저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

- 저작자표시. 귀하는 원저작자를 표시하여야 합니다.
- 비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.
- 변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다.

- 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ▷
성도의 해부학적 변형에 따른 음성 변화의 음향학적 특징

연세대학교 대학원
언어병리학협동과정
이 연 우
성도의 해부학적 변형에 따른 음성 변화의 음향학적 특징

지도교수 김 향 희

이 논문을 석사 학위논문으로 제출함

2015년 12월 일

연세대학교 대학원
언어병리학협동과정
이 연 우
이연우의 석사 학위논문을 인준함

심사위원
김향희

심사위원
비항

심사위원

연세대학교 대학원

2015년 12월 일
차 례

국문요약 .. V

I. 서론 ... 1
 1. 연구 배경 .. 1
 가. 후두개 낭 환자의 음성 특성 .. 1
 나. 후두 낭의 분류 및 특성 .. 2
 다. 후두개 낭의 특징과 이비인후과적 수술 치료 2
 라. 음성 평가의 중요성 .. 3
 2. 연구의 필요성 및 목적 ... 7
 3. 연구 문제 ... 8

II. 재료 및 방법 ... 9
 1. 연구 대상 .. 9
 가. 실험 1 .. 9
 나. 실험 2 .. 9
 (1) 정상군 ... 9
 (2) 후두개 낭 환자군 ... 10
 2. 연구 방법 .. 11
 가. 연구 도구 ... 11
 나. 연구 절차 ... 11
 (1) 실험 1 ... 11
 (가) 제 1, 2포먼트 분석 방법 ... 12
 (나) Jitter, shimmer, NHR 분석 방법 12
 (2) 실험 2 ... 12
 다. 자료 분석 ... 12
 3. 통계 분석 ... 13
 4. 신뢰도 분석 ... 13
가. 검사자 내 신뢰도
나. 검사자 간 신뢰도

III. 결과

1. 실험 1
가. 구강 변형에 따른 단모음에서의 제 1, 2 포먼트 변화
나. 구강 변형에 따른 jitter, shimmer, NHR 변화

2. 실험 2
가. 인두강 변형에 따른 단모음에서의 제 1, 2 포먼트 변화
나. 인두강 변형에 따른 jitter, shimmer, NHR 변화

3. 신뢰도 분석 결과
가. 검사자 내 신뢰도
나. 검사자 간 신뢰도

IV. 고찰
V. 결론

참고문헌
Abstract
그림 차례

그림 1. 모음 /i/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트 5
그림 2. 모음 /a/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트 5
그림 3. 모음 /u/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트 6
그림 4. 모음 /a/, /e/, /i/, /o/, /u/ 조음 시 성도 모양 ... 6
그림 5. 후두개 납 환자군의 국소 소견 .. 10
표 차례

표 1. 구강 변형에 따른 모음의 F1에 대한 윌콕슨 부호 순위 검정 ·············· 15
표 2. 구강 변형에 따른 모음의 F2에 대한 윌콕슨 부호 순위 검정 ·············· 16
표 3. 구강 변형에 따른 jitter에 대한 윌콕슨 부호 순위 검정 ························ 17
표 4. 구강 변형에 따른 shimmer에 대한 윌콕슨 부호 순위 검정 ··············· 17
표 5. 구강 변형에 따른 NHR에 대한 윌콕슨 부호 순위 검정 ···································· 18
표 6. 각 군 간 모음의 F1에 대한 맨-휘트니 검정 ·· 20
표 7. 각 군 간 모음의 F2에 대한 맨-휘트니 검정 ·· 21
표 8. 각 군 간 jitter에 대한 맨-휘트니 검정 ·· 22
표 9. 각 군 간 shimmer에 대한 맨-휘트니 검정 ·· 22
표 10. 각 군 간 NHR에 대한 맨-휘트니 검정 ·· 23
국 문 요 약

성도의 해부학적 변형에 따른 음성 변화의 음향학적 특징

설암, Ludwig angina, 편도염, 편도암, 편도비대, 후두개 낭, 후두암(성문 상부암)과 같이 성도의 해부학적 변형을 일으키는 질환은 증세가 악화됨에 따라 호흡 장애 및 연하 장애와 같은 심각한 상황을 초래할 수 있다. 또한 성도의 해부학적 변형은 포먼트의 특성, 즉 음성의 음향학적 특성의 변화를 가져올 수 있기 때문에 성도 변형으로 인해 발생할 수 있는 문제를 예측하는데 있어서 음향학적 평가가 큰 도움을 줄 수 있다.

이에 본 연구는 성도의 해부학적 변형에 따라 음향학적 특징의 변화가 나타나는지 알아보고, 그러한 차이가 성도 변형을 일으키는 요인(mass effect)으로 인한 것인지 혹은 이러한 요인에 의한 성도 기관의 움직임(mobility) 변화로 인한 것인지 구분하는 이론과 관련지어 설명하고자 하였다. 먼저 구강 변형에 따른 음향학적 특정의 변화를 분석하기 위해 정상 남성 14명을 대상으로 하는 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 2 포먼트, 그리고 jitter, shimmer, NHR을 비교 분석하였다.

인두강 변형에 음향학적 특성의 변화를 분석하기 위해 후두개 남 환자 7명, 그리고 후두개 남 환자와 성별 및 연령이 일치된 정상 남성 14명을 대상으로 하여 집단 간 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 2 포먼트, 그리고 jitter, shimmer, NHR을 비교 분석하였다.

결과는 다음과 같다. 구강 변형이 일어난 경우에는 일어나지 않은 경우에는 비해 모음 /i/, /e/의 제 2 포먼트가 유의미하게 낮은 반면 모음 /i/의 제 1 포먼트는 높은 것으로 나타났다. 후두개 남 환자군은 정상군에 비해 모음 /a/, /e/의 제 1 포먼트가 유의미하게 낮은 것으로 나타났다. 구강 및 인두강 변형에 따라 jitter, shimmer, NHR은 유의미한 차이가 나타나지 않았다.

본 연구의 결과는 성도의 해부학적 변형이 혀의 움직임(mobility)에 영향을 주어 공명의 변화를 가져온다는 것을 보여준다. Jitter, shimmer, NHR은 구
강 및 인두강의 변형에 따라 유의미한 차이가 나타나지 않았지만 음성에 영향을 미칠 수 있는 변수들이 다양하기 때문에 음성 평가는 반드시 다차원적으로 이루어져야 한다. 본 연구는 성도 절환의 진단 및 치료 결과 분석에 음향학적 평가의 필요성 및 유용성을 언급하고, 이후 다양한 성도 절환으로 인한 음향학적 특징의 변화를 연구하는 데에 기초 자료로 활용될 수 있을 것이라 기대된다.

핵심되는 말: 성도, 후두개 낭, 모음, 포먼트, 제 1 포먼트, 제 2 포먼트, 지터, 쉼머, 소음 대 배음비
성도의 해부학적 변형에 따른 음성 변화의 음향학적 특징

〈지도교수 김 향 희〉
연세대학교 대학원 언어병리학협동과정

이 연 우

I. 서론

1. 연구 배경

가. 후두개 낭 환자의 음성 특성

후두개 낭의 크기가 커지면 기도가 좁아져서 ‘hot potato voice’ 혹은 ‘muffled voice’를 산출할 수 있다.1 편도 비대증, 편도 및 편도 주위염을 가진 환자들도 ‘hot potato voice’를 산출할 수 있다.2-7 이러한 질환은 성도의 해부학적 변형을 유발시켜서 음성의 공명 특성을 변화시킨다.8-9 성도는 특정 주파수만을 통과시켜 공명 현상을 발생시키는데, 이렇게 통과된 특정 주파수를 포먼트(Formant frequency, F)라고 하며, 이러한 포먼트는 소리의 공명 특성을 보여준다. 성도 모양의 변화로 공명 특성이 변하면 모음 각각에 영향을 줄 수 있기 때문에,10,11 세밀한 음성평가를 진행하기 위해서는 발성뿐만 아니라 공명 측면에서의 평가도 반드시 실시해야 한다.
나. 후두 낭의 분류 및 특성

후두개 낭(epiglottic cyst)은 후두개골 낭, 피열 후두개주름 낭, 그리고 후두실 낭과 같이 후두 낭의 한 종류에 속하며 선천적 혹은 후천적으로 발생하며, 후두 개 에 낭이 생기는 질환이다.14 후두 낭에 속하는 여러 질환들을 구분하기 위해 다양한 분류법이 제시되었다. 먼저 1970년에는 후두 낭을 관상 낭종(ductal cyst)과 소낭낭종(saccular cyst)으로 나누는 분류법이 제시되었다.15 관상 낭종은 점막하선의 수집관에서 발생하며 후두 개 측면에 가장 많이 발생하며 소낭낭종은 후두실의 후두소낭에서 발생하는 질환이다. 1984년에는 후두 낭을 상피낭종, 편도낭종 및 호산구 과립 세포형 낭종으로 나누는 분류법이 제시되었지만 임상에서 실용적으로 사용되지 못하였다.16 1997년에는 416명의 후두 낭 환자를 대상으로 후두 낭을 선천성 낭, 잔류 낭, 봉입 낭으로 나누는 분류법이 제시되었고 이 중 선천성 낭 환자는 단 2명뿐이었다.17 또한 선천적인 후두 낭은 10만 명 당 18.2명에 해당하며 낮은 발생률을 보이는 것으로 보고되었다.18 대부분의 선천적인 후두 낭은 후두개골, 피열 후두개 주름, 그리고 후두실에서 주로 생기는 반면에 후두개 낭은 대부분 후천적인 것으로 나타났다.

다. 후두개 낭의 특성과 이비인후과적 수술 치료

후두개 낭은 대부분 양성이고 모든 연령층에서 보일 수 있으며 양성 후두종괴의 약 5%를 차지한다.19,20 후두개 낭 중, 점액 낭종(mucosal retention cyst)은 제발이 갖고 표피 낭종(epidermal cyst)는 크기가 큰 것이 특징이다. 후두개 낭은 간접 후두경 검사 혹은 후두 내시경 검사를 통해 진단할 수 있다.16 낭의 크기가 커지면 연하 장애, 호흡곤란뿐만 아니라 성도 특이, 인두 강의 변형으로 음성 특히, 공명의 변화를 가져올 수 있다.1 1970년에 제시된 분류법에 따르면, 관상 낭종은 호흡 통로에 위치해 있기 때문에 크기가 커지면 매우 치명적인 상황을 초래할 수 있다.1,21-23

치료는 낭의 크기에 따라 달라질 수 있다. 크기가 작은 경우에는 직접 후두 경을 통해 점자나 레이저를 사용하여 제거할 수 있고, 크기가 큰 경우에는 즉
인두 및 후두 절개술 등의 방법을 이용할 수 있다. 하지만 수술 과정에서 제거가 완벽하게 이루어지지 않으면 재발될 수 있기 때문에 완벽하게 제거할 것을 권하고 있다. 후두개 낭에 관한 선형 연구들은 호흡 문제를 보인다. 후두개 낭 환자에 관한 사례 연구들이 대부분이다.1,21-23

라. 음성 평가의 중요성

음성 산출 과정을 고려할 때, 폐 기능의 문제, 성대 전동 상태의 문제, 성도의 해부학적 변형이 있으면 음성 문제가 유발될 수 있다. 폐에 이상이 있는 경우에는 폐 검사를 통해 확인할 수 있고 성대 전동에 이상이 있는 경우에는 다양한 성대 전동 검사를 통해 확인이 가능하다. 성도의 해부학적 변형이 일어난 경우에는 내시경 혹은 CT 등으로 검사할 수 있지만 미세한 성도 변화를 평가하는 것은 어렵다. 이러한 단점을 보완하기 위해서 음향학적 평가를 시행하는 것이 도움이 될 수 있다.

사람들 간의 사회적 관계가 중시되는 추세로 인해 타인에게 불쾌감을 주지 않는 음성 산출이 중요시되고 있다. 음성은 호흡, 발성, 공명, 조음 단계를 통해 산출되고 각 단계마다 음성에 영향을 미칠 수 있는 변수들이 다양하기 때문에 진단과 평가는 반드시 다차원적으로 실시되어야 한다. 이에 따라 장애음성의 선별, 특성 및 중증도, 그리고 진단 및 치료의 효과 여부를 알 수 있는 음성 평가를 찾아내는 것이 매우 중요하다.25

앞서 언급하였듯이 후두개 낭이 생기면 성도의 변형으로 인해 포먼트의 특성이 변화된다. 성대 전동과 관련된 jitter, shimmer, noise to harmonic ratio (NHR)과 같은 변수들과 달리 포먼트는 성도의 공명 특성을 보여준다. 스펙트로그래프 분석에 따라 성능을 제 1 번째 점은 깊은 높은 지점으로, 제 2 포먼트 순서로 명명한다. 측정점 이론은 성도 모양의 변형으로 인해 생기는 측정점의 크기 및 위치에 따라 공명주파수와 변한다는 것을 설명해주는 이론이다. 측정점 이론에 따르면, 한쪽이 막힌 관이 공명할 때 어떤 지점은 입자 운동이 최대가 되어 교점(node)을 이루고, 다른 지점은 입자 운동이 최소가 되어 분산점(anti-node)을 이룬다고 한다. 제 1 포먼트는 각각 한 개의 교점과 분산점이 생기고 제 2 포먼트는 각각 두 개의 교점
과 분산이 생긴다. 포먼트 주파수 값은 교점에 인접한 위치가 줄어지고 분산점에 인접한 위치가 넓어지면 올라가는 반면에 교점에 인접한 위치가 넓어지고 분산점에 인접한 위치가 줄어지면 내려간다. 제 1 포먼트는 혀의 높낮이와 탁 열림 정도, 인두강의 면적에 따라 달라지며, 고모음일수록 값이 낮다. 제 2 포먼트는 혀의 전설 및 후설성에 따라 달라지며 전설 모음일수록 값이 높다. 이러한 제 1, 2 포먼트는 산출된 실제 음성을 결정짓는다. 모음을 발음할 때 성도는 일반적으로 하나의 관을 형성하기 때문에 성도 기능 분석에서는 모음을 많이 사용한다. 모음 /i/는 제 2 포먼트 값이 높고 제 1 포먼트 값이 낮은데, 이는 혀가 상승하고 전방으로 움직이기 때문에 구강 면적이 줄어들고 인두강 면적이 넓어지는 것과 관련이 있다. 모음 /a/는 제 2 포먼트 값이 높고 제 1 포먼트 값이 낮은데, 이는 혀와 하악이 내려가서 구강 면적이 넓어지고 인두강 면적이 줄어드는 것과 관련이 있다. 모음 /u/는 제 1 포먼트와 제 2 포먼트 값이 낮아지는 데, 이는 입술이 전방으로 움직이고 혀가 위축되어 성도의 길이가 길어지기 때문이다. 모음 /o/는 제 1 포먼트 값이 모음 /a/보다 높다. 모음 /e/는 혀를 앞으로 좁히는 정도와 입술의 원순 정도가 모음 /u/보다 낮기 때문에 제 2 포먼트 값이 모음 /u/보다 낮다. 모음 /e/는 모음 /i/보다 인두강 면적이 좁지만 구강 전반부 면적이 넓기 때문에 모음 /i/보다 높은 제 1 포먼트 값과 낮은 제 2 포먼트 값을 가진다.
그림 1. 모음 /i/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트

(Bhutta MF 외2에서 발췌)

그림 2. 모음 /a/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트

(Bhutta MF 외2에서 발췌)
그림 3. 모음 /u/ 조음 시 성도 모양, 길이 및 단면적, 제 1, 2 포먼트

(Kitamura T 외 29에서 발췌)

그림 4. 모음 /a/, /e/, /i/, /o/, /u/ 조음 시 성도 모양

(Bhutta MF 외 2에서 발췌)
2. 연구의 필요성 및 목적

성도의 구조는 포먼트를 결정하는데 중요한 역할을 한다. 연령과 성별에 따라 성도의 모양이 달라질 수 있지만, 편도염이나 편도 주위염, 편도 비대, 후두개 낭으로 인해 성도의 해부학적 변형이 유발될 수 있다.

국내의 경우, 많은 정상군들을 포함하여 성별과 연령에 따른 포먼트 변이를 분석한 연구가 있었지만, 포먼트 변화를 성도의 구조 및 기능과 관련지어 설명해주지 못하였다. 무엇보다 편도염, 편도 비대, 후두개 낭과 같이 성도에 병변이 생긴 환자군을 대상으로 한 연구가 매우 부족한 실정이다.

국외의 경우, 성도의 해부학적 변이로 인한 포먼트 수치의 변화를 보고한 연구들이 있었지만, 편도 및 편도 주위염 환자, 그리고 편도 및 아데노이드 절제술 환자군을 대상으로 한 연구들이 대부분이었다. Praat, Wavesurfer, TF32와 같은 다양한 음성 공유 소프트웨어 및 Computerized Speech Lab(CSL)을 통해 음성분석을 시행할 수 있다. 성도의 해부학적 변형은 음향학적 특성의 변화를 가져오기 때문에 음향학적 평가를 통해 성도 질환을 확인할 수 있을 것이다. 이에 본 연구는 성도 변형으로 인해 음향학적 특성의 변화가 있는지 알아보고, 그러한 차이가 성도 변형을 일으키는 요인(mass effect)으로 인한 것인지 혹은 이러한 요인에 의한 성도 기관의 움직임(mobility)변화로 인한 것인지 둘로의 쟁점에 이론과 관련지어 설명하고자 하였다. 먼저 구강 변형에 따른 음향학적 특성의 변화를 분석하기 위해 정상군을 대상으로 하여 고무풍선 안에 삶은 달걀을 넣고, 그것을 입 안에 넣은 상황과 없는 상황 측, 구강에 변형이 일어났을 때와 일어나지 않았을 때, 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트, 모음 연장 발성에서의 jitter, shimmer, NHR을 비교하였다. 그리고 인두강 변형에 따른 음향학적 특성의 변화를 분석하기 위해 후두개 낭 환자군과 정상군을 대상으로 하여 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트, 모음 연장 발성에서의 jitter, shimmer, NHR을 비교하였다.

이 연구를 통해 구강 및 인두강의 해부학적 변형으로 인해 변화하는 음성 특성에 대한 기초 자료를 마련하고, 음성 분석을 성도 질환의 진단 및 치료에 적용할 수 있을 것이다.
3. 연구문제

(1) 실험 1: 구강 변형에 따른 음성 변화의 음향학적 특징

(가) 정상군 내에서 구강 변형을 일으키는 물체의 유무에 따라 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 유의한 차이가 있는가?

(나) 정상군 내에서 구강 변형을 일으키는 물체의 유무에 따라 jitter, shimmer, NHR에 유의한 차이가 있는가?

(2) 실험 2: 인두강 변형에 따른 음성 변화의 음향학적 특징

(가) 후두개 낭 환자군과 정상군 간, 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 유의한 차이가 있는가?

(나) 후두개 낭 환자군과 정상군 간, jitter, shimmer, NHR에 유의한 차이가 있는가?
Ⅱ. 재료 및 방법

1. 연구 대상

가. 실험 1: 구강 변형에 따른 음성 변화의 음향학적 특징

정상군: 대상자는 이비인후과 전문의에 의해 구강, 인두강, 후두에 이상 소견이 없는 남자 14명으로 선정하였다. 신경학적 질환 및 정신질환, 마비말장애 등 기타 병력이 없는 자를 대상으로 하였고 대상자들은 26세에서 36세 사이로 평균 연령은 31.64세(표준편차 3.05세)였다.

나. 실험 2: 인두강 변형에 따른 음성 변화의 음향학적 특징

(1) 정상군: 이비인후과 전문의에 의해 구강, 인두강, 후두에 이상 소견이 없으면서 후두개낭 환자와 연령이 일치하는 남자 14명으로 선정하였다. 신경학적 질환 및 정신질환, 마비말장애 등 기타 병력이 없는 자를 대상으로 하며, 대상자들은 52세에서 72세 사이로 평균 연령은 60.86세(표준편차 6.01세)였다.
(2) 후두개낭 환자군: 부산 OO 병원에 내원한 후두개낭 환자 7명을 대상으로 하며, 후두개낭 이외 신경학적 질환 및 정신질환, 마비발생, 기타 후두 질환이 없는 자를 대상으로 하였다. 대상자들은 55세에서 73세 사이로 평균 연령은 62세(표준편차 6.90세)였고, 모두 남성이었으며 정상군의 연령과 통계적으로 유의미한 차이가 없었다. 후두개낭 환자군의 내시경 검사 소견은 그림 5와 같다.

그림 5. 후두개낭 환자군의 국소 소견
(A: M/58yrs, B: M/69yrs, C: M/55yrs, D: M/73yrs, E: M/55yrs, F: M/63yrs, G: M/61yrs)
2. 연구 방법

가. 연구 도구

방음 검사실 내에 위치한 Computerized Speech Lab(CSL model 4500; KayPentax, Lincoln Park, NJ, USA)와 단일지향성 다이나믹 마이크인 Shure SM48(Shure Inc, USA)을 연결하여 녹음환경을 구성하였다. 대상자의 모음 /a/, /e/, /i/, /o/, /u/ 발성을 통해 각 모음의 제 1, 제 2 포먼트를 분석하고 모음 /a/ 연장 발성을 통해 jitter, shimmer, NHR을 분석하였다. 분석은 이비인후과 음성검사실에서 연구자가 직접 실시하였다. 본 연구의 실험 1에서 는 정상군을 대상으로 고무풍선 안에 삶은 달걀을 넣고, 그것을 입에 넣었을 때와 넣지 않은 상태 즉, 구강에 변형이 일어났을 때와 일어나지 않았을 때의 음성을 분석에 사용하였다. 실험 2에서는 후두개낭 환자군의 음성, 후두개낭 환자군과 성별 및 연령이 일치된 정상군의 음성을 분석에 사용하였다.

나. 연구 절차

소음이 차단된 방음실에서 대상자들의 음성을 녹음하였다. 대상자의 입술과 마이크의 거리는 15cm로 유지하고, 소음을 제거하기 위해 15° 각도에 마이크를 위치시켰다. Kay CSL-4500을 사용하여 음성을 녹음하고 분석하였다. 음성 분석을 위해 표본 추출률을 11,025Hz로 설정하고, 16bits wav 파일로 저장하였다.

(1) 실험 1: 구강 변형에 따른 음성 변화의 음향학적 특징

정상군을 대상으로 고무풍선에 달걀을 넣고 그것을 넣은 상황과 뺐 상황에서 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트를 비교 분석하였다. 그리고 모음 /a/ 연장 발성을 통해 두 상황에서의 jitter, shimmer, NHR을 비교 분석하였다. 연구자는 대상자에게 각 모음의 자연스러운 발성을 시연하고, 대상자가 충분한 연습을 할 수 있도록 한 뒤에 녹음을 시행하였다.
(가) 제 1, 제 2 포먼트 : 강영애 등(2009)34이 제안한 기준에 따라 연장발성의 F1값과 F2값 모음 시작부의 1/3지점 이상이며 모음부분에 안정적인 펄스 신호가 생기고 포먼트, 강도, 음도가 일정하게 수평이 되는 부분의 제 1, 2 포먼트 값을 측정하였다.

(나) Jitter, shimmer, NHR 값 : MDVP 매뉴얼에 따라 5초간 연장 발성된 /a/ 모음 중 안정된 중간의 3초 구간을 분석하였다.

(2) 실험 2: 인두강 변형에 따른 음성 변화의 음향학적 특징

후두개방 환자군, 그리고 환자군과 성별 및 연령이 일치하는 정상군을 대상으로 하여 모음 /a/, /e/, /i/, /o/, u/의 제 1, 제 2 포먼트를 비교 분석하였다. 그리고 모음 /a/ 연장 발성을 통해 각 집단의 jitter, shimmer, NHR을 비교 분석하였다. 연구자는 대상자에게 각 모음의 자연스러운 발성을 시연하고, 대상자가 충분한 연습을 할 수 있도록 한 뒤에 녹음을 시행하였다. 제 1 포먼트와 제 2 포먼트, jitter, shimmer, NHR 분석 방법은 ‘실험 1’과 동일하였다.

다. 자료 분석

대상자들이 산출한 모든 음성자료는 Kay CSL-4500를 사용하여 분석하였다.
3. 통계 분석

통계 처리는 SPSS 18.0 (Statistical Product and Service Solution, Version 18.0) 프로그램을 이용하였다. 통계처리는 다음과 같은 과정을 통해 진행하였다. 첫째, 정상군을 대상으로 구강 변형에 따른 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 차이가 있는지 윌콕슨 부호 순위 검정 (Wilcoxon signed rank test)을 통해 확인하였다. 둘째, 구강 변형에 따른 jitter, shimmer, NHR에 차이가 있는지 윌콕슨 부호 순위 검정 (Wilcoxon signed rank test)을 통해 확인하였다. 셋째, 후두개 냉 환자군과 정상군 간 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 차이가 있는지 맨-휘트니 검정 (Mann-Whitney U-test)을 통해 확인하였다. 넷째, 후두개 냉 환자군과 정상군의 jitter, shimmer, NHR에 차이가 있는지 맨-휘트니 검정 (Mann-Whitney U-test)을 통해 확인하였다.

4. 신뢰도 분석

가. 검사자 내 신뢰도

전체 자료를 무작위 순서로 단모음 /a/, /e/, /i/, /o/, /u/에서의 제 1, 제 2 포먼트, 모음 /a/ 연장 발성에서의 jitter, shimmer, NHR을 재측정하였다. 검사자의 두 측정 결과에 대하여 피어슨 상관분석(Pearson correlation)을 실시하였다.

나. 검사자 간 신뢰도

전체 자료를 무작위 순서로 언어재활사 1급 자격증을 소지한 제2검사자가 단모음 /a/, /e/, /i/, /o/, /u/에서의 제 1, 제 2 포먼트, 모음 /a/ 연장 발성에서의 jitter, shimmer, NHR을 재측정하였다. 제1검사자와 제2검사자의 두 측정 결과에 대하여 피어슨 상관분석(Pearson correlation)을 실시하였다.
III. 결과

1. 실험 1

가. 구강 변형에 따른 단모음에서의 제 1, 제 2 포먼트 변화

모음 /a/의 제 1 포먼트(구강 변형이 일어난 경우=699.6±90.4, 일어나지 않은 경우=734.7±67.6; p=.084)와 제 2 포먼트(구강 변형이 일어난 경우=1101.0±96.9, 일어나지 않은 경우=1160.1±73.9; p=.132), 모음 /e/의 제 1 포먼트(구강 변형이 일어난 경우=493.2±84.9, 일어나지 않은 경우=479.2±50.7; p=.660), 모음 /o/의 제 1 포먼트(구강 변형이 일어난 경우=359.0±73.5, 일어나지 않은 경우=343.1±47.2; p=.451)와 제 2 포먼트(구강 변형이 일어난 경우=736.3±91.8, 일어나지 않은 경우=683.3±58.5; p=.177), 모음 /u/의 제 1 포먼트(구강 변형이 일어난 경우=284.4±32.3, 일어나지 않은 경우=292.9±43.6; p=.730)와 제 2 포먼트(구강 변형이 일어난 경우=716.4±94.7, 일어나지 않은 경우=760.6±78.3; p=.109)는 구강 변형에 따라 통계적으로 유의한 차이가 나타나지 않았다.

반면, 모음 /i/의 제 1 포먼트(구강 변형이 일어난 경우=296.9±36.9, 일어나지 않은 경우=279.6±35.4; p=.004)와 제 2 포먼트(구강 변형이 일어난 경우=1618.2±301.2, 일어나지 않은 경우=2245.1±141.1; p=.001), 모음 /e/의 제 2 포먼트(구강 변형이 일어난 경우=1475.4±125.4, 일어나지 않은 경우=1939.7±157.0; p=.001)는 구강 변형에 따라 통계적으로 유의한 차이가 나타났다. 모음 /i/의 제 1 포먼트는 구강 변형이 일어난 경우가 일어나지 않은 경우에 비해 유의미하게 높았다. 모음 /i/와 /e/의 제 2 포먼트는 구강 변형이 일어난 경우가 일어나지 않은 경우에 비해 유의미하게 높았다.(표 1, 표 2)
표 1. 구강 변형에 따른 모음의 F1에 대한 윌콕슨 부호 순위 검정

<table>
<thead>
<tr>
<th>모음</th>
<th>구강 변형</th>
<th>F1g</th>
<th>기술통계량</th>
<th>중위수</th>
<th>사분위수 범위</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>기술통계량</td>
<td>종위수</td>
<td>사분위수 범위</td>
<td></td>
</tr>
<tr>
<td></td>
<td>구강 변형(-)</td>
<td>734.7</td>
<td>(±67.6)</td>
<td>729.50</td>
<td>101.50</td>
<td>.084</td>
</tr>
<tr>
<td>/a/</td>
<td>구강 변형(+)</td>
<td>699.6</td>
<td>(±90.4)</td>
<td>678.50</td>
<td>136.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>구강 변형(-)</td>
<td>279.6</td>
<td>(±35.4)</td>
<td>285.00</td>
<td>60.50</td>
<td>.004**</td>
</tr>
<tr>
<td>/i/</td>
<td>구강 변형(+)</td>
<td>296.9</td>
<td>(±36.9)</td>
<td>297.50</td>
<td>54.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>구강 변형(-)</td>
<td>479.2</td>
<td>(±50.7)</td>
<td>479.50</td>
<td>79.75</td>
<td>.660</td>
</tr>
<tr>
<td>/e/</td>
<td>구강 변형(+)</td>
<td>493.2</td>
<td>(±84.9)</td>
<td>496.00</td>
<td>124.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>구강 변형(-)</td>
<td>343.1</td>
<td>(±47.2)</td>
<td>341.50</td>
<td>78.50</td>
<td>.451</td>
</tr>
<tr>
<td>/o/</td>
<td>구강 변형(+)</td>
<td>359.0</td>
<td>(±73.5)</td>
<td>331.00</td>
<td>77.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>구강 변형(-)</td>
<td>292.9</td>
<td>(±43.6)</td>
<td>293.50</td>
<td>66.00</td>
<td>.730</td>
</tr>
<tr>
<td>/u/</td>
<td>구강 변형(+)</td>
<td>284.4</td>
<td>(±32.3)</td>
<td>283.00</td>
<td>48.50</td>
<td></td>
</tr>
</tbody>
</table>

j단위는 Hz. g평균(표준편차)

*p<.05, **p<.01
표 2. 구강 변형에 따른 모음의 F2에 대한 윌콕슨 부호 순위 검정

<table>
<thead>
<tr>
<th>모음</th>
<th>구강 변형</th>
<th>F2<sup>g</sup></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기술통계량</td>
<td>중위수</td>
<td>사분위수 범위</td>
</tr>
<tr>
<td>/a/</td>
<td>구강 변형(-) 1160.1(±73.9) 1158.5 0 121.75</td>
<td></td>
<td>.132</td>
</tr>
<tr>
<td></td>
<td>구강 변형(+) 1101.0(±96.9) 1103.0 0 209.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/i/</td>
<td>구강 변형(-) 2245.1(±141.1) 2261.0 0 207.75</td>
<td></td>
<td>.001**</td>
</tr>
<tr>
<td></td>
<td>구강 변형(+) 1618.2(±301.2) 1506.5 0 275.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td>구강 변형(-) 1939.7(±157.0) 1892.0 0 261.75</td>
<td></td>
<td>.001**</td>
</tr>
<tr>
<td></td>
<td>구강 변형(+) 1475.4(±125.4) 1483.5 0 241.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>구강 변형(-) 683.3(±58.5) 681.50 91.75</td>
<td></td>
<td>.177</td>
</tr>
<tr>
<td></td>
<td>구강 변형(+) 736.3(±91.8) 718.00 166.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/u/</td>
<td>구강 변형(-) 760.6(±78.3) 762.00 110.75</td>
<td></td>
<td>.109</td>
</tr>
<tr>
<td></td>
<td>구강 변형(+) 716.4(±94.7) 723.50 144.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*단위는 Hz. **평균(표준편차)
*p<.05, **p<.01
나. 구강 변형에 따른 jitter, shimmer, NHR 변화

Jitter(구강 변형이 일어난 경우=0.68±0.47, 일어나지 않은 경우=0.88±0.73; p=.158), shimmer(구강 변형이 일어난 경우=3.59±1.18, 일어나지 않은 경우=3.78±1.08; p=.433), NHR(구강 변형이 일어난 경우=0.13±0.02, 일어나지 않은 경우=0.13±0.04; p=.754)은 구강 변형에 따라 통계적으로 유의한 차이가 나타나지 않았다.(표 3, 표 4, 표 5)

표 3. 구강 변형에 따른 jitter에 대한 윌콕슨 부호 순위 검정

<table>
<thead>
<tr>
<th>구강 변형</th>
<th>jitter</th>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>구강 변형(-)</td>
<td>0.88</td>
<td>.62</td>
<td>0.76</td>
<td>.158</td>
</tr>
<tr>
<td>(±0.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>구강 변형(+)</td>
<td>0.68</td>
<td>.52</td>
<td>0.77</td>
<td>.158</td>
</tr>
<tr>
<td>(±0.47)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h단위는 %.

표 4. 구강 변형에 따른 shimmer에 대한 윌콕슨 부호 순위 검정

<table>
<thead>
<tr>
<th>구강 변형</th>
<th>shimmer</th>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>구강 변형(-)</td>
<td>3.78</td>
<td>3.33</td>
<td>1.31</td>
<td>.433</td>
</tr>
<tr>
<td>(±1.08)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>구강 변형(+)</td>
<td>3.59</td>
<td>3.28</td>
<td>1.96</td>
<td>.433</td>
</tr>
<tr>
<td>(±1.18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

h단위는 %.

표준편차.
표 5. 구강 변형에 따른 NHR에 대한 윌콕슨 부호 순위 검정

<table>
<thead>
<tr>
<th>구강 변형</th>
<th>NHR</th>
<th></th>
<th></th>
<th></th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>기술통계량</td>
<td>중위수</td>
<td>사분위수 범위</td>
<td></td>
<td></td>
</tr>
<tr>
<td>구강 변형(-)</td>
<td>0.13</td>
<td>.13</td>
<td>0.03</td>
<td>.754</td>
<td></td>
</tr>
<tr>
<td>(±0.04)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>구강 변형(+)</td>
<td>0.13</td>
<td>.13</td>
<td>0.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(±0.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

평균(±표준편차).
2. 실험 2

가. 인두강 변형에 따른 단모음에서의 제 1, 제 2 포먼트 변화

모음 /a/의 제 2 포먼트(후두개 낭 환자군=1061.0±32.5, 정상군=1115.8±71.2; p=.110), 모음 /i/의 제 1 포먼트(후두개 낭 환자군=271.9±34.7, 정상군=303.6±75.0; p=.488)와 제 2 포먼트(후두개 낭 환자군=1986.3±235.8, 정상군=2070.4±182.3; p=.287), 모음 /e/의 제 2 포먼트(후두개 낭 환자군=1705.7±170.8, 정상군=1757.6±206.4; p=.913), 모음 /o/의 제 1 포먼트(후두개 낭 환자군=412.3±51.5, 정상군=444.5±74.8; p=.287)와 제 2 포먼트(후두개 낭 환자군=714.6±70.2, 정상군=743.9±66.2; p=.360), 모음 /u/의 제 1 포먼트(후두개 낭 환자군=303.0±24.7, 정상군=319.6±40.9; p=.443)와 제 2 포먼트(후두개 낭 환자군=769.1±97.9, 정상군=744.4±60.8; p=.913)는 집단 간 통계적으로 유의한 차이가 나타나지 않았다.

반면, 모음 /a/의 제 1 포먼트(후두개 낭 환자군=627.4±69.5, 정상군=728.4±45.0; p=.002), 모음 /e/의 제 1 포먼트(후두개 낭 환자군=466.3±61.1, 정상군=524.4±64.6; p=.046)는 집단 간 통계적으로 유의한 차이가 나타났다. 모음 /a/, /e/의 제 1 포먼트는 후두개 낭 환자군이 정상군에 비해 유의미하게 낮았다.(표 6, 표 7)
표 6. 각 군 간 모음의 F1에 대한 맨-휘트니 검정

<table>
<thead>
<tr>
<th>모음</th>
<th>군</th>
<th>F1(^g)</th>
<th>기술통계량</th>
<th>중위수</th>
<th>사분위수</th>
<th>범위</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>정상군</td>
<td>728.4 (±45.0)</td>
<td>732.00</td>
<td>66.25</td>
<td>.002**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 남성</td>
<td>627.4 (±69.5)</td>
<td>648.00</td>
<td>121.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/a/</td>
<td>환자군</td>
<td>.488</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>정상군</td>
<td>303.6 (±75.0)</td>
<td>277.50</td>
<td>74.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 남성</td>
<td>271.9 (±34.7)</td>
<td>283.00</td>
<td>67.00</td>
<td>.488</td>
<td></td>
<td></td>
</tr>
<tr>
<td>/i/</td>
<td>환자군</td>
<td>.488</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>정상군</td>
<td>524.4 (±64.6)</td>
<td>527.00</td>
<td>43.50</td>
<td>.046*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 남성</td>
<td>466.3 (±61.1)</td>
<td>442.00</td>
<td>101.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/e/</td>
<td>환자군</td>
<td>.287</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>정상군</td>
<td>444.5 (±74.8)</td>
<td>434.00</td>
<td>122.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 남성</td>
<td>412.3 (±51.5)</td>
<td>394.00</td>
<td>90.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>/o/</td>
<td>환자군</td>
<td>.443</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>정상군</td>
<td>319.6 (±40.9)</td>
<td>312.00</td>
<td>67.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 남성</td>
<td>303.0 (±24.7)</td>
<td>311.00</td>
<td>36.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^f\)단위는 Hz. \(^g\)평균(표준편차)
*p<.05, **p<.01
표 7. 각 군 간 모음의 F2에 대한 맨-휘트니 검정

<table>
<thead>
<tr>
<th>모음</th>
<th>군</th>
<th>F2<sup>*</sup></th>
<th>기술통계량</th>
<th>중위수</th>
<th>사분위수 범위</th>
<th>p</th>
<th>단위는 Hz. *평균(±표준편차)</th>
</tr>
</thead>
<tbody>
<tr>
<td><a/></td>
<td>정상군</td>
<td>1115.8 (±71.2)</td>
<td>1134.00</td>
<td>94.75</td>
<td>.110</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 낭 환자군</td>
<td>1061.0 (±32.5)</td>
<td>1053.00</td>
<td>56.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><i/></td>
<td>정상군</td>
<td>2070.4 (±182.3)</td>
<td>2065.50</td>
<td>205.50</td>
<td>.287</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 낭 환자군</td>
<td>1986.3 (±235.8)</td>
<td>1947.00</td>
<td>306.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><e/></td>
<td>정상군</td>
<td>1757.6 (±206.4)</td>
<td>1707.00</td>
<td>146.50</td>
<td>.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 낭 환자군</td>
<td>1705.7 (±170.8)</td>
<td>1737.00</td>
<td>266.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><o/></td>
<td>정상군</td>
<td>743.9 (±66.2)</td>
<td>732.50</td>
<td>124.00</td>
<td>.360</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 낭 환자군</td>
<td>714.6 (±70.2)</td>
<td>725.00</td>
<td>133.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><u/></td>
<td>정상군</td>
<td>744.4 (±60.8)</td>
<td>732.00</td>
<td>93.50</td>
<td>.913</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>후두개 낭 환자군</td>
<td>769.1 (±97.9)</td>
<td>745.00</td>
<td>194.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>[]p<0.05, **p<0.01*
나. 인두강 변형에 따른 jitter, shimmer, NHR 변화

Jitter(후두개 낭 환자군=1.57±2.00, 정상군=0.62±0.25; p=.149), shimmer(후두개 낭 환자군=5.76±5.22, 정상군=3.73±0.97; p=.585), NHR (후두개 낭 환자군=0.19±0.15, 정상군=0.14±0.02; p=.799)은 집단 간 통계적으로 유의한 차이가 나타나지 않았다.(표 8, 표 9, 표 10)

표 8. 각 군 간 jitter\(^h\)에 대한 맨-휘트니 검정

<table>
<thead>
<tr>
<th>군</th>
<th>jitter(^g)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>정상군</td>
<td>0.62 (±0.25)</td>
<td>.58</td>
</tr>
<tr>
<td>후두개 낭 환자군</td>
<td>1.57 (±2.00)</td>
<td>.61</td>
</tr>
</tbody>
</table>

\(^h\)단위는 %.
\(^g\)평균(±표준편차).

표 9. 각 군 간 shimmer\(^h\)에 대한 맨-휘트니 검정

<table>
<thead>
<tr>
<th>군</th>
<th>shimmer(^g)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>정상군</td>
<td>3.73 (±0.97)</td>
<td>.585</td>
</tr>
<tr>
<td>후두개 낭 환자군</td>
<td>5.76 (±5.22)</td>
<td>.414</td>
</tr>
</tbody>
</table>

\(^h\)단위는 %.
\(^g\)평균(±표준편차).
표 10. 각 군 간 NHR에 대한 맨-휘트니 검정

<table>
<thead>
<tr>
<th>군</th>
<th>NHR^g</th>
<th>中위수</th>
<th>사분위수 범위</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>정상군</td>
<td>0.14</td>
<td>.14</td>
<td>0.02</td>
<td>.799</td>
</tr>
<tr>
<td>후두개 낮</td>
<td>0.19</td>
<td>.14</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>환자군</td>
<td>0.16</td>
<td>.14</td>
<td>0.02</td>
<td></td>
</tr>
</tbody>
</table>

^g평균(표준편차).

- 23 -
4. 신뢰도 분석 결과

가. 검사자 내 신뢰도

전체 자료를 무작위 순서로 단모음 /a/, /e/, /i/, /o/, /u/에서의 제 1, 제 2 포먼트, 모음 /a/ 연장 발성에서의 jitter, shimmer, NHR를 재측정한 값에 대해 피어슨 상관분석(Pearson correlation)을 실시한 결과, 통계적으로 유의한 상관관계를 나타냈다.(r=0.994, p<.01)

나. 검사자 간 신뢰도

전체 자료를 무작위 순서로 제 1검사자가 측정한 값과 언어재활사 1급 자격증을 소지한 제2검사자가 단모음 /a/, /e/, /i/, /o/, /u/에서의 제 1, 제 2 포먼트, 모음 /a/ 연장 발성에서의 jitter, shimmer, NHR를 측정한 값에 대해 피어슨 상관분석(Pearson correlation)을 실시한 결과, 통계적으로 유의한 상관관계를 나타냈다.(r=0.992, p<.01)
Ⅳ. 고찰

성도의 구조는 포먼트를 결정하는데 중요한 역할을 한다. 연령과 성별뿐만 아니라 설암, 편도염, 편도 비대, 후두개 낭과 같은 질환으로 인해 성도 변형이 발생할 수 있다. 성도 변형으로 인해 공명주파수 즉, 포먼트의 특징이 변화될 수 있지만, 이러한 변형이 포먼트 및 성도 공명기의 구조 및 기능에 어떠한 영향을 미치는지를 설명한 연구가 부족한 실정이다.

본 연구에서는 먼저 구강 변형에 따른 음향학적 특성의 변화를 살펴보기 위해 정상군 내에서 구강 변형을 일으키는 물체의 유무, 즉 구강 변형에 따라 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 유의한 차이가 나타나는지, 그리고 추가적으로 성도의 변형이 jitter, shimmer, NHR에 영향을 주는지 알아보았다. 분석된 결과를 통해 구강 변형에 따라 음향학적 특성에 유의한 차이가 있는지 알아보고, 그러한 차이가 성도 변형을 일으키는 물체(mass effect)로 인한 것인지 혹은 이러한 물체에 의한 성도 기관의 움직임(mobility) 변화로 인한 것인지를 성도의 좁힘점 이론과 관련하여 설명하고자 하였다.

제 1 포먼트는 인두강의 면적에 따라 달라지는데, 본 연구에서 모음 /i/의 제 1 포먼트는 구강 내 변형을 일으키는 물체가 있는 경우가 없는 경우에 비해 유의미하게 높았다. 모음 /i/는 폐모음에 속하고 정상적으로 발음할 때 혀와 하악이 상승하여 위, 아래 입술과 구강의 전반부가 좁아진다. 하지만 구강 변형을 일으키는 물체가 있을 때는 혀와 하악이 올라가지 못하고, 이로 인해 입술을 좁히는 움직임이 방해를 받게 된다. 구강 내 물체가 있을 때는 하악이 내려가기 때문에 제 1 포먼트의 고점인 인두강이 좁아져서 그 값이 증가한다. 또한 입술은 모든 공명주파수의 분산점에 해당하기 때문에 입술이 좁아지면 포먼트 주파수는 내려가지만 개방되면 포먼트 주파수는 올라간다. 따라서, 구강 내 물체가 있는 경우에는 없는 경우에 비해 제 1 포먼트 값이 높다는 것을 알 수 있었다. 이렇게 구강 내 물체가 있는 상황에서 모음 /i/를 발음할 때는 성도 기관 특이, 혀와 하악이 아래로 밀려서 인두강의 공간이 좁아지기 때문에 제 1 포먼트가 증가했다는 선행 연구의 결과와 유사하였다.
제 2 포먼트의 교점은 성문 및 구강 전반부에 인접하기 때문에 구강 전반부가 좁아지면 제 2 포먼트 값은 높아지지만 넓어지면 낮아진다. 본 연구에서 모음 /e/, /i/의 제 2 포먼트는 구강 내 변형을 일으키는 물체가 있는 경우가 없는 경우에 비해 유의미하게 낮았다. 이는 구강 내 물체로 인해 구강의 면적이 좁아지는 것이 아니라, 물체로 인해 혀의 상승 움직임이 방해를 받아서 구강의 면적을 좁혀주지 못한 것으로 해석할 수 있다. 이 결과는 구강 내 물체가 있는 상황에서 모음 /i/를 발음할 때는 혀의 상승 움직임이 방해를 받아서 구강의 면적을 좁혀주지 못했기 때문에 제 2 포먼트가 낮아졌다는 선행 연구의 결과와 유사하였다. 구강 변형에 따라 원순 모음 /o/, /u/의 제 1, 제 2 포먼트는 유의미한 차이가 나타나지 않았다. 원순 모음을 발음할 때는 입술이 앞으로 좁혀지기 때문에 성도의 길이가 길어진다. 또한 입술은 공명주파수의 분산점에 해당하기 때문에 입술이 좁아지면 포먼트 값이 감소하는 반면에 입술 사이 공간이 넓어지면 포먼트의 값은 증가한다. 따라서 성도 길이가 길어지고 입술 사이의 공간이 좁아지게 되면 일관적으로 모든 주파수가 낮아지는 것으로 해석할 수 있다.

본 연구에서는 인두강의 해부학적 변형에 따른 음향학적 특징의 변화를 분석하기 위해 정상군과 후두개 낭 환자군을 대상으로 집단 간 모음 /a/, /e/, /i/, /o/, /u/의 제 1, 제 2 포먼트에 유의한 차이가 나타나는지, 그리고 추가적으로 성도의 변형이 jitter, shimmer, NHR에 영향을 주는지 알아보았다. 분석된 결과를 통해 인두강의 변형 특히, 후두개 낭으로 인해 음향학적 변수에 유의한 차이가 있는지 알아보고, 그러한 차이가 성도 변형을 일으키는 후두개 낭(mass effect)으로 인한 것인지 혹은 이러한 후두개 낭에 의한 성도 기관의 움직임(mobility) 변화로 인한 것인지를 성도의 좁힘점 이론과 관련지어 설명하고자 하였다.

후두덮개는 혀의 후방 즉, 기저부와 인접해 있는데 다양한 혀 근육들 중에서도 이설근은 가장 큰 혀의 근육이며, 후두덮개와 인접한 혀 뒷부분의 대부분을 차지하고 있다. 이설근은 3개의 섬유로 이루어져 있는데 하부 섬유는 혀의 전방 움직임, 중간 섬유는 혀의 하방 움직임, 상부 섬유는 설첨(tongue tip)의 후하방 움직임을 담당한다. 모음 산출 시, 이설근 뿐만 아니라 다양한 혀의 근육들이 협응 과정을 거치기 때문에 이러한 근육들의 기능에 문제가 생기면 모음 산출 과정에 영향을 줄 수 있다. 본 연구에서 모음 /a/의 제 1
포먼트 값을 후두개 낭 환자군이 정상군에 비해 유의미하게 낮았다. 이는 모음 /a/를 발음할 때, 후두개 낭이 있음으로 인해 인두강의 면적이 좁아지는 것이 아니라 후두개 낭으로 인해 혀의 후방 움직임이 방해를 받게 되어 인두강을 좁혀주지 못한 것으로 해석할 수 있다. 모음 /e/의 제 1 포먼트도 후두개 낭 환자군이 정상군보다 유의미하게 낮았다. 이 또한 후두개 낭 환자군은 정상군에 비해 인두강 면적이 상대적으로 넓다는 것을 의미한다. 이는 모음 /e/도 혀의 후방 움직임을 필요로 하지만, 후두개 낭으로 인해 이러한 움직임이 방해를 받은 것으로 해석할 수 있다. 모음 /a/, /u/의 제 1, 제 2 포먼트는 유의미한 차이가 나타나지 않았다. 모음 /a/를 발음할 때는 입술이 앞으로 좁혀지기 때문에 성도의 길이가 길어진다. 또한 입술은 공명주파수의 분산점에 해당하기 때문에 입술이 좁아지면 포먼트의 일관적으로 값이 감소하는 반면에 입술 사이의 공간이 넓어지면 포먼트의 값은 증가하게 된다. 따라서 성도 길이가 길어지고 입술 사이의 공간이 좁아지면 입술 사이의 공간이 좁아지게 되면 일관적으로 모든 주파수가 내려가는 것으로 해석할 수 있다.10 인두강의 해부학적 변형 중에서도 편도주의근(genioglossus muscle)과 구개설근(palatoglossus muscle)의 기능을 방해하여 모음 /i/의 제 1 포먼트가 유의미하게 감소하고 모음 /a/의 제 2 포먼트가 유의미하게 증가하는 것으로 나타났다.2 편도절제술 전후에는 모음 /a/, /i/의 제 1, 제 2 포먼트는 유의미한 차이가 나타나지 않는 것으로 나타났다.4 후두개 낭으로 인한 음향학적 변화를 살펴본 선행 연구가 진행된 바가 없기 때문에 모음의 포먼트 변화에 대한 결과를 직접 비교해볼 수는 없었다. 하지만 선행 연구와 본 연구의 결과는 포먼트 및 성도 공명기의 구조 및 기능은 성도 질환에 따라 다양하게 변화할 수 있다는 것을 시사한다.

Jitter, shimmer, NHR은 구강 변형 유무에 따라 유의미한 차이가 나타나지 않았으며, 정상인과 후두개 낭 환자 집단 간에도 유의미한 차이가 나타나지 않았다. Jitter는 분석된 음성 내의 주기 간 음도의 변이성과 관련이 있으며, shimmer는 주기 간 정점 강도의 변이성과 관련이 있다.27 음도 및 장도의 변이성이 커지면 jitter와 shimmer의 값이 높아지며 이는 음성의 주기성이 떨어지는 즉, 음성의 비주기성이 증가하는 것을 의미한다. NHR은 배음 에너지와 소음 에너지의 평균 비율을 의미하며 분석된 신호의 소음 정도와 관련이 있으며,4 분석된 신호의 소음 정도가 높으면 NHR의 값이 높아진다. 이러한 jitter, shimmer, NHR은 성태에 질환이 없이 성대의 두께, 길이, 긴장 등이 일정하
게 유지되면 아주 주기성에 가까운 음성이 산출될 수 있다. 본 연구의 결과는 비대한 아데노이드 구개 편두질출술(adenotonsillectomy) 이후, 거칠고 선물소리가 줄어들어 jitter, shimmer, NHR가 유의미하게 감소한다는 선행 연구의 결과와 다른 것으로 나타났다. 이는 본 연구의 경우에는 후두개 낭 환자의 치료 전후를 비교한 것이 아니라 집단 간 비교를 통해 분석된 결과이후 두개 낭과 편두 및 아데노이드 질환의 병소 위치와 크기가 다르기 때문이라고 생각할 수 있다. 하지만 무엇보다도 본 선행 연구는 이비인후과 전문의가 성대 질환 유무를 관찰하지 않았다는 점에서 본 연구와 큰 차이점이 있다. 본 연구에 참여한 대상자들 모두 성대질환이 없었기 때문에 성도 변형에 따라 jitter, shimmer, NHR가 유의미한 차이가 나지 않은 것으로 해석할 수 있다.

본 연구의 임상적 의의는 다음과 같이 생각해 볼 수 있다. 조직의 변이, 염증 효과, 운동 이상증 등 많은 요소들이 성도 질환 환자들의 음성 변화에 대해 설명해주지만, 이러한 요소들은 변이가 많고 특히 정량화시키기는 어렵다. 하지만 본 연구는 성도의 해부학적 변형으로 인한 음성 변화를 객관적으로 분석하였다. 또한 본 연구의 결과를 통해 성도 변형이 포먼트 및 성도 공명기의 구조 및 기능에 어떠한 영향을 미치는지를 알 수 있었다. 마지막으로 본 연구는 성도 질환으로 인한 음성학적 변화를 살펴보는 연구에서 활용할 수 있는 기초 자료로 활용될 수 있을 것이다.

마지막으로 본 연구가 지니는 제한점과 후속 연구를 위한 제언은 다음과 같다. 첫째, 본 연구에서는 후두개 낭의 치료 전후에 따른 음성학적 특성의 변화를 고려하지 못하였다. 따라서 이후 연구에서는 후두개 낭 치료 전후에 따른 음성학적 특성의 변화를 알아보고 후두개 낭이 음성학적 특성에 미치는 영향을 신뢰롭게 분석할 필요가 있다.

둘째, 본 연구에서는 x-ray와 같은 영상 기법을 이용하여 성도의 실제 길이 및 단면적을 측정하지 않았기 때문에, 이후 연구에서는 영상 기법을 통해 성도의 질환이 성도 길이 및 단면적에 변화를 가지는지를 알아보는 실험이 필요할 것으로 생각된다.

셋째, 성도 변형을 일으키는 물체의 크기와 위치, 그리고 후두개 낭의 크기에 따라 성도공명 특성은 달라질 수 있다. 추후 연구에서는 많은 사람들을 대상으로 하여 크기 및 위치에 따른 공명 특성의 변화를 살펴보는 연구가 필요할 것으로 생각된다.
넷째, 미묘한 음성의 변화를 임상가가 지각하지 못할지라도, 전문적인 음성 사용자들은 미묘한 음성 변화가 심리학적, 그리고 직업적으로 큰 영향을 미칠 수 있다. 따라서 이후 연구에서는 성도 질환을 가지고 있는 전문적인 음성 사용자들을 대상으로 하여, 치료 전후에 따른 대상자들의 주관적 평가와 음향학적 평가 간의 상관관계를 살펴보는 연구가 필요할 것으로 생각된다.
Ⅴ. 결론

본 연구는 정상군과 후두개 낭 환자군을 대상으로 하여 성도 변형으로 인해 음향학적 특징의 변화가 있는지 알아보고, 그러한 차이가 성도 변형을 일으키는 요인(mass effect)으로 인한 것인지 혹은 이러한 요인에 의한 성도 기관의 움직임(mobility) 변화로 인한 것인지를 성도의 좁힘점 이론과 관련지어 설명하고자 하였다.

연구 결과는 다음과 같다. 첫째, 정상군을 대상으로 하여 구강 변형에 따른 음성 변화의 음향학적 특징을 살펴본 결과, 구강 변형이 일어난 경우에는 일어나지 않았을 때에 비해 모음 /i/의 F1이 유의미하게 높게 나타났다. 이는 폐모음 /i/를 발음할 때는 입술이 좁아져야하지만 구강 변형을 일으키는 물체가 있을 때는 분산점인 입술을 좁혀주지 못하기 때문이다. 반면에 모음 /i/, /e/의 F2는 유의미하게 낮게 나타났는데, 이는 물체로 인해 구강의 전반부가 좁아지지 않기 아니로 물체로 인해 혀의 상승 및 전방 움직임이 방해를 받고, 결론적으로 구강의 전반부를 좁혀주지 못하기 때문이라고 해석할 수 있다.

둘째, 정상군과 후두개 낭 환자군을 대상으로 하여 인두강 변형에 따른 음성 변화의 음향학적 특징을 살펴본 결과, 후두개 낭 환자군은 정상군에 비해 모음 /a/, /e/의 F1이 유의미하게 낮게 나타났다. 이는 후두개 낭이 있을 때, 인두강이 좁아지는 것이 아니라 후두개 낭으로 인해 혀의 후하방 움직임이 방해를 받고, 결과적으로 인두강을 좁혀주지 못하기 때문이라고 해석할 수 있다.

셋째, 구강 및 인두강의 변형에 따라 jitter, shimmer, NHR는 유의미한 차이가 나타나지 않았다. 이는 본 실험에 참여한 대상자들의 성대에는 이상 소견이 없었으며, 환자군도 후두개 낭 이외에는 이상 소견을 보이지 않았기 때문이라고 해석할 수 있다.

본 연구의 결과 자료는 성도에 발생할 수 있는 질환으로 인한 음향학적 변화를 살펴보는 연구에서 활용할 수 있다. 또한 이후 연구를 통해 성도질환의 치료 전후에 따른 음향학적 특징의 변화 살펴볼 수 있고, 영상 기법을 병행하여 성도의 길이 및 단면적을 객관적으로 측정하여 음향학적 특징과 관련성이 있는지 살펴볼 수 있을 것이다.
참고문헌

25. 최성희, 최철희. 음성 신호 분류에 따른 장애 음성의 변동률 분석, 비선형 동적 분석, 캡스트립 분석의 유용성. 말소리와 음성과학 2014;6(3) 63-72.
30. 김영수, 김근호, 김종열, 장준수. 연령 및 성별에 따른 한국인 단모음 포먼트 비교에 관한 연구. 말소리와 음성과학 2013;5(1) 73-80.
Abstract

Acoustic characteristics of the voice changes associated with anatomical deformation of the vocal tract

Yeon Woo Lee

The Graduate Program in Speech and Language Pathology, Yonsei University

(Directed by Professor HyangHee Kim)

Tongue cancer, Ludwig angina, Tonsillitis, Tonsillar cancer, Tonsillar hypertrophy, epiglottic cyst, laryngeal cancer cause the anatomical deformation of the vocal tract. If symptoms are serious, respiratory problem may occur, resulting in "hot potato voice" or "muffled voice". When the voice is produced, a resonance occurs because a specific frequency is passed according to vocal tract's shape and size, this specific frequency is termed as formant. Anatomical variations of the vocal tract can alter the characteristics of the formant related resonances, which it may bring about a change in the voice, so an acoustic evaluation gives great help to prevent critical situation resulted from Anatomical variations of the vocal tract. Although there are many evaluations to know the presence of voice problems, severity, diagnosis and effect of treatment, because there are various factors affecting the voice, the diagnosis of the speech and evaluation should be performed multidimensionally. Purpose of this study is to analyze the acoustic characteristics of the voice changes associated with anatomical deformation of the vocal tract.

In this study, analyses were done on F1 and F2 in vowel articulation, jitter, shimmer, NHR to investigate acoustic characteristics of the voice
change due to a oral cavity and pharyngeal cavity's deformation. Normal group (14 subjects) participate in the oral cavity's deformation and acoustical analysis is performed according to the presence or absence of a object causing the oral cavity's deformation. Normal group (14 subjects) and epiglottic cyst group (7 subjects) participate in the pharyngeal cavity's deformation to compare two groups.

Results are as follows. First, the F1 of vowel /i/ was significantly high but, the F2 of vowel /i/, /e/ was significantly low in presence of the object causing the oral cavity's deformation. Second, the F1 of vowel /a/, /e/ was significantly low in the epiglottic group. Jitter, shimmer, NHR did not show significant difference in the two experiments.

In other words, the F1, F2 of vowels showed a significant difference in the oral cavity and pharyngeal cavity's deformation. This means that anatomical deformation of the vocal tract changes an acoustic characteristics. On the other hand, jitter, shimmer, NHR did not show significant difference in the two experiments. But, the diagnosis of the speech and evaluation should be performed multidimensionally. Consequently, It is expected that acoustic analysis can be utilized for prediction of vocal tract's disease, diagnosis, effect of treatment.

Key Words: vocal tract, epiglottic cyst, vowel, formant, F1, F2, jitter, shimmer, NHR