents Chemother. 36, 1322-1324.
complete atomic structure of the large ribosomal subunit
at 2.4 Å resolution. Science 289, 908-920.
plasmal respiratory infections. In The Mycoplasmas Vol. IV,
Razin S and Barile MF (Ed), Academic Press, New
York, pp55-106.
of Mycoplasma pneumoniae in clinical specimens of patients
et al. 2003. Rapid detection of Mycoplasma pneumoniae
and antimicrobial susceptibilities of the M. pneumoniae isolates.
7. Daxboeck F., Krause R., Wenisch C. 2003. Laboratory diag-
nosis of Mycoplasma pneumoniae infection. Clin Microbiol
Infect. 9(4), 263-273.
ketolide inhibition of MLS-resistant ribosomes is improved
by alternative drug interaction with domain II of 23S
probe commercial kit and culture technique for the diag-
nosis of Mycoplasma pneumoniae infection. L Clin Microbiol.
26, 1068-1069.
10. Furneri P.M., Rappazzo G., Musumarra M.P., Dipietro P.,
Catanio L.S., Roccasalva L.S. 2001. Two new point muta-
tions at A2062 associated with resistance to 16-membered
macrolide antibiotics in mutant strains of M. hominis.
11. Hansen L.H., Mauvis P., Douthwaite S. 1999. The macro-
clide-ketolide antibiotic binding site is formed by structures
31, 623-631.
12. Jacobs E. 1993. Serological diagnosis of Mycoplasma pneu-
moniae infections; a critical review of current procedures.
Clin Infect Dis. 17(Suppl. 1), S79-S82.
13. Kaku M., Ishida K., Iriune K., Mizukane R., Takemura H.,
against M. pneumoniae. Antimicrob Agents Chemother. 38,
738-741.
plassma pneumoniae pneumonia in admitted children; Southern
central Korea, from 1989 to 2002. J Korean Pediatr Soc 46,
474-479.
15. Kenny G.E., Cartwright F.D. 1994. Susceptibilities of Myco-
plassma hominis, M. pneumoniae, and Ureaplasma urealyticum
to new glycyyclines in comparison with those to older
mutations in the 23S rRNA of erythromycin-resistant iso-
lates of M. pneumoniae. Antimicrob. Agents Chemother. 39,
2770-2773.
17. Matsuoka M., Narita M., Okazaki N., Ohya H., Yamazaki
T., et al. 2004 Characterization and molecular analysis of
macrolide-resistant M. pneumoniae clinical isolates obtained
18. Okazaki N., Narita M., Yamada S., Iizumikawa K., Umetu
Characteristics of macrolide-resistant M. pneumoniae strains
isolated from patients and induced with erythromycin in
19. Pereyre S., Gonzalez P., de Barbeyrac B., Darmige A.,
Mutation in 23S rRNA account for intrinsic resistance to
macrolides in M. hominis and M. fermentans and for ac-
quired resistance to macrolides in M. hominis. Antimicrob.
Agents Chemother. 46, 3142-3150.
20. Pereyre S., Guyot C., Renaudin H., Charron A., Bebear C.,
Bebear C.M. 2004. In vitro selection and characterization of
resistance to macrolides and related antibiotics in M. pneu-
R. 2002. Clinical isolates of Staphylococcus aureus with ri-
bosomal mutations conferring resistance to macrolides.

