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Abstract

The odds ratio and relative risk are usually the indices of interest in
public health and medical studies. The odds ratio can be obtained using
logistic regression in case—control studies. In cohort studies, however,
the odds ratio should not be replaced with relative risk. This can
cause overestimation or underestimation of the treatment effect in the
study under some conditions. In this paper, we compare multiple
methods to estimate the appropriate relative risk in a binary response.
The odds ratio can be obtained using logistic regression. With an
incidence of the outcome of more thanl0%, the odds ratio should not
be replaced with the relative risk. Log-binomial regression has become
an alternative to logistic regression for the analysis. However, it fails
to converge at a high incidence. The Poisson regression using a
sandwich variance estimator outperforms in estimating the relative risk
directly in terms of MLEs and the convergence problem. It is reliable
in terms of simulation results. Data from a diabetes study are used to

illustrate the different methods.

KEY WORDS: 0Odds ratio, Relative risk, Logistic regression,
Log-binomial regression, Poisson regression, Modified Poisson

regression, Log-binomial model, Estimating relative risk



I . Introduction

Odds ratios and relative risk are widely used to estimate risk in one
group compared with another group in clinical trials and the public
health field. In a case-control study, the odds ratio could be obtained
directly using logistic regression. The odds ratio reflects relative risk,
which is typically overestimated. Under some conditions, such as when
the incidence of the outcome is less than 10%, it is acceptable to
apply relative risk instead of the odds ratio (Zhang and Kai 1998).
However, using the odds ratio exaggerates a treatment effect or risk
association by more than 10% of the incidence of the outcome (Zhang
and Kai 1998). This overestimation increases with increasing incidence
(Knol et al. 2012).

There are alternative methods to estimate relative risk, such as
log-binomial, Poisson, and modified Poisson regression (also called
Poisson regression with robust standard errors) analyses. Log-binomial
regression 1s a useful approach to estimate the correct risk ratio and
associated confidence intervals. As for logistic regression, log—binomial
regression is a generalized linear model (GLM), used to analyze a
dichotomous outcome. The difference between log-binomial and logistic
regression analyses is the link function. In log—binomial regression, a
log link is used, but for logistic regression a logit link is used. Poisson
regression is also a GLM, with a log link, and the dependent variable
follows a Poisson distribution. Both the log—binomial and Poisson

regression analyses are capable of estimating relative risk. However,



log-binomial regression could have problems with convergence.
Standard errors obtained from Poisson regression analysis are typically
large. Thus, the Poisson regression with a robust error variance could
decrease the standard error and accurately estimate the relative risk

and confidence intervals.

The purpose of this paper was to compare multiple methods to
estimate adjusted relative risk. The methods were applied to the
log—-binomial and binomial models through simulation, under different
conditions, such as changing incidence and strengthened exposure
effect. The estimated relative risk, standard deviation, means of
standard errors, and coverage rates were then compared. These

methods were applied to a typical cohort study.

A summary section provides background information and the purpose
of this study. Descriptions of the theoretical background, including the
odds ratio, relative risk, and logistic, log-binomial, and Poisson
regression analyses, with variance estimates, are provided in Section 2.
Section 3 presents results from a simulation study and compares the
methods used to estimate relative risk. The methods were applied to
real cohort data; relative risk estimates are provided in Section 4.

Finally, the discussion and conclusions are provided in Section b.



II. Theoretical Background

2.1 Notations

In this study, we considered GLMs to estimate relative risk. In the
GLM, there are three components required to specify the model. The
random component identifies the response variable Y, and follows a
specified probability distribution. The systematic component represents
the explanatory variables and follows a probability distribution
;= (z;,2, .-, 2;). The third component, the link function, is g(+). The
mean of expected value of Y, u =E(Y,lz,), is specified by link

function.



2.2 Odds ratio and relative risk

Comparing two groups on a binary response, Y, the data could be
displayed in a contingency table. From the 2 x 2 contingency table, the
measurement index of association, the odds ratio, and relative risk

could be obtained.
Odds ratios represents a ratio of two odds,

p1/(1_p1)

OR= po/(l_po)

where p, is the probability of the outcome for the unexposed and p, is
the probability of the outcome for the exposed. In other words, the
odds ratio is the probability that an outcome occurs given an exposure,
compared to the odds of the outcome occurring for a non-exposure.
Whereas the odds ratio is a ratio of two odds, the relative risk is the

ratio of two probabilities, defined as follows:

_n
Py

RR

2.3 Logistic regression

GLM that uses the logit link is called a logistic regression model and
1s widely used in modeling binary response variables. The model is

expressed as



1—

g(m) = 109( [ ):50+51x7:1+52x7:2+ ot B[/‘rip' (D

From Eq. (1), the regression coefficient represents differences in the
log odds, exp(8;)= OR, for a one-unit increase in z; adjusted for all

the other covariates.

2.4 Log-binomial regression

Log-binomial regression is similar to logistic regression, except for
the link function. The log-binomial uses a log link function, rather than

a logit function.

g(/’bl) = lOg(MI) = 50 +51‘ri1 +52‘ri2 + - +51/‘ri11' (2)

In Eq. (2), pB's are differences in log risks so exp(3,)= RR for a

one—unit increase in z; adjusted for all the other variables.

2.5 Poisson and modified Poisson regression

The Poisson distribution is used as a discrete distribution to model



count data. This distribution is unique, in that its mean and variance
are equivalent (Hosseinian 2009). So we take the logarithm and apply

the following model.

g(u,;) = log(ui) =Byt Bz + By + o F 511557111' (3)

This is a classical regression model. However, if the Poisson mean

is related to regressors z,, z,, as in Eq. (3), then the variance is

s s ip?

eﬂn + Byt Tt BTy,

var(Yi) =

It is shown that the variance depends on the regressors and so the
equal variance assumption 1s not accounted. However, the Poisson
distribution assumes that the sum of independent Poisson random
variables Poisson as well. (Winkelmann 2013) Therefore, we can have
a log-linear Poisson model. Poisson has to non—negative value, we

should take logarithm.

10g(m):5o+51xi1+“'+5p$7:p ) t=1,...,n. (4)

In order to estimate the parameters of Poisson regression model,

maximum likelihood estimation is commonly used. The log-likelihood



function is

n

0(8) =10gL(B) = Y (ylog s — 11;)- (5)

i=1

To satisfy the goal that finding the values of g that maximize the

Eq.(5), Eq.(5) is differentiated with respect to g, 8{9(5)—2951-(%—%)
i=1

and set the result to zero. (Hosseinian 2009) Thus, application of this
estimation equation results in consistent estimators, as given by the

solution to the score equation provided below (Zou and Donner 2013) :

n

Yy, —w(8) =0 (6)

i=1

Use of the Poisson model for binary data shows an inaccurately
specified variance function. Therefore, using a sandwich variance

estimator, the variance estimator for 3 is

var (B)= A~ 'BA (7)

where A= Z :L'i:r;em"‘g and B= [Zm‘,(y, — emi’(f][z (y;, — em"‘g):r;].

i=1 i=1 i=1



II. Simulation

In this section we conducted simulations to evaluate the performance
of the log—binomial and binomial models, under different scenarios. The
simulated dataset included a dichotomous exposure X, a dichotomous
exposure Y, and five dichotomous confounders 2Z=(Z,,%,,....Z;). We
compared the mean estimates (based on 1,000 replicates), the empirical
standard deviations of the parameter estimates, the mean values of the
estimated standard errors, and the coverage probability of the 95%

confidence interval.

3.1 Log—-binomial model

The true response model was assumed as a log—binomial model.

E(Y|X,2) = exp(8,+ B, (X—0.5) + 25]%(2,;—0.5)) (8)

i=1

The confounders (Z) were independent and dichotomous, with 50%
incidence, and they generated a binomial distribution with a probability
of 0.5. The exposure X was generated from a binomial distribution,
with a success probability of Pr(X=1/2)=0.5%exp(a(Z—0.5)), where the
parameter o =log(1.13) represents the effect of the confounder Z on
the exposure X. In the simulation study, baseline incidence and the
exposure effect were changed. The baseline incidence outcome is

By = loglincidence). At first, we set the baseline incidence at 5% and



changed up to 40% by 5%.The exposure effect exp(3,) is 0.7,1.5,and
3.0. (Knol et al. 2012)

3.2 Binomial model

True response model was assumed as binomial model.

E(YI|X,2)=8,+ 0, X+ 25]%(2,;—0.5) (9)

i=1

The confounders (Z) were independent and dichotomous. They were
generated from a binomial distribution, with a probability of 0.5. The

exposure, X, was generated from a binomial distribution with a success
5

probability of Pr(X=112)=a+0.05»,Z. The parameter, «, indicates the
4= 1

proportion exposed, which was 50%. In the simulation, baseline
incidence and the exposure effect varied. the baseline incidence g,
(5-40%, increasing by increments of 5%) and the exposure effect g,
(0.7,1.5,and 3.0). In this model, the exposure effect (3,) was not

relative risk; relative risk is estimated as follows.

Let's define probability of X=0 and X=1 as follows :

5
Pr(Y=1X=0,2)=3,+ Y,7Z (10)
i=1
5
Pr(Y=1X=1,2)=8,+ 6, + d,7.Z. (11)
i=1



Here, the relative risk can be expressed by

P(Yy=1X=1,2) By

PY=0x=02 ‘tTPv=1x=02 (12)

RR=

The relative risk can vary with the value of Z. The regression
coefficient 3, represents the risk difference in the binomial model. To
convert the risk difference to the relative risk, Eq. (12) is expressed

50 + 51
Bo

as from Taylor series expansion at Xv;(Z — Z,)~0. Therefore,

. . . D
we can approximate the relative risk as 1+R—.

0

3.3 Simulation result

3.3.1 Log—-binomial model

The odds ratio obtained by logistic regression underestimated
relative risk at 0.7. In contrast, 1.5 and 3.0 were overestimates. This
overestimation became bigger as incidence increased. When we set
relative risk at 1.5, the odds ratio became even more exaggerated.
The logistic regression standard errors were smaller than those from
log-binomial regression. For the coverage probability of a 95%

confidence interval, higher incidence resulted in a lower coverage rate.

Relative risks obtained from log—binomial regression were almost the
same as the true relative risks. However, log—binomial regression
presented convergence problems. The method could converge up to an

incidence of 30%, with a relative risk of 0.7 to 1.5. A relative risk at

_']D_



3.0 could be simulated up to an incidence of 20%. Standard errors
from log-binomial regression were greater than those from logistic
regression. For the coverage probability of a 95% confidence interval,

most estimates were above 90%.

Poisson and modified Poisson regression analyses also produced
almost identical true relative risks. When comparing standard errors,
the modified Poisson regression yielded smaller standard errors than
Poisson regression. For the coverage probability of 95% confidence
intervals, Poisson and modified Poisson regression had good coverage

rates.

_']1_



Tablel.Simulation Results: Log—binomial Model, n=1000

True B Logistic Log-Binomial Poisson Modified Poisson

RR 0 OR SD MSE CR RR SD MSE CR RR SD MSE CR RR SD MSE CR
0.05 0.686 0.315 0.310 0.953 0.714 0.293 0.446 0.761 0.714 0.293 0.301 0.965 0.714 0.293 0.291 0.960
0.10 0.657 0.225 0.226 0.949 0.694 0.190 0.411 0.900 0.694 0.190 0.212 0.972 0.694 0.190 0.197 0.966
0.15 0.649 0.198 0.190 0.925 0.701 0.159 0.388 0.932 0.701 0.159 0.170 0.966 0.701 0.159 0.154 0.950

07 0.20 0.633 0.170 0.170 0.908 0.705 0.134 0.383 0.959 0.698 0.135 0.148 0.966 0.698 0.135 0.130 0.943
0.25 0.607 0.161 0.158 0.845 0.698 0.113 0.376 0.979 0.698 0.113 0.134 0.977 0.698 0.113 0.114 0.940
0.30 0.584 0.147 0.148 0.796 0.702 0.094 0.366 0.994 0.703 0.095 0.122 0.990 0.703 0.095 0.100 0.960
0.35 0.564 0.148 0.145 0.658 NA NA NA NA 0.700 0.086 0.114 0.990 0.700 0.087 0.089 0.946
0.40 0.532 0.145 0.141 0.513 NA NA NA NA 0.699 0.080 0.104 0.989 0.699 0.080 0.077 0.946
0.05 1.568 0312 0.316 0.962 1.526 0.294 0.515 0.835 1.528 0.293 0.308 0.962 1.484 0.293 0.290 0.957
0.10 1.562 0.230 0.228 0.947 1.508 0.201 0.457 0.913 1.508 0.201 0.216 0.967 1.504 0.201 0.197 0.957
0.15 1.627 0.198 0.189 0.930 1.506 0.159 0.439 0.967 1.506 0.159 0.176 0.971 1.507 0.159 0.158 0.956

s 0.20 1.692 0.175 0.170 0.887 1.500 0.135 0.427 0.983 1.501 0.135 0.151 0.977 1.517 0.135 0.130 0.955
0.25 1.759 0.156 0.158 0.833 1.498 0.113 0.419 0.996 1.500 0.113 0.134 0.984 1.501 0.113 0.114 0.963
0.30 1.840 0.151 0.148 0.730 1.504 0.100 0.420 0.997 1.504 0.100 0.122 0.93 1.502 0.100 0.100 0.954
0.35 1.976 0.146 0.145 0.512 NA NA NA NA 1.502 0.092 0.114 0.994 1.502 0.092 0.089 0.947
0.40 2.123 0.140 0.141 0.305 NA NA NA NA 1.502 0.082 0.105 0.989 1.501 0.082 0.077 0.949
0.05 3.316 0.339 0.339 0.957 3.114 0.321 1.179 0.995 3.111 0.321 0.333 0.967 3.111 0.321 0.325 0.963
0.10 3.463 0.254 0.243 0.920 3.068 0.222 1.142 1.000 3.065 0.222 0.232 0.963 3.065 0.222 0.221 0.949
0.15 3.811 0.208 0202 0.791 3.010 0.170 1.075 1.000 3.010 0.170 0.187 0.975 3.010 0.170 0.176 0.962
0.20 4.238 0.185 0.179 0.514 3.016 0.146 1.113 1.000 3.016 0.146 0.161 0.963 3.016 0.146 0.148 0.949

3.0 0.25 4.860 0.166 0.167 0.150 NA NA NA NA 3.004 0.126 0.144 0.981 3.004 0.126 0.126 0.952
0.30 5812 0.156 0.158 0.011 NA NA NA NA 3.013 0.111 0.130 0.983 3.013 0.111 0.114 0.954
0.35 7.257 0.160 0.158 0.010 NA NA NA NA 3.007 0.103 0.122 0.980 3.007 0.103 0.100 0.948
0.40 9.660 0.166 0.161 0.010 NA NA NA NA 3.016 0.091 0.114 0.986 3.016 0.091 0.094 0.955

Estimate 1s the mean of the parameter estimates based on 1,000 replicates);SD is the empirical standard deviation of the parameter

estimate; MSE is the mean value of the estimated standard errors; CR is the coverage probability; NA means failed to converge.

_12_



3.3.2 Binomial model

The odds ratio obtained by logistic regression was slightly greater
than the true relative risk at 0.7, within an incidence rate of 25%, and
true relative risk at 1.5 with an incidence rate from 20 to 40%.
Otherwise, logistic regression produced smaller odds ratios. The
overestimation became more critical at a true relative risk of 3.0, with
a high incidence rate. For the coverage rate, the higher the incidence
rate, the lower the coverage rate it produced because the estimate
ratio was biased. There was no difference in the standard error among

the scenarios considered.

Relative risk from log-binomial regression was smaller than the true
relative risk at 1.5 and 3.0. In contrast, log-binomial regression gave a
higher relative risk than the true relative risk of 0.7. It had
convergence problems, as discussed for the log-binomial model. It only
failed to converge at a true relative risk of 3.0. The standard errors

for the coverage rate did not differ.

Poisson and modified Poisson regression analyses overestimated
relative risk at a true relative risk of 0.7; otherwise, they
underestimated relative risk. Using sandwich variance estimates to
compute standard errors, the modified Poisson regression produced
smaller standard errors than the ordinary Poisson regression. For the
coverage rate, both methods provided lower coverage rates than the
other methods. These results indicated that regular Poisson regression

produced a higher coverage rate than modified Poisson regression.

_']3_



Table2.Simulation Results: Binomial Model, n=1000

. Logistic Log-Binomial Poisson Modified Poisson
True RR Incidence

OR SD MSE CR RR SD MSE CR RR SD MSE CR RR SD MSE CR
0.05 0.898 0.183 0.181 0.733 0.923 0.146 0.167 0.398 0.921 0.146 0.161 0.621 0.921 0.146 0.146 0.535
0.10 0.841 0.166 0.164 0.801 0.866 0.124 0.189 0.555 0.864 0.125 0.144 0.719 0.864 0.125 0.126 0.608
0.15 0.784 0.153 0.154 0.895 0.838 0.113 0.209 0.785 0.836 0.112 0.131 0.766 0.836 0.112 0.112 0.649
0.20 0.738 0.148 0.144 0.927 0.817 0.104 0.225 0.786 0.815 0.104 0.121 0.800 0.815 0.104 0.100 0.667
07 0.25 0.710 0.144 0.141 0.945 0.802 0.090 0.238 0.864 0.800 0.089 0.113 0.840 0.800 0.089 0.091 0.698
0.30 0.679 0.136 0.137 0.951 0.788 0.082 0.250 0918 0.785 0.081 0.106 0.868 0.785 0.081 0.077 0.718
035 0.638 0.134 0.134 0.899 0.781 0.076 0.256 0.947 0.779 0.075 0.100 0.891 0.779 0.075 0.075 0.717
0.40 0.609 0.137 0.134 0.821 0.770 0.068 0.270 0.978 0.767 0.068 0.095 0.920 0.767 0.068 0.069 0.739
0.05 1.192 0.177 0.176 0.723 1.158 0.139 0.202 0.536 1.160 0.139 0.156 0.629 1.160 0.139 0.140 0.558
0.10 1.340 0.159 0.158 0.878 1.221 0.118 0.232 0.692 1225 0.118 0.135 0.691 1.225 0.118 0.117 0.588
0.15 1.436 0.147 0.144 0.939 1.276 0.103 0.264 0.845 1.280 0.103 0.122 0.779 1.280 0.103 0.101 0.639
0.20 1.543 0.143 0.141 0.942 1.312 0.093 0.288 0.925 1815 0.092 0.111 0.817 1.315 0.092 0.088 0.668
= 0.25 1.685 0.141 0.137 0.849 1.336 0.079 0.300 0.977 1.341 0.078 0.103 0.873 1.341 0.078 0.078 0.673
0.30 1.858 0.133 0.134 0.647 1.352 0.070 0.309 0.992 15355 0.069 0.096 0.890 1.355 0.069 0.070 0.694
035 2.070 0.135 0.134 0.347 1.368 0.064 0.319 0.995 1.371 0.063 0.091 0917 1.371 0.063 0.062 0.683
0.40 2422 0.140 0.137 0.060 1.379 0.056 0.327 1.000 1.382 0.055 0.086 0.936 1.382 0.055 0.055 0.674
0.05 1.840 0.172 0.167 0.170 1.601 0.133 0.489 0.769 1.611 0.131 0.149 0.018 1.611 0.131 0.133 0.009
0.10 2.643 0.155 0.151 0.853 1.904 0.112 0.183 0.994 1.913 0.111 0.127 0.050 1.913 0.111 0.109 0.027
0.15 3.698 0.142 0.144 0.709 NA NA NA NA 2.125 0.094 0.114 0.118 2.125 0.094 0.092 0.055
0.20 5.663 0.148 0.144 0.006 NA NA NA NA 2.259 0.081 0.103 0.173 2.259 0.081 0.080 0.083
30 0.25 12.692 0.168 0.167 0.000 NA NA NA NA 2.358 0.070 0.095 0.246 2.358 0.070 0.069 0.085
0.30 161.90 0.482 0.472 0.000 NA NA NA NA 2422 0.060 0.089 0.294 2422 0.060 0.060 0.093
035 960000 0.110 703.83 1.000 NA NA NA NA 2.496 0.057 0.084 0.383 2.496 0.057 0.054 0.125
0.40 783000 0.109 704.04 1.000 NA NA NA NA 2.539 0.051 0.080 0.431 2.539 0.051 0.050 0.121

Estimate is the mean of the parameter estimates based on 1,000 replicates); SD is the empirical standard deviation of the parameter

estimate; MSE is the mean value of the estimated standard errors; CR is the coverage probability; NA means failed to converge.
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IV. Illustrative data

We considered the data from a cohort. The data was collected over
the period of time from 2002-2010 by the National Health Insurance
Service (NHIS 2014). The total number of enrolled patients was
1,018,682 during the baseline period of 2002-2003 (NHIS 2014). We
were Interested in studying the relationship between obesity and
diabetes. We identified diabetic patients who had diabetes after 2004,
resulting in 105,091 diabetic patients. Diabetes incidence for that
period was 10.32%. This data set included gender, disease, status of
death, and the body mass index (BMI) of the patients. When analyzing
the data, we ignored the patients who did not have BMI information.
The final data represented 451,865 patients who had complete data for
gender, age group, diabetes status, status of death, and BMI. Because
there was no obesity status variable in the data, we defined BMI
scores of wunder 23 as normal. Obesity status was the main
independent variable, and the others were covariates. The summary of

data is provided in Table 3.

In this study, we built a log—binomial model and compared it to the
three other models (logistic, Poisson, and modified Poisson regression),
using the same predictors and outcomes. The regression analysis was
based on the final data (n = 451,865), with a diabetes incidence rate
fixed at 10.32%.

_']5_



Table 3. A summary of illustrative data

Total Diabetes Normal
N % N % N %
Obesity
Yes 242,599 53.63 41,615 17.15 200,984 82.85
No 209,775 46.37 21,837 10.41 187,938 89.59
Death
Yes 97 0.02 15 15.46 82 84.54
No 452,277 99.98 63,437 14.03 388,840 85.97
Age
0-9 889 0.20 23 2.59 866 97.41
10-19 52,261 11.55 1,828 3.50 50,433 96.50
20-29 88,731 19.61 4,641 5.23 84,090 94.77
30-39 118,035 26.09 11,483 9.73 106,552 90.27
40-49 94,987 21.00 17,426 18.35 77,561 81.65
50-59 58,674 12.97 15,851 27.02 42,823 72.98
60-69 31,135 6.88 9,979 32.05 21,156 67.95
>70 7,662 1.69 2,221 28.99 5,441 71.01
Sex
Male 228,649 50.54 30,964 13.54 197,685 86.46
Female 223,725 49.46 32,488 14.52 191,237 85.48

Application of the logistic regression procedure resulted In an
estimated odds ratio of 1.469 (95 percent CI: 1.443-1.497); this value
differed significantly from the results obtained using log—binomial
regression given the 1.356 estimated relative risk (95% CI: 1.3367-
1.3773). Using Poisson regression analysis resulted in an estimated
relative risk of 1.364 (95% CI: 1.3418-1.3872); again, this risk differed
from the estimated relative risk from log-binomial regression, with a
slightly higher relative risk. The estimated relative risk from modified
Poisson regression was the same as that from Poisson regression
analysis, but it gave smaller standard errors than Poisson regression

(95% CI: 1.3439-1.3851). A summary of the results is provided in
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Table 4.

Table4. Result of the estimated odds ratio and relative risk by different

regression model.

Method OR or RR SE 95% CI
Logistic regression 1.470 0.004 1.443, 1.497
Log-binomial regression 1.356 0.010 1.336, 1.377
Poisson regression 1.364 0.011 1.341, 1.387
Modified Poisson 1364 0.010 1343, 1.385

regression

OR is the odds rato;

confidence interval.

RR

1s relative risk SE is standard error;
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V . Conclusion and Discussion

In this paper, we proposed different methods to estimate relative risk
in a binary response variable. The odds ratio could be directly
obtained by logistic regression. However, the odds ratio should not be
replaced with the relative risk in cohort studies under some conditions.
Converting odds ratios to relative risks could produce overestimates or
underestimates under some conditions, particularly with the incidence
increasing. The overestimation or underestimation could exaggerate the
treatment effects in a study. Therefore, proper data analysis methods

should be used.

Through the results of the simulation, the estimated relative risks in
the log-binomial model provided good performance when Poisson and
modified Poisson regression were applied. Modified Poisson regression
analysis produced lower MSEs when wusing sandwich variance
estimates. Log—-binomial regression gave results similar to those from
Poisson and modified Poisson regression analyses, except for
convergence problems. The reasons of the convergence problems were
the failure to find the maximum likelihood estimate (MLE). The
log-binomial model was placed on the boundary of the parameter
space, and the log-likelihood function was maximized on the boundary
of the parameter space (Williamson, Eliasziw, and Fick 2013), and it
might also happen with many covariates, especially continuous
covariates. The convergence problem could be avoided using the COPY
method in SAS (Lumley, Kronmal, and Ma 2006) or a different method

such as modified Poisson regression, which outperformed the other
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methods in terms of estimating relative risk, MLE, and convergence.

We applied these data analysis methods to data from a diabetes
study. The odds ratio obtained from logistic regression and the relative
risk were different due to high incidence. Thus, the odds ratio was not
a good estimate of relative risk. Application of binomial regression had
the smallest adjusted relative risk compared with the other regression
analyses. As we expected, using modified Poisson regression analysis

yielded a smaller standard error than Poisson regression.

Different data analysis methods provided different relative risk
estimates. Moreover, with high incidence and a typical outcome, the
odds ratio obtained from logistic regression provided large differences.
In this case, alternative methods should be considered, as logistic
regression led to an exaggerated or underestimated risk association or
treatment effect. Thus, determining the method to estimate adjusted
relative risk is important. There are limitations in the binomial model.
The estimate ratio was generally biased and required a correction

method. It was difficult to choose the best correction method.
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