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ABSTRACT

Value of Amide Proton Transfer Imaging in Correlation with 
Histopathological Grades of Adult Diffuse Gliomas : Comparison and 

Incremental Value with Dynamic Susceptibility Contrast-Enhanced MRI 
and Diffusion Weighted Imaging

Yoon Seong Choi

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Seung-Koo Lee)

Purpose: Amide proton transfer (APT), a subtype of chemical exchange 

saturation transfer, is a novel technique to detect concentration of 

endogenous peptide or protein without exogenous contrast agent 

administration. We investigated the difference in APT values according

to histopathological grades, and compared the diagnostic value of APT 

with relative cerebral blood volume (rCBV) from dynamic susceptibility 

contrast-enhanced (DSC) MRI and apparent diffusion coefficient (ADC) 

from diffusion weighted imaging (DWI) for histopathological grades in 

adult diffuse gliomas. We also investigated the incremental value of APT 

over ADC and rCBV for discriminating high grade and low grade 

gliomas.

Material and Methods: The study cohort consisted of 39 adult patients 

with histopathologically proven diffuse glioma who underwent 

preoperative APT imaging, with 34 patients available for preoperative 

DSC MRI and DWI. Regions of interest were obtained from circles 

manually placed at the area with high signal in APT and rCBV map, and 
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low signal in ADC map. APT signal was compared according to WHO 

grade or low vs high grade of glioma. Diagnostic ability to discriminate 

high grade glioma from low grade glioma were compared between APT, 

ADC, and rCBV by using Receiver operative characteristic (ROC) 

analysis, and incremental diagnostic value of APT over ADC and rCBV 

were assessed by using integrated discrimination index. Also, the 

correlation between APT values and Ki-67 labeling index (LI) was 

assessed by linear regression.

Results: The APT SI values were 0.82 ± 0.36%  in grade II gliomas, 

1.73 ± 0.86% in grade III, and 2.62 ± 0.78% in grade IV gliomas, which 

showed significant difference between grade II and III (p=0.018), III and 

IV (p = 0.010), as well as II and IV (p < 0.001). The diagnostic value to 

discriminate between high and low grade glioma was not significantly 

different between APT, ADC and rCBV, with area under the ROC curve 

(AUC) of 0.890, 0.917, and 0.947, respectively. (p > 0.05 for each 

comparison) Incremental diagnostic value of APT was significant over 

ADC (p = 0.003), and not significant over rCBV (p=0.066). APT signals 

were significantly correlated with Ki-67 LI. (p=0.001, R2 = 0.26)

Conclusion: APT imaging can be useful, and have incremental value over 

ADC for predicting the histopathological grades of adult diffuse gliomas. 

APT SI can be correlated with Ki-67 LI.

----------------------------------------------------------------------------------------

Key words : Glioma, Grade, Magnetic resonance imaging, amide proton 

transfer, chemical exchange saturation transfer
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Value of Amide Proton Transfer Imaging in Correlation with 
Histopathological Grades of Adult Diffuse Gliomas : Comparison and 

Incremental Value with Dynamic Susceptibility Contrast-Enhanced MRI 
and Diffusion Weighted Imaging

Yoon Seong Choi

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Seung-Koo Lee)

I. INTRODUCTION

Glioma is the most common brain tumor and glioblastoma is the most 

malignant brain tumor in adults. 1,2 Discrimination between high and low grade 

glioma is of clinical relevance, because prognosis and treatment strategies are 

substantially different according to glioma grades.3 Surgical resection followed 

by concurrent chemoradiation with temozolomide is standard treatment for high 

grade glioma,3 and undergrading of high grade glioma as low grade glioma can 

lead to insufficient and less aggressive treatment. 

The gold standard for glioma grades and molecular or genetic profiles is 

surgical sampling which takes invasive procedure and risk of sampling from 

suboptimal site and undergrading of tumor, considering intratumoral 

heterogeneity of high grade gliomas. Thus, advanced MR techniques such as 

dynamic susceptibility contrast-enhanced (DSC) MRI and diffusion weighted 

imaging (DWI) have been utilized as noninvasive imaging biomarker. Many 

previous studies investigated the relative cerebral blood volume (rCBV) from 

DSC MRI and apparent diffusion coefficient (ADC) from DWI in correlation 

with glioma grade, genetic profile or prognosis, however with some conflicting 

results.4–11

Amide proton transfer (APT) imaging is a subtype of chemical exchange 



4

saturation transfer (CEST) imaging that reflects concentration of endogenous 

peptides or proteins without contrast agent administration. 12–14 In APT imaging, 

a pulse with radiofrequency of amide (-NH) proton (3.5ppm) in peptides and

proteins selectively saturates the signal from amide protons and these saturated 

amide protons exchange with protons from bulk water, consequently reducing 

the signal at 3.5ppm from bulk water. Thus, peptides and protein concentration 

can be indirectly assessed from calculating the asymmetric signal decrease from 

bulk water at 3.5ppm, although other factors such as pH or temperature can also 

affect the APT signal intensity (SI). 12–16 Several previous studies investigated 

APT imaging in brain tumor. Previous studies reported that APT SI in brain 

tumor was mainly attributed to protein concentration, 17 and APT SI was higher 

in brain tumor than normal tissue. 18 Togao et al.19  obtained APT images from 

one dominant section of gliomas and reported that APT imaging can be useful 

for predicting histopathological grade of glioma. However, protocol of APT 

imaging needs to be optimized and validated in clinical setting and given that

other advanced MR techniques such as DSC MRI or DWI is available in 

clinical setting, compatibility and incremental value of APT with ADC or rCBV 

for predicting glioma grades are of clinical importance, which has not been 

elucidated.

The purpose of this study was to investigate the diagnostic value of APT 

compared with those of ADC and rCBV, and incremental diagnostic value of 

APT over ADC and rCBV for predicting histopathological grade in diffuse 

gliomas in adults, with clinically optimized APT imaging protocols. We also 

investigated the correlation between APT SI and Ki-67 labeling index (LI).

II. MATERIALS AND METHODS

1. Protocol optimization with phantom experiment

Considering that protein concentration, pH, and radiofrequency (RF) saturation 

power and duration, RF saturation power was pivotal for  APT imaging 
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protocol optimization, which was optimized to visualize the signal difference 

according to various protein concentrations so that the signal differences 

between brain tumor and normal tissue are well visualized. Phantom experiment 

for protocol optimization was performed with two sequences : three 

dimensional fast field echo (3D FFE) and three dimensional gradient and spine 

echo (3D GRASE) as described elsewhere. 20–23 The first experiment was 

conducted with 3D FFE and 4 phantoms with 0% and 5% bovine serum 

albumin (BSA) at pH 6.5 and 7.4, respectively. Each phantom was scanned with 

varied RF powers of 0.5µT, 1 2µT, and 3µT with RF durations of 35msec, 

70msec and 105 msec, thus 4 phantoms x 4 RF powers x 3 RF durations = 48 

times of APT imaging were performed. In the second experiment, a phantom 

with more variable BSA concentration and pH, consisting of 2%, 4%, 8% and 

16% BSA at pH 7.4, and pH 6, 6.5, 7, and pH 7.4 a 16% BSA, as shown in 

Figure 1, was scanned with both 3D FFE and GRASE sequences with RF 

powers of 1µT, 2µT, 3µT and 4µT and fixed RF durations of 35msec for FFE 

and 200ms for GRASE sequence. 

Fig. 1. A phantom with variable BSA concentrations and pH for protocol 

optimization
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2. Patients

The cohort of this study consisted of thirty-nine consecutive adult patients with 

histopathologically proven diffuse glioma who underwent preoperative MRI 

including APT imaging from Nov, 2014 to June, 2015, with thirty-four patients 

among them available for preoperative DWI and DSC MRI. The mean age of 

cohort was 47.2 ± 16.8 years old and male to female ratio was 21:18. The 

interval from APT imaging, DWI and DSC MRI to operation was 1.2 ± 0.4 days. 

3. Image acquisition

MRI studies were performed using a 3T system (Achieva, Philips Healthcare, 

Netherland, Best) and 32 channel receive head coil with transmit body coil. 

APT-weighted imaging was acquired using three-dimensional (3D) gradient-

and spin-echo (GRASE) approach, 23 with the following parameters : voxel size, 

2.2ⅹ2.2 mm; slice thickness, 4.4 mm; repetition time/echo time, 3000 msec/17 

msec; TSE factor, 22; EPI factor, 7; and number of slices, 15 to cover entire 

tumor volume. By 4 repetitions at ±3.5 ppm with six saturation frequency 

offsets (±3.0, ±3.5 and ±4.0 ppm), sufficient signal-to-noise ratio(SNR) could 

be achieved within clinical time frame. APT imaging was conducted with RF 

saturation amplitude of 2 µT and total duration of 800ms consisting of four 

block pulsed saturation scheme. Water frequency shift due to field 

inhomogeneity was measured in a separate scan using the water saturation shift 

referencing method 24 with 21 offset frequencies ranging from -1.25 ppm to 

1.25 ppm at a step of 0.125 ppm (16 Hz) with one reference scan without 

saturation RF pulse resulting in full Z-spectrum within the offset range. This 

scan was acquired with repetition time/echo time of 1250 msec/17 msec and RF 

saturation amplitude of 0.5 µT with total duration of 400 ms consisting two 

block pulsed saturation scheme and the same imaging parameters as used in 

APT imaging. Both the APT and water saturation shift referencing scans were 

performed prior to contrast-enhanced T1-weigthed scan. Total acquisition time 
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was 7 min 36 sec for both water saturation shift referencing and APT scans.

Other conventional MR imaging sequences included T2-weighted turbo spin-

echo imaging, FLAIR turbo spin-echo imaging, and contrast-enhanced T1-

weighted gradient-echo imaging. Transverse T2-weighted turbo spin-echo 

images were obtained with the following parameters: repetition time /echo time, 

4629 msec/80 msec; number of slices, 90; voxel size, 0.98ⅹ1.02; slice 

thickness, 2.0 mm; scan time, 4 minutes 19 seconds. Transverse fluid attenuated 

inversion recovery (FLAIR) turbo spin-echo images were obtained with the 

following parameters: repetition time /echo time /inversion time, 11000 

msec/125 msec/2800 msec; number of slices, 100; voxel size, 0.98 ⅹ1.05; 

slice thickness, 2.0 mm, scan time, 8 minutes 48 seconds. Transverse 

gadolinium-enhanced T1-weighted gradient-echo images were acquired with 

the following parameters: repetition time/echo time, 2000 msec/1000 msec; 

number of slices, 90; voxel size, 0.98 x 0.79; slice thickness, 2.0 mm; scan time, 

13 minutes 12 seconds.

4. Image postprocessing analysis.

After water frequency shift correction, magnetization transfer ratio asymmetry 

(MTRasym) values at ±3.5ppm with respect to the water frequency, so called 

APT-weighted SI values were calculated 15,16 :

MTR����(+3.5ppm) =
S���(−3.5ppm)− S���(+3.5ppm)

S0

where S0 and Ssat(∆ω) are MRI signal without and with saturation RF pulse at 

offset frequency of ∆ω at downfield (+∆ω) and upfield (-∆ω) from water center 

frequency. All postprocessing of APT images was performed with Matlab 

(MathWorks, Natick, MA). The full the water saturation shift referencing Z-

spectrum was then fitted to a 12th order polynomial at each voxel, and the 

lowest signal in the fit after  interpolation at higher spectral resolution (1Hz) 

was assumed to be an actual water resonance frequency resulting in a water 
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center frequency offset at a corresponding voxel. The acquired APT data were 

organized according to the offsets, and the saturation images with the same 

offsets were averaged. The data for offsets (+4, +3.5, +3 ppm) and (-3, -3.5, -4 

ppm) for each voxel were interpolated to 385 points over a frequency offset 

range from +5 to+2 ppm and -2 to -5 ppm, respectively, and shifted using the 

fitted water saturation shift referencing central frequency offset at the same 

voxel. Based on the shift-corrected data, the parameter map of APT SI was 

calculated using an MTR asymmetry at ±3.5 ppm. 

Single or multiple circular regions of interest (ROIs) were placed manually on 

the areas with high SI on APT and rCBV maps, and areas with low SI on ADC 

map, that corresponds to solid enhancing portion on T1-weighted images, in 

case of presence of enhancement, or non-enhancing solid portion avoiding 

cystic or necrotic portion on T2-weighted images in case of non-enhancing 

tumors. The mean values from the ROIs on APT, ADC, and rCBV maps were 

analyzed in statistical analysis, and rCBV values were normalized to the SI of 

contralateral normal appearing white matter. The size of an ROI at each lesion 

ranged from 180.5 mm2 to 492.8 mm2. 

5. Pathological evaluation

The pathological diagnosis with glioma grade, and Ki-67 labelling index (LI)

were determined from specimen of surgical sampling. WHO grades of gliomas 

were determined histopathologically by an experienced neuropathologist. The 

Ki-67 LI was determined based on the fields with the highest number of Ki-67-

labeled cells through a generalized survey, and the percentage of positive cells 

was counted among approximately 1000 tumor cells.

6. Statistical analysis

Statistical analyses were performed with using R for Windows version 3.0.2 

(R Foundation for Statistical Computing, Nashville, TN, USA). For 39 
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patients from the entire cohort, APT SI was compared according to WHO grade 

(II, III or IV) by using one-way analysis of variance (ANOVA) and post hoc 

comparison with Bonferroni correction. For 34 patients who underwent 

preoperative DWI and DSC MRI, APT SI, ADC and rCBV values were 

compared between low (WHO grade II) and high grade (WHO grade III or IV) 

of glioma, using Student t-test according to result of Shapiro-Wilk test for 

normal distribution. Diagnostic ability of APT, ADC and rCBV values to 

discriminate high grade glioma from low grade glioma were assessed and 

compared by using Receiver operative characteristic (ROC) analysis and the 

method by DeLong. 25 Robustness of ROC analysis was confirmed by 

bootstrapping with 1000 replication and bias-corrected 95% confidential 

interval for area under the ROC curve (AUC). Incremental diagnostic value of 

APT over ADC and rCBV were assessed by calculating integrated 

discrimination improvement (IDI) index described by Pencina et al. 26 as 

follows : integrated discrimination improvement = (ISnew – ISold) – (IPnew – IPold), 

where “new” refers to a model containing a new diagnostic tool of interest as 

APT in our study, in addition to conventional risk predictors, “old” pertains to 

the model containing only the conventional predictors as ADC and rCBV in our 

study, and IS and IP are the integrals of sensitivity and (1 – specificity), 

respectively. For 39 patients from the entire cohort, the correlation between 

APT values and Ki-67 LI was assessed using simple linear regression. P value

<0.05 was considered statistically significant.
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III. RESULTS

1. Protocol optimization with phantom experiments

Figure 2 shows result of the first phantom experiment conducted with 4 

phantoms each with 0% and 4% BSA at pH 7.4 and pH 6.5. APT SI of 4% BSA 

phantom increased along with increased RF power and duration, regardless of 

pH, whereas APT SI of 0% BSA phantom did not change according to RF 

power, implicating that APT SI is attributed to protein concentration. No 

significant difference was found in APT SI according to pH change. 

Fig. 2. Results of experiments with phantoms with 0% and 4% BSA at pH 7.4 

and pH 6.5, and varied RF powers (0.5, 1, 2, and 3µT) and RF durations (35, 70, 

and 105msec).
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Figure 3 shows the result of the second experiment conducted with 3D FFE and 

GRASE, and a phantom with 2%, 4%, 8%, 16% BSA at pH 7.4 and pH 6, pH 

6.5, pH 7, pH 7.4 at 16% BSA, as shown in Figure 1. In experiment with 3D 

GRASE sequence, APT SI obtained with 1µT RF power did not show the 

difference in BSA concentration, whereas APT SI obtained with 2µT, 3µT and 

4µT RF power increased along with increased BSA concentration. In 

experiment with 3D FFE sequence, APT SI obtained with 1µT and 2µT RF 

power were not correlated with BSA concentration, and APT SI with 1 µT RF 

power showed unexpected negative values. APT SI obtained with 3µT and 4µT 

RF power increased along with increased BSA concentration. Considering 

clinical feasibility and other previous reports, 3D GRASE sequence with RF 

power of 2µT, the minimum RF power with which APT SI was correlated with 

BSA concentration, and with RF duration of 200msec was chosen for patient 

scan in clinical setting.
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Fig. 3. Results of experiments with 3D GRASE (A-D) and FFE (E-H) 

sequences, and a phantom with 2%, 4%, 8%, 16% BSA at pH 7.4 and pH 6, pH 

6.5, pH 7, and pH 7.4 at 416% BSA.

2. Patients

Patient histologic and genetic characteristics are summarized in Table 1. The 39 

patients consisted of 12 patients with grade II, 9 patients with grade III, and 18 

patients with grade IV gliomas. 34 out of 39 patients underwent preoperative 

DWI and DSC MRI in addition to APT imaging.
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Table 1. Histologic and molecular characteristics of the study cohort (n=39)

Histology Number Ki-67 LI

Grade II (n=12) 3.6 ± 2.2 

Astrocytoma 5
Oligodendroglioma 2
Oligoastrocytoma 5

Grade III (n=9) 11.9 ± 9.1 

Anaplastic astrocytoma 2
Anaplastic oligodendroglioma 1

Anaplastic oligoastrocytoma 6

Grade IV (n=18) 29.3 ± 29.5 

Glioblastoma 14
Glioblastoma with 

oligodendroglial component
2

Gliosarcoma 2

3. Difference of APT SI according to glioma grades

Difference of APT SI according to glioma grades are summarized in Table 2 

and shown in Figure 3 . The APT SI values were higher in higher glioma grade, 

which were 0.82 ± 0.36 % in grade II gliomas, 1.73 ± 0.86 %  in grade III, and 

2.62 ± 0.78 % in grade IV gliomas, showing significant difference between 

grade II and III (p = 0.018), III and IV (p = 0.010), as well as II and IV (p < 

0.001).

Table 2. Differences in APT SI according to WHO grades. (n=39).

APT SI P value a

II 0.82 ± 0.37 -

III 1.73 ± 0.86 -

IV 2.63 ± 0.78 -

II vs III - 0.018 

II vs IV - <0.001

III vs IV - 0.010 
a posthoc pairwise comparision with bonferroni 

correction after ANOVA
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Fig. 4. Difference of APT signal intensity according to glioma grades.

4. Comparison of diagnostic value between APT, ADC and rCBV for 

glioma grading

Difference of APT, ADC, and rCBV values between low and high grade 

gliomas are summarized in Table 3 and depicted in Figure 4. APT and rCBV 

values were higher and ADC values were lower in high grade glioma than in 

low grade glioma with staitistical significance. (p < 0.001 for all) 

Results from ROC analysis for discriminating high grade from low grade 

glioma is summarized in Table 4 and depicted in Figure 5. In ROC analysis, 

APT, ADC and rCBV values showed excellent diagnostic performance with 

AUC of 0.890, 0.917, and 0.947, respectively. Although AUC of APT was 

lower than those of ADC and rCBV, no statistical significance was found 

among the diagnostic value of APT, ADC and rCBV, implicating compatibility 

of APT as a diagnostic tool for glioma grades. Representative images of APT SI, 



17

ADC, and rCBV parameter maps from low and high grade gliomas are depicted 

in figure 6 and 7.

Table 3. Differences in APT, rCBV and ADC values between high- and low-

grade giomas (n=34)

Low grade glioma High grade glioma P value a

APT (%) 0.82 ± 0.37 2.33 ± 0.90 <0.001

ADC 
(10-6 mm3/sec)

1580.3 ± 284.5 962.5 ± 353.6 <0.001

rCBV 1.7 ± 2.3 8.6 ± 4.9 <0.001
a calculated from Student t-test

Fig. 5. Differences of APT, ADC and rCBV values between low and high grade 

gliomas.
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Table 4. ROC analysis of APT, rCBV and ADC to discriminate high- and low-

grade gliomas. (n=34)

AUC (95% CIa) Cutoff SensitivitySpecificityAccuracy

APT 0.890 ( 0.737 ~ 0.989 ) ≥ 1.53 86.4% 75.0% 82.4%

ADC 0.917 ( 0.786 ~ 0.984 ) < 1313.67 86.4% 75.0% 82.4%

rCBV 0.947 ( 0.810 ~ 1.000 ) ≥ 2.01 81.8% 91.7% 85.3%
a bias-corrected by bootstrapping with 1000 replications

Fig. 6. ROC curves of APT, ADC and rCBV for discriminating high grade 

from low grade gliomas.



19

Fig. 7. Images obtained in a 52-year-old male with low grade glioma. (A) 

Postcontrast T1-weightedi image (B) T2-weighted image (C) ADC map (D) 

rCBV map (E) APT map 
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Fig. 8. Images obtained in a 76-year-old male with high grade glioma. (A) 

Postcontrast T1-weightedi image (B) T2-weighted image (C) ADC map (D) 

rCBV map (E) APT map 

5. Incremental diagnostic value of APT over ADC and rCBV for glioma 

grading

Incremental diagnostic value of APT over ADC and rCBV for glioma grading 

assessed by IDI are summarized in Table 5. Combination of APT and ADC 

values showed better diagnostic performance than ADC alone for glioma 

grading, with increased AUC from 0.917 to 0.955 and statistical significance. (p 

= 0.003) (Figure 8) In contrast to combination of APT and ADC, combination 

of APT and rCBV did not achieve significance improvement in glioma grading 

(p = 0.066), though accuracy was increased from 85.3% to 91.2%.
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Table 5. Incremental diagnostic values of APT SI over ADC and rCBV to 

discriminate high- and low-grade gliomas. (n=34)

AUC (95%CI) SensitivitySpecificityAccuracy IDI

Over ADC
ADC 0.917 (0.791 -0.977 ) 86.4% 75.0% 82.4% 0.177

(P = 
0.003)ADC + APT 0.955 (0.842 -1.000 ) 90.9% 91.7% 91.2%

Over rCBV
rCBV 0.947 (0.798 -1.000 ) 81.8% 91.7% 85.3% 0.096

(P = 
0.066)rCBV + APT0.947 (0.833 -0.993 ) 90.9% 91.7% 91.2%

Fig. 9. ROC curves of ADC alone and APT + ADC for discriminating high 

grade from low grade gliomas.

6. Correlation between APT SI and Ki-67 LI

Figure 9 shows correlation between APT SI and Ki-67 LI. High grade gliomas 

had significantly higher Ki-LI than low grade gliomas (3.6± 2.2 vs 23.5 ± 25.7, 

p = 0.012) . In linear regression, APT SI showed significant positive correlation 

with Ki-67 LI. (p=0.001, R2 = 0.26)
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Fig. 10. Scatterplot of APT SI and Ki-67 LI.

IV. DISCUSSION

We investigated the correlation between APT SI and glioma grades, compared 

the diagnostic value of APT with ADC and rCBV, and incremental value of 

APT over ADC and rCBV for discriminating between high and low grade 

gliomas with optimized APT imaging protocol. APT showed diagnostic value 

compatible with ADC and rCBV and had incremental value over ADC and 

rCBV for glioma grading, with higher APT SI in high grade than low grade 

gliomas. Also, we found positive correlation between APT SI and Ki-67 LI.

Advanced MRI techniques such as DWI or DSC MRI have been recently 

utilized as noninvasive biomarkers that correlated with histopathological grades 

and molecular or genectic profiles of glioma. 4–7,27 APT imaging, a subtype of 

CEST, can indirectly provide information about peptide or protein 

concentration within the tissue and has been investigated as an imaging 

biomarker in previous studies.12–16 Wen et al.18 analyzed 12 patients with high 

grade glioma, found that the average APT SI of the viable tumor cores and 

cystic cavities were significantly higher than those of peritumoral edema and 
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normal appearing white matter, and suggested that APT imaging at the protein 

and peptide level may enhance noninvasive identification of tissue 

heterogeneity in high grade brain tumors. Zhou et al 15 analyzed 6 rats with 

glioblastomas and radiation and suggested that viable glioma seen as 

hyperintense and and radiation necrosiss seen as hypointense to isointense could 

be clearly differentiated using APT MRI. Sagiyama et al 28 analyzed 9 mice 

with glioblastomas treated with temozolomide, found that the temozolomide-

resistant recurrent tumor showed higher APT SI than temozolomide-sensitive 

tumor before treatment and suggested the potential of APT imaging as a 

biomarker for early detection of treatment response in mouse using 7T MRI. 

Togao et al. 19 analyzed 37 human gliomas and found that the APT SI positively 

correlated with glioma grade, Ki-67 LI, and cell density with statistical 

significance. However, these previous studies have limited clinical feasibility, 

since APT imaging protocol was not optimized for clinical use, mouse models 

instead of human were scanned using experimental MRI with 4.7T or higher 

magnetic field, and human patients were scanned in only one representative 

slice of tumor. Herein, we optimized the APT imaging protocol using 3T MRI 

in clinic and validated APT imaging clinically in glioma patients.

In the phantom experiments for protocol optimization, APT SI values were 

higher in phantoms with higher BSA concentration and higher RF power and 

duration, whereas no significant difference was found in APT SI according to 

pH change. Since various factors including pH and asymmetric magnetization 

transfer from macromolecules, as well as protein concentration, can affect the 

APT SI, interpretation of APT SI of tumor is complicated. Lower APT SI 

values at 3.5ppm are theoretically expected in lower pH as proton exchange rate 

between amide and bulk water is slowed in lower pH, which is contrary to our 

results. However, previous studies that investigated the influence of pH on APT 

SI has found conflicting results. McVicar et al 29 reported that APT SI decreased 

with decreasing pH, whereas Jones et al. 30 reported that APT SI obtained from 
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3.3~3.7ppm showed fluctuated and various value with pH change. Interpretation 

of results from these previous and our studies needs caution due to 

heterogeneous sequence and RF power and duration of APT imaging protocol. 

Although signal from APT-weighted images mainly depended on protein 

concentration, not on pH, when using 3T MRI in clinic and GRASE sequence 

with RF frequency of 2 µT or above in our phantom experiments, underlying 

mechanism and exact contributors to APT SI still remains unclear.

ADC is considered as an index of cellularity and reflects tumor burden. 

Previous studies investigated the correlation of ADC with grade, molecular or 

genetic subclassification, or prognosis of glioma, but with conflicting results. 

4,8,9,27,31 rCBV reflects perfusion in tumor microenvironment, and high rCBV 

values have been known to be associated with high grade glioma and prognosis. 

5,7 While ADC does not require normalization to contralateral normal appearing 

white matter (NAWM), the voxel values on rCBV map reflects relative but not 

absolute cerebral blood volume, as implicated its name, so that rCBV requires 

normalization to contralateral normal appearing white matter in postprocessing. 

Prah et al 32 found that interobserver reliability of rCBV depends on the 

normalization or standardization methods, and within-subject coefficient of 

variation range 24%-67% for rCBV that is normalized to contralateral NAWM 

as in our study. In this study, rCBV showed the highest performance of glioma 

grading among APT, ADC and rCBV, and rCBV in combination with APT did 

not show significant improvement in diagnostic value compared to rCBV alone, 

in contrast to ADC with which APT imaging has incremental diagnostic value 

for glioma grading. These results should be interpreted cautiously considering 

variability of rCBV. It is possible that APT can have significant incremental 

value over rCBV depending on normalization, considering that reclassification 

by APT over rCBV was of borderline significance (p=0.066), although only 95% 

CI but not AUC changed in our results. The opposite is also possible for ADC, 

considering interobserver variability of ADC that depends on ROI selection. 
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Although no normalization is required for ADC postprocessing, Ahn et al 33

found that interobserver variability of ADC changed according to ROI selection, 

and selection of multiple hot spot ROIs as in our study showed higher 

interoberver variability than selection of entire tumor for ROIs. Thus, further 

investigations using rCBV standardization and ROI selection with high 

interoberver reliability are necessary. 

There were several limitations in our study, aside from retrospective manner. 

First, only small number of patients (n=39) were enrolled and 3 among them 

were unavailable for preoperative DWI and DSC MRI. Second, locus-specific 

correlations of APT SI to WHO grades and Ki-67 LI were not conducted. 

Glioma grade and Ki-67 LI may be heterogeneous considering previously 

reported ntratumoral heterogeneity, especially in high grade glioma, and the 

ROIs on APT-wegihted images may have different glioma grades and Ki-67 LI 

from those in the pathological report. Third, hot spot method placing several 

circular ROIs on the high APT and rCBV, and low ADC values were used 

instead of segmenting the entire enhancing tumor. Although Ahn et al. 33

suggested that hot spot method has higher interobserver variability than 

segmenting the entire tumor, Sakata et al.34  reported that no significant 

difference in glioma grading ability was found among variable ROI selections 

on APT images, including placing ROIs on a single representative slice and all 

slices of whole tumor, and with and without normalization to contralateral 

NAWM. We used several circular ROIs without normalization for APT SI 

based on the previous study by Sakata et al., and used the same ROI selection 

for ADC and rCBV to compare the diagnostic value for discriminating high 

grade from low grade gliomas. In our opinion, although a ROI selection with 

higher interoberver reliability, such as semiautomatic segmentation of the entire 

enhancing tumor, have been better for more accurate comparison between APT, 

ADC, and rCBV, the resolution of APT imaging needs to be improved for fair 

coresgitration with postcontrast T1-weighted images.
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V. CONCLUSION

APT SI showed diagnostic value for glioma grading compatible for those of 

ADC and rCBV. APT imaging had significant incremental value over ADC, but 

not over rCBV for discriminating high grade from low grade gliomas. APT SI 

was positively correlated with Ki-67 index. Also, we experimentally confirmed 

that APT SI correlated more with protein concentration than pH. Our results 

suggests the potential of APT imaging as a useful noninvasive imaging 

biomarker of glioma, including decisions for surgical sampling sites and 

therapeutic strategy. 



27

REFERENCES

1. Rousseau A, Mokhtari K, Duyckaerts C. The 2007 WHO classification 

of tumors of the central nervous system - what has changed? Curr Opin 

Neurol 2008;21:720-7.

2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, 

et al. The 2007 WHO classification of tumours of the central nervous 

system. Acta Neuropathol 2007;114:97-109.

3. Clarke J, Butowski N, Chang S. Recent advances in therapy for 

glioblastoma. Arch Neurol 2010;67:279-83.

4. Bulakbasi N, Guvenc I, Onguru O, Erdogan E, Tayfun C, Ucoz T. The 

added value of the apparent diffusion coefficient calculation to 

magnetic resonance imaging in the differentiation and grading of 

malignant brain tumors. J Comput Assist Tomogr 2004;28:735-46.

5. Sugahara T, Korogi Y, Kochi M, Ikushima I, Hirai T, Okuda T, et al. 

Correlation of MR imaging-determined cerebral blood volume maps 

with histologic and angiographic determination of vascularity of 

gliomas. AJR Am J Roentgenol 1998;171:1479-86.

6. Shin JH, Lee HK, Kwun BD, Kim JS, Kang W, Choi CG, et al. Using 

relative cerebral blood flow and volume to evaluate the histopathologic 

grade of cerebral gliomas: preliminary results. AJR Am J Roentgenol 

2002;179:783-9.

7. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff 

RM, et al. Cerebral blood volume maps of gliomas: comparison with 

tumor grade and histologic findings. Radiology 1994;191:41-51.

8. Ahn SS, Shin NY, Chang JH, Kim SH, Kim EH, Kim DW, et al. 

Prediction of methylguanine methyltransferase promoter methylation in 

glioblastoma using dynamic contrast-enhanced magnetic resonance and 

diffusion tensor imaging. J Neurosurg 2014;121:367-73.

9. Sunwoo L, Choi SH, Park CK, Kim JW, Yi KS, Lee WJ, et al. 



28

Correlation of apparent diffusion coefficient values measured by 

diffusion MRI and MGMT promoter methylation semiquantitatively 

analyzed with MS-MLPA in patients with glioblastoma multiforme. J 

Magn Reson Imaging 2013;37:351-8.

10. Pope WB, Lai A, Mehta R, Kim HJ, Qiao J, Young JR, et al. Apparent 

diffusion coefficient histogram analysis stratifies progression-free 

survival in newly diagnosed bevacizumab-treated glioblastoma. AJNR 

Am J Neuroradiol 2011;32:882-9.

11. Romano A, Calabria LF, Tavanti F, Minniti G, Rossi-Espagnet MC, 

Coppola V, et al. Apparent diffusion coefficient obtained by magnetic 

resonance imaging as a prognostic marker in glioblastomas: correlation 

with MGMT promoter methylation status. Eur Radiol 2013;23:513-20.

12. van Zijl PC, Yadav NN. Chemical exchange saturation transfer (CEST): 

what is in a name and what isn't? Magn Reson Med 2011;65:927-48.

13. Woods M, Woessner DE, Sherry AD. Paramagnetic lanthanide 

complexes as PARACEST agents for medical imaging. Chem Soc Rev 

2006;35:500-11.

14. Ward KM, Aletras AH, Balaban RS. A new class of contrast agents for 

MRI based on proton chemical exchange dependent saturation transfer 

(CEST). Journal of magnetic resonance (San Diego, Calif. : 1997) 

2000;143:79-87.

15. Zhou J, Lal B, Wilson DA, Laterra J, van Zijl PC. Amide proton 

transfer (APT) contrast for imaging of brain tumors. Magn Reson Med 

2003;50:1120-6.

16. Zhou J, Payen JF, Wilson DA, Traystman RJ, van Zijl PC. Using the 

amide proton signals of intracellular proteins and peptides to detect pH 

effects in MRI. Nat Med 2003;9:1085-90.

17. Zhao X, Wen Z, Huang F, Lu S, Wang X, Hu S, et al. Saturation power 

dependence of amide proton transfer image contrasts in human brain 



29

tumors and strokes at 3 T. Magn Reson Med 2011;66:1033-41.

18. Wen Z, Hu S, Huang F, Wang X, Guo L, Quan X, et al. MR imaging of 

high-grade brain tumors using endogenous protein and peptide-based 

contrast. Neuroimage 2010;51:616-22.

19. Togao O, Yoshiura T, Keupp J, Hiwatashi A, Yamashita K, Kikuchi K, 

et al. Amide proton transfer imaging of adult diffuse gliomas: 

correlation with histopathological grades. Neuro Oncol 2014;16:441-8.

20. Scheidegger R, Vinogradov E, Alsop DC. Amide proton transfer 

imaging with improved robustness to magnetic field inhomogeneity and 

magnetization transfer asymmetry using saturation with frequency 

alternating RF irradiation. Magn Reson Med 2011;66:1275-85.

21. Kogan F, Hariharan H, Reddy R. Chemical Exchange Saturation 

Transfer (CEST) Imaging: Description of Technique and Potential 

Clinical Applications. Curr Radiol Rep 2013;1:102-14.

22. Zhou J, Zhu H, Lim M, Blair L, Quinones-Hinojosa A, Messina SA, et 

al. Three-dimensional amide proton transfer MR imaging of gliomas: 

Initial experience and comparison with gadolinium enhancement. J 

Magn Reson Imaging 2013;38:1119-28.

23. Zhu H, Jones CK, van Zijl PC, Barker PB, Zhou J. Fast 3D chemical 

exchange saturation transfer (CEST) imaging of the human brain. Magn 

Reson Med 2010;64:638-44.

24. Kim M, Gillen J, Landman BA, Zhou J, van Zijl PC. Water saturation 

shift referencing (WASSR) for chemical exchange saturation transfer 

(CEST) experiments. Magn Reson Med 2009;61:1441-50.

25. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas 

under two or more correlated receiver operating characteristic curves: a 

nonparametric approach. Biometrics 1988;44:837-45.

26. Pencina MJ, D'Agostino RB, Sr., D'Agostino RB, Jr., Vasan RS. 

Evaluating the added predictive ability of a new marker: from area 



30

under the ROC curve to reclassification and beyond. Stat Med 

2008;27:157-72; discussion 207-12.

27. Lam WW, Poon WS, Metreweli C. Diffusion MR imaging in glioma: 

does it have any role in the pre-operation determination of grading of 

glioma? Clin Radiol 2002;57:219-25.

28. Sagiyama K, Mashimo T, Togao O, Vemireddy V, Hatanpaa KJ, Maher 

EA, et al. In vivo chemical exchange saturation transfer imaging allows 

early detection of a therapeutic response in glioblastoma. Proceedings 

of the National Academy of Sciences of the United States of America 

2014;111:4542-7.

29. McVicar N, Li AX, Goncalves DF, Bellyou M, Meakin SO, Prado MA, 

et al. Quantitative tissue pH measurement during cerebral ischemia 

using amine and amide concentration-independent detection (AACID) 

with MRI. J Cereb Blood Flow Metab 2014;34:690-8.

30. Jones CK, Huang A, Xu J, Edden RA, Schar M, Hua J, et al. Nuclear 

Overhauser enhancement (NOE) imaging in the human brain at 7T. 

Neuroimage 2013;77:114-24.

31. Sugahara T, Korogi Y, Kochi M, Ikushima I, Shigematu Y, Hirai T, et al. 

Usefulness of diffusion-weighted MRI with echo-planar technique in 

the evaluation of cellularity in gliomas. J Magn Reson Imaging 

1999;9:53-60.

32. Prah MA, Stufflebeam SM, Paulson ES, Kalpathy-Cramer J, Gerstner 

ER, Batchelor TT, et al. Repeatability of Standardized and Normalized 

Relative CBV in Patients with Newly Diagnosed Glioblastoma. AJNR 

Am J Neuroradiol 2015;36:1654-61.

33. Ahn SJ, Shin HJ, Chang JH, Lee SK. Differentiation between primary 

cerebral lymphoma and glioblastoma using the apparent diffusion 

coefficient: comparison of three different ROI methods. PLoS ONE 

2014;9:e112948.



31

34. Sakata A, Okada T, Yamamoto A, Kanagaki M, Fushimi Y, Okada T, et 

al. Grading glial tumors with amide proton transfer MR imaging: 

different analytical approaches. J Neurooncol 2015;122:339-48.



32

ABSTRACT(IN KOREAN)

성인 Diffuse glioma 의 조직병리학적 등급 평가에 대한 Amide 

proton transfer imaging 의 가치 : Dynamic susceptibility contrast-

enhanced MRI 및 Diffusion weighted imaging 과의 비교 및 이에

대한 추가적 가치

<지도교수 이승구>

연세대학교 대학원 의학과

최윤성

목적 : Amide proton transfer (APT) 은 chemical exchange saturation transfer 

의 한 종류로서 조영제 주입 없이  peptide 및 protein 농도를

반영하는 새로운 기법이다. 이 연구에서는 APT value가 성인 diffuse 

glioma의 조직병리학적 등급에 따라 어떻게 변하는지 알아보고, 

더불어 조직병리학적 등급에 대한 APT value의 진단적 가치를

dynamic susceptibility contrast-enhanced (DSC) MRI의 relative cerebral blood 

volume (rCBV) 및 diffusion weighted imaging (DWI)의 apparent diffusion 

coefficient (ADC)의 그것과 비교하고, 더불어 rCBV 혹은 ADC에 더한

APT value의 추가적 진단적 가치를 고찰하였다.

재료 및 방법: 이 연구는 수술 전 APT weighted imaging 을 시행한  

39명의 조직병리학적으로 확인된 diffuse glioma 환자를 대상으로

하였으며, 이중 23명은 수술 전 DSC MRI와 DWI를 시행하였다. 

Regions of interest 는 APT, rCBV map 에서의 높은 signal 부위, 그리고

ADC map의 낮은 signal 부위에 수동으로 지정하였다. APT signal은

WHO grade 혹은 low vs high grade glioma 에 따라 비교하였다. Receiver 
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operative characteristic (ROC) analysis를 이용하여, APT value의 Low 

grade와 high grade를 구분하는 진단적 가치를 ADC 및 rCBV의 그것과

비교하였고, integrated discrimination index를 이용하여 ADC 혹은

rCBV에 더한 APT value의 추가적 진단적 가치를 분석하였다. 또한, 

APT value와 Ki-67 labeling index (LI)와의 관계를 linear regression으로

분석하였다.

결과: APT SI는 grade II glioma는 0.82 ± 0.36%, grade III에서는 1.73 ± 

0.86%, grade IV 에서는 2.62 ± 0.78% 로 각 grade 별로 유의미한

차이가 있었다. (p < 0.05 for all comparisons) Low grade 와 high grade 

glioma를 구분하는 진단적 능력은 APT SI, ADC, rCBV사이에 유의미한

차이가 없었으며, area under ROC curve (AUC)값은 APT 는 0.890, 

ADC는 0.917, rCBV는 0.947 이었다. APT 의 추가적 진단적 가치는

ADC에 더하였을 때 유의미하였으며 (p=0.033), rCBV에 대해서는

통계적으로 유의미하지 않았다(p=0.066). APT SI는 Ki-67과 유의미한

상관관계를 보였다 (p=0.001, R2 = 0.26). 

결론: APT imaging은 성인의 low grade glioma와 high grade glioma의

구분에 있어 유용하며, 기존의 ADC에 대해 추가적 진단적 가치를

가지고, 또한 APT SI는 Ki-67과 유의미한 상관관계를 가지는 것으로

사료된다. 

---------------------------------------------------------------------------------------

핵심되는 말 : 뇌교종, 등급, 자기공명영상, amide proton transfer, 

chemical exchange saturation transfer 


