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Abstract 

Function of STAT5A  

in Osteogenic Differentiation and Bone Formation 

 

Kyoung Mi Lee 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

 (Directed by Professor Jin Woo Lee) 

 
 

The regulation of osteogenesis in human bone marrow-derived stromal cells 

(hBMSCs) is important for bone formation. Despite advances in understanding the 

molecular mechanism of osteogenesis, crucial modulators in a fracture healing are not 

well investigated. Signal transducer and activator of transcription 5 (STAT5A) is vital 

for proliferation, differentiation, and survival of various cells. To investigate the role 

of STAT5A in osteogenesis, I performed knockdown of Stat5a using small interfering 

RNA and STAT5 inhibitor. The suppression of STAT5A increased the osteogenic 

differentiation and distal-less homeobox 5 (DLX5) protein expression, whereas the 

inhibition of STAT5B only partially increased differentiation. Subsequent gene 

expression profiling and RT-qPCR analyses of STAT5A inhibition led to 

transcriptional activity of DLX5, osteogenic transcription factor, in osteogenesis of 

hBMSCs. Chromatin immune-precipitation (ChIP) assays analyzing the 
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corresponding gene loci identified STAT5A binding sites on the promoter region of 

DLX5. I propose that STAT5A control osteogenesis throughout regulating 

transcription level of DLX5. To better characterize the contribution of STAT5A in 

bone formation, I generated mice with deletion of Stat5a (Stat5a -/- mice) and analyzed 

their bone phenotype. Stat5-/- mice exhibited increased bone-formation compared to 

wild type mice. And, the expression level of DLX5 protein was increased in mBMSCs 

of Stat5-/- compared to wild type mice. To evaluate the role of osteoblast activity of 

Stat5-/- mice in bone repair, femoral fracture healing was compared with wild-type 

control mice. With respect to fracture healing, total callus of Stat5-/- mice was larger 

than wild-type mice fractures at post fracture 2 weeks. Surprisingly, soft callus of 

Stat5-/- mice was organized rapidly to hard bone at post fracture 4 weeks. In summary, 

I show that the suppression of STAT5A activates distal-less homeobox 5 (DLX5) and 

enhances osteogenesis in vitro and in vivo. Stat5a knockout (Stat5a -/-) mice are 

protected from age-related osteoporosis, caused by loss of bone density and strength. 

In a murine model of fracture repair, lack of Stat5a leads to significant enhancement 

in a bone healing process by stimulating the formation of new bones. Cartilaginous 

callus of Stat5a -/- mice organized to bony callus faster than that of wild type mice. 

Taken together, these findings suggest that STAT5A plays a role in osteogenesis and 

bone formation via modulation of DLX5. 

 

 

Key words: osteogenesis, STAT5A, DLX5, bone formation, transcriptional 

activity, femoral fracture healing 
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Ⅰ. INTRODUCTION 

Human bone-marrow mesenchymal stromal cells (hBMSCs) can differentiate to 

osteoblast, chondrocyte, adipocyte, and tenocyte by the culture conditions. Especially, 

osteoblast differentiation is important to increase bone mass. Also, the proper balance 

between osteogenesis and adiopogenesis, which are tightly regulated by proteins, 

hormones, and other genes1-5, is crucial to maintain bone homeostasis. However, if the 

regulation is disrupted, it can lead osteoporosis6. 

The osteogenic differentiation of hBMSCs is well characterized according to the 

timely expressed genes such as alkaline phosphatase (ALP), runt-related transcription 

factor 2 (RUNX2), distal-less homeobox 5 (DLX5), osterix (OSX) and osteocalcin 

(OCN) followed by extracellular matrix synthesis and mineralization7,8. RUNX2 has 

been characterized as the master transcription factor of osteogenic differentiation and 

bone formation9,10. Another transcription factor, DLX5, is expressed in all bones and 
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differentiating osteoblasts. DLX5 is an important regulator for the development of 

mineralized tissues because it induces expression of RUNX2 in BMP-signaling 

pathway11,12. DLX5 also is related to osteoblast maturation12 and Dlx5-/- mice has 

severe craniofacial abnormalities and show delayed ossification of dermatocranial 

bones13. It suggests that Dlx5 gene may plays a role in bone formation and fracture 

healing.  

The signal transducers and activators of transcription (STAT) family plays 

important roles in cell proliferation, differentiation, and survival by cytokine, growth 

factor, and hormone reaction14,15. Like other STAT family members, STAT5 was 

originally identified as a cytosolic signaling molecule involved in proliferation, 

differentiation and apoptosis in cancer cells16,17. After the stimulation of various 

cytokines, STAT5 is phosphorylated and dimerized18,19. STAT5 dimer is translocated 

into the nucleus and bind to interferon-γ activated sequence (GAS) motifs followed 

by transcription of target genes15,20,21. There are two isoforms of STAT5 which are 

STAT5A and STAT5B. Interestingly, STAT5A and STAT5B are encoded by separate 

genes, but the proteins are 90% identical at the amino acid levels18. They have distinct 

functions, as revealed by several in vivo studies22,23. Recently, STAT5 was found to 

play as negative regulator of the bone-resorbing function in osteoclasts in vitro and in 

vivo24. One study reported that STAT5-RUNX2 interaction promotes the osteoblast 

differentiation in vitro. However, there was no report to distinguish isoforms of STAT5 

in osteoblast differentiation. Previously, I demonstrated that STAT5A plays a major 

role in adipogenesis of hBMSCs and STAT5B has only a supportive function25, 

suggesting that STAT5A plays an essential role for a bone homeostasis via the balance 
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between osteogenesis and adipogenesis. Here I focused on the role of STAT5A in 

osteoblasts to clarify which STAT5 isoform contributes to the osteoblast 

differentiation and provide therapeutic potentials in bone diseases.  

In this study, I have found that STAT5A play an important role in bone formation 

and regeneration. I provide evidences that inhibition of STAT5A promotes osteoblast 

differentiation and bone formation through the activation of DLX5 signaling. STAT5A 

deletion significantly decreased bone loss in a murine age-related osteoporosis model. 

Moreover, in a murine fracture model, I show that STAT5A deletion enhances a bone 

healing by stimulating the new bone formation. These findings reveal the inhibitory 

function of STAT5A in osteogenesis, suggesting a therapeutic potential of STAT5A 

inhibition in age-related osteoporosis and fracture healing. 
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Ⅱ. MATERIALS AND METHODS  

 

1. Cell culture and differentiation condition 

Human bone marrow derived MSCs (hBMSCs) were taken from the posterior iliac 

crests of 10 adult donors aged 21-51 years, after receiving approval from the 

Institutional Review Board (IRB). hBMSCs were selected by their natural tendency 

to adhere to the culture dish. The primary hBMSCs were cultured in growth medium, 

Dulbecco’s Modified Eagle’s Medium - low glucose (DMEM-LG; Gibco, Carlsbad, 

CA, USA) with 10% fetal bovine serum (FBS; Gibco), 1% antibiotic- antimycotic 

solution (Invitrogen, Grand Island, NY, USA) and the confluence was achieved within 

7 days in 5% CO2 at 37°C. For osteogenesis, cells were cultured in DMEM-LG with 

1 μM dexamethasone (Sigma, St. Louis, MO, USA), 10 mM β-glycerophosphate 

(Sigma) and 50 μM ascorbic acid (Sigma) for 14 days. Mouse bone marrow derived 

MSCs (mBMSCs) have been isolated from femurs and tibias of 3-5 mice at 10-30 

weeks old. mBMSCs were cultured in growth medium (α- Minimum Essential 

Medium (α-MEM, Gibco) with 10 % FBS, 1 % antibiotic antimycotic solution, and 2 

mM L-glutamine (Invitrogen, Carlsbad, CA, USA) in 5% CO2 at 37°C26. To induce 

osteogenic differentiation the cells were cultured in growth medium with 10 mM β- 

glycerophosphate and 50 μM ascorbic acid for 10 days. mBMSCs were induced for 

the adipogenic differentiation with DMEM-high glucose (DMEM-HG, Gibco) 

medium containing 10% FBS, 1% antibiotic antimycotic solution, 1 μM insulin 

(Roche Diagnostics, Rotkreuz, Switzerland), 1 mM dexamethasone, and 0.5 mM 3-
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isobutyl-1-methylxanthine (IBMX, Sigma) until 2 days. Then, the cells were cultured 

in DMEM-HG with 10% FBS and 1 μM insulin for 2 days and every other day 

cultured in DMEM-HG with 10% FBS and 1% antibiotic antimycotic solution for 21 

days. For osteoclastogenesis, mice bone marrow monocyte cells (mBMMs) were 

cultured for 3-4 days in α- MEM containing 15 ng/ml mRANKL (R&D systems, 

Minneapolis, MN, USA) and 40 ng/ml mMCSF (R&D systems)27.  

 

2. Plasmid constructs  

Recombinant plasmids of pcDNA-mStat5a and pcDNA-mStat5b were kindly 

gifted from Dr. Hiroko Yamashita (Nagoya City University, Nagoya, Japan). pcDNA-

hSTAT5A, pcDNA-hSTAT5B, and pcDNA-hDLX5 were constructed by amplifying 

each coding regions from cDNA of HeLa cells. And all promoter vectors were 

obtained with PCR of human genomic DNA. Human DLX5 and STAT5A promoter 

region spanning -2208/+ 142 bp and - 2121/+ 88 bp were inserted into pGL3 basic 

vector (Addgene, Cambridge, MA, USA) and named pGL-DLX5 Full and pGL-

STAT5A, respectively. pGL-DLX5 Del1 to pGL-DLX5 Del4, containing 5’ serial 

deletions fragments of the DLX5 promoter, were cloned by amplifying the regions 

from - 2003 to + 142, - 1751 to + 142, - 1254 to + 142, and - 645 to + 142 bp, 

respectively. (Fig. 1). 
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Figure 1. A schematic design for predicted STAT5A binding site on DLX5 

promoter and DLX5 promoter deletion constructs. For a ChIP assay, STAT5A 

binding sequence (*) on DLX5 promoter region was predicted using the TESS 

program (upper). For the promoter activity analysis, 5’ truncated - DLX5 promoter-

luciferase constructs were generated (bottom). 
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3. Gene transfection and luciferase reporter assay  

Recombinant plasmids were transfected into hBMSCs using lipofectamine LTX 

and plus reagent (Invitrogen) according to the manufacturer’s protocol. Then, the 

medium was replaced with 2 ml DMEM-LG with 10% FBS and 1% antibiotic 

antimycotic solution or osteogenic medium. After 24 hrs, the cells were lysed with 

200 µl of 1× passive lysis buffer (Promega, Madison, WI, USA) per tube, and cell 

debris was removed. Luciferase activity was measured by the dual-luciferase reporter 

assay kit (Promega). Relative luciferase activity were normalized by renilla activities 

to adjust transfection efficiency. The assays were performed at least three times.  

  

4. Inhibition of STAT5A and STAT5B 

Synthetic siRNAs for STAT5A and STAT5B mRNA were purchased from Bioneer 

(Daejeon, South Korea). The 80% confluence hBMSCs were transfected with each 

siRNA by lipofectamine LTX (Invitrogen). After 36 hrs,   the cells were collected 

and prepared for analysis. The silencing effects of the siSTAT5A and siSTAT5B were 

checked by reduced protein expression of STAT5A and STAT5B. The negative control 

duplexes (Bioneer, Korea) were used as a negative control. A STAT5 inhibitor (sc-

355979) was purchased from Santa Cruz Biotechnology (Dallas, TX, USA) 

 

5. Isolation of mRNA and quantitative RT- PCR analysis 

Total RNA was isolated by the RNeasy Mini Kit (Qiagen, Venlo, Netherlands) 

according to the protocol by the manufacturer. For quantitative RT-PCR, cDNA was 

synthesized by oligo dT18 primer (Invitrogen) on the isolated RNA as a template and 
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Omniscript Reverse-Transcription Kit (Qiagen) according to manufacturer’s 

instructions. And, the RT- PCR was performed using 2x qPCRBIO SyGreen Mix Hi-

Rox (PCR Biosystems, London, UK) and analyzed by ABI STEPONE PLUS system 

(ABI, Carlsbad, CA, USA). All primers were purchased from Bioneer. The relative 

expression of each gene was normalized by GAPDH expression. The specific primer 

pairs are shown in Table 1 and 2. All reactions have been performed in triplicate. 

Relative expression levels and S.D. values were evaluated by the comparative method. 

 

Table 1. A list of primers used for RT-PCR for human osteoblast 

 related genes in this study 

Gene symbol Sequences (5'--> 3') 

STAT5A Forward CAGTGGTTTGACGGGGTGAT 
Reverse GTCGTGGGCCTGTTGCTTAT 

STAT5B Forward ACTGCTAAAGCTGTTGATGGATAC 
Reverse TGAGTCAGGGTTCTGTGGGTA 

DLX5 Forward GAGTAGGTGTCCCGCCTCAGAACCC 
Reverse CCAACCAGCCAGAGAAAGAA 

RUNX2 Forward TACAAACCATACCCAGTCCCTGTTT 
Reverse AGTGCTCTAACCACAGTCCATGCA 

BSP Forward ATAC CATCTCACACCAGTTAGAATG 
Reverse AACAGCGTAAAAGTGTTCCTATTTC 

GAPDH Forward CTGCTGATGCCCCCATGTTC 
Reverse ACCTTGGCCAGGGGTGCTAA 
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Table 2. A list of primers used for RT-PCR for mice genes in this study 

Gene symbol Sequences (5'--> 3') 

Stat5a 
Forward ATGGGGA CTATGATC CAGGC 

Reverse CCCAGCTTGATCTTCAGCAA 

Stat5b 
Forward GGACTCCGTCCTTGATACCG 
Reverse TCCATCGTGTCTTCCAGATCG 

Dlx5 
Forward GCTAGATGGGCTACTTTCTCTT 

Reverse GCGTTCAAACATCCCCGTATGA 

Alp 
Forward CACAATATCAAGGATATCGACGTGA 

Reverse ACATCAGTTCTGTTCTTCGGGTACA 

Bsp 
Forward CCGGCCACGCTACTTTCTT 

Reverse TGGACTGGAAACCGTTTCAGA 

Opn 
Forward GCCGAGGTGATAGTGTGGTT 

Reverse TGAGGTGATGTCCTCGTCTG 

Ocn 
Forward AGCAAAGGTGCAGCCTTTGT 

Reverse CTTCACTACCTCGCTGCCCT 

Pparγ 
Forward GAAACTCTGGGAGATTCTCCT 

Reverse CAGAGCTGATTCCGAAGTTGG 

Adiponectin 
Forward AGCCGCTTATATGTATCGCTCA 
Reverse TGCCGTCATAATGATTCTGTTGG 

Leptin 
Forward AAGAAGATCCCAGGGAGGAA 
Reverse TGATGAGGGTTTTGGTGTCA 

Opg 
Forward CGGAAACAGAGAAGCCACGCAA 
Reverse CTGTCCACCAAAACACTCAGCC 

Rankl 
Forward CAGCATCGCTCTGTTCCTGTA 
Reverse CTGCGTTTTCATGGAGTCTCA 

Gapdh 
Forward GTGTTCCTACCCCCAATGTGT 
Reverse ATTGTCATACCAGGAAATGAGCTT 
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6. Western blot analysis and antibodies  

Collected cells were washed 2 times with 1X PBS and lysed by the 100 µl of 

whole cell lysis buffer (60 mM Tris-HCl, pH 6.8, 1% SDS) for 10 min at 100°C. 

Collected supernatants, followed by centrifugation at 13,000 rpm for 10 min, were 

quantified using a BCA protein assay kit (Thermo Scientific, Rockford, IL, USA). For 

western blot analysis, a total of 25 µg protein were separated on the 10% SDS- PAGE 

in reducing condition. Subsequently, the proteins were transferred onto 

Polyvinylidene difluoride (PVDF) membrane (Amersham, Pharmacia, Piscataway, NJ, 

USA) in transfer buffer (1.4% glycine, 20% methanol and 25 mM Tris-HCl, pH 8.3 

for 90 min at 70 V. After that, membranes were incubated in blocking solution [1X 

TBST (50 mM Tris-HCl, 150 mM NaCl, and 0.1 % Tween- 20) contained 5% 

skimmed milks] for 1 hr at room temperature. And then, blocked membranes were 

incubated in 1% skim milk solution including primary antibodies for overnight at 4°C. 

Membranes were washed 3 times with 1X TBST followed by incubation with 

secondary antibodies for 1 hr at room temperature. Primary antibodies used for 

blotting were anti-STAT5A (1: 1000, Abcam, Cambridge, UK), anti-STAT5B (1: 

1000, Abcam), anti-DLX5 (1: 500, Abcam), and anti-Runx2 (1: 1000, Millipore, 

Molsheim, France). And all reactions were visualized by autoradiography using the 

ECL Plus and ECL Western Blotting detection systems (Amersham BioSciences, 

Buckinghamshire, UK). And signal intensities were determined by densitometry 

analysis using the image J program.  
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7. Chromatin immunoprecipitation (ChIP) analysis  

ChIP analysis was performed using ChIP assay kit (Upstate Biotechnology, 

Charlottesville, VA, USA) and followed the protocol of kit manual. Briefly, hBMSCs 

were induced to osteoblast for 3 days and the differentiated cells were cross-linked 

with 1% formaldehyde solution for 10 min at room temperature. The cross-linked cells 

were lysed with SDS lysis buffer and sonicated. The DNA-protein complexes were 

bound with antibody against STAT5A (Abcam, 1:1000) and the immune complexes 

were collected by binding with a protein A-agarose for overnight at 4℃. After 

washing the complexes with 1X PBS, DNA was extracted by phenol/chloroform 

alcohol precipitation and used as the DNA templates for amplifying the DNA 

fragments. The specific primer pairs for DLX5 promoter are shown in Table 3.  

 

Table 3. Specific primer sequences for ChIP analysis 

Primer name Sequences (5'--> 3') 

Pro 1 
Forward CTAGCAAGCAGTTTGCAACC 
Reverse GGCGAATGAAGCATTCACAC 

Pro 2 
Forward TACTCCATCGCTCCCAACTG 
Reverse GGTTGCAAACTGCTTGCTAG 

Pro 3 
Forward CCCTCCTTTTGTTTACTTTGG, 
Reverse CAGTTGGGAGCGATGGAGTA 

Pro 4 
Forward CATGCAGGAGGATTACCT 
Reverse CAAATGTCCAGAACCTTTTCAG 

Pro 5 
Forward AGCAATGGAGAA GCAAGATACC 
Reverse GCAGGTAATCCTCCTGCATG 
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8. Alkaline phosphatase (ALP) staining and activity 

The mBMSCs were fixed in a solution of citrate working solution: acetone (2:3, 

v/v) for 30 sec and washed in distilled water for 1 min. ALP staining was performed 

with a fast violet B salt kit (Sigma Aldrich). The cells were then placed in an ALP 

staining solution for 30 min and washed 2 times with distilled water. ALP activity of 

mBMSC was determined by a colorimetric assay at day 0. The cells were washed 2 

times with ice-cold PBS and harvested 0.5 ml 50 mM Tris–HCl, pH 7.6. After 

sonication and centrifugation for 15 min at 12000 rpm. Alp activity of the supernatant 

was measured using p-nitrophenylphosphate released per min per µg total protein at 

405nm. Total cellular protein amount was determined using a BCA assay kit. 

 

9. Von Kossa and Alizarin red S staining  

Osteogenic differentiated cells were washed 2 times with PBS and fixed in a 

solution of acetone: methanol (1:1, v/v) and 70% ethanol for von kossa and alizarin 

red S staining, respectively. And then, the cells were washed with distilled water 

several times and stained with 3% silver nitrate solution and 2% Alizarin red S 

solution for 30 min, respectively. Destaining of the alizarin red S samples were eluted 

by 10% (weight volume) cetylpyridinium chloride for 30 min at room temperature. 

And then, the supernatants were measured in a microplate reader at A595 nm. 
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10. Animals 

Stat5a general knockout mice (C57BL/6 background) were obtained from Lothar 

Hennighausen Laboratory (Bethesda, Maryland, USA).  The deletion of the Stat5a 

gene was determined by PCR around the substituted neomycin gene site using the 

specific primer. The primer pairs are shown in Table 4. The littermates of Stat5a-/- 

mice were generated by intercrossing Stat5 Ht (Stat5a+/-) male mice with Stat5 Ht 

(Stat5a+/-) female mice. All experiments were performed in Animal Care center and 

controlled under AAALAC International (Association for Assessment and 

Accreditation of Laboratory Animal Care International) in Yonsei University College 

of Medicine, Korea. The protocol was approved by the Committee on the Ethics of 

Animal Experiments of Yonsei University College of Medicine (Permit Number: 

2013-0401, 2014-0033). 

 

 

Table 4. The primer sequence for genotyping of Stat5a-/- mice 

Gene symbol  Sequences (5'--> 3') 

Stat5a 
Forward CTGGATTGACGTTTCTTACCTG 
Reverse TGGAGTCAACTAGTCTGTCTCT 

Neo 
Forward AGAGGCTATTCGGCTATGACTG 
Reverse TTCGTCCAGATCATCCTGATC 
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11. Micro CT analysis  

I have dissected femurs without soft tissue from mice and fixed them in 70 % 

ethanol for 24 hrs at room temperature. The fixed femurs were analyzed by high-

resolution μCT (Skyscan-1076). The image reconstruction and analysis were 

performed using NRecon v 1.6.6.0 and CTAn v 1.13.2.1, respectively. The parameters 

of the trabecular bone in the epiphysis were analyzed using 3D-model visualization 

software CTVol v 2.0. The acquisition setting conditions were followed by X-ray 

source voltage 70kVp and current 140μA. And, beam hardening reduction depended 

on a 0.5mm thick aluminium filter. The pixel size was 18um, exposure time 14.7sec, 

the rotation step 0.5°, full rotation over 360°. The quantitative analysis region of bone 

parameters were fixed at 1.7mm part under the growth plate. The 3D bone parameters 

of 10 weeks mice analyzed included: TV (total tissue volume; contains both trabecular 

and cortical bone), BV/TV (trabecular bone volume per tissue volume), Tb. N 

(trabecular number), Tb. Th (trabecular thickness), Tb. Sp (trabecular separation), 

BMD (bone mineral density), Bone volume (cortical bone volume), Cs. Th (cortical 

crossectional thickness), and Cs. area (cortical crossectional area). 

 

12. Murine fracture model 

A standardized mid-diaphyseal fracture was induced in 24 wild-type mice and 24 

Stat5a-/- 6 week old mice. Mice were anesthetized with the Zoretil® (30 mg per body 

weight) / Rompon® (10 mg per kg body weight) by intraperitoneal injection and the 

right hind legs were shaved and disinfected. The femoral condyles were exposed 

through an incision and the femur was severed in the middle with a mess. The severed 
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femur was fixed by an intramedullary pin with diameter of 0.8mm. Then, the surgical 

wound was cleaned using physiological saline and closed by suture. Immediately 

after fracture, I monitored the surgical condition with micro CT (Fig. 2). The mice 

were killed at 2 and 4 weeks (n=16 and n=32 per time point, respectively) after 

fracture. There were no complications and animal death during the surgery and post-

operative management except for slight swelling at the surgical site. Sixteen mice (8 

in Stat5a-/-group and 8 in wild group) at 4 weeks point were used for mechanical test 

and the other (32 in each group) were used for BMD measurement (at each time 

point), micro-CT analysis of callus formation and mineralization (at each time point). 

The calcified callus volume was determined by subtracting the cortical bone volume 

from the total volume. Before these examinations, the femurs were extracted and the 

intramedullary pins were removed. The protocol was approved by the Committee on 

the Ethics of Animal Experiments of Yonsei University College of Medicine (Permit 

Number: 2014-0033). 
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Figure 2. Micro-CT image of fractured mice femur immediately after fracture. 

The femoral condyles were severed in the middle with a mess and the severed femur 

was fixed by an intramedullary pin with diameter of 0.8 mm. The micro CT image 

was photographed at day 0. 
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13. Biomechanical testing 

At eight weeks un-fractured group and 4 weeks after fracture group, femurs of 8 

wild-type and Stat5a-/- mice in each group were rehydrated at room temperature in 

PBS and their biomechanical properties were measured using a three-point bending 

method. Strength tests were performed on the right femur mid-shaft using a 

mechanical testing machine (model 5942; Instron, Norwood, MA, USA) as condition 

of a displacement rate of 10 mm/min (span length, 10 mm). The maximum load [F = 

load (N, lb)] was determined using load- deflection diagrams. 

 

14. Histology and immunohistochemistry 

The fractured femurs were removed from 8 mice of each group and fixed in 3.7% 

paraformaldehyde solution for 5-7 days at room temperature and decalcified in 

ethylene-diamine tetraacetic acid (EDTA) glycerol solution for 1 day at room 

temperature. Decalcified femurs were embedded in paraffin block. The paraffin 

sections were dehydrated by passage through an ethanol series, cleared twice in xylene 

and embedded in paraffin, after which 5mm sections were cut on a rotary microtome. 

Decalcified femoral sections were stained with masson’s trichrom, safranin O and fast 

green. For immune histochemistry, antigen retrieval was performed using citrate 

buffer, pH 6.0, for the deparaffinized sections. Sections were blocked with 5 % normal 

goat serum, without PBS and 0.1% Tween 20 for 1 hr at room temperature. And they 

were incubated with the DLX5 antibody (1: 100, EPR4488, Abcam) for 1 hr at 4°C 

and with anti-rabbit secondary antibodies for 1 hr at room temperature. And the DAB 

staining (ab64238, Abcam) was performed. 
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15. Statistical analysis 

Data are shown as the mean ± S.D. No animals or samples were excluded from 

analysis. MicroCT analysis was performed in a blinded fashion. For checking normal 

distributions of the groups, I first performed normality test with the Shapiro-Wilk 

method. If normality tests passed, two-tailed, unpaired Student’s t tests were used for 

the comparisons between two groups; if normality tests failed, Mann-Whitney tests 

were used for the comparisons between two groups. For the comparisons of three or 

four groups, I used one-way ANOVA if normality tests passed, followed by Tukey`s 

multiple comparison test for all pairs of groups. If normality tests failed, Kruskal-

Wallis test was performed and followed by Dunn`s multiple comparison test. The 

GraphPad PRISM software (v5.0) was used for statistical analysis. P < 0.05 was 

considered statistically significant. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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Ⅲ. RESULTS 

 

1. Overexpression of STAT5A suppress osteogenic differentiation in hBMSCs 

To investigate the possible role of STAT5 during osteogenesis, I first checked 

whether STAT5 expressed in hBMSCs and moved to nucleus during the osteogenesis. 

STAT5 was increasingly translocated into the nucleus at 1, 5, 7th day after the 

induction of osteogenesis (Fig. 3a). To clarify STAT5 isoforms, I then examined 

STAT5A and STAT5B expressions during osteogenesis of hBMSCs. Intriguingly, 

STAT5A was increased in response to the induction of osteogenesis after 6th day (Fig. 

3b). The expressions of STAT5B, however, were no remarkable change during 

osteogenesis while DLX5 and RUNX2, which are key osteogenic marker, were 

decreased in the late stage of osteogenesis.  
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Figure 3. Expression level of STAT5 protein during osteogenesis in hBMSCs. (a) 

Immunocytochemistry for STAT5 translocation into nucleus at osteogenic 

differentiation at day 0, 5, and 7. Magnification: 100 x. (b) Protein level of STAT5A, 

STAT5B, DLX5, and RUNX2 during osteogenesis of hBMSCs by western blotting. 

β-actin was used as a control. 
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To examine the effect of STAT5A and STAT5B in osteogenesis, I overexpressed 

STAT5A and STAT5B in hBMSCs. At 14th day after the induction of osteogenesis, 

the mineralization of STAT5A-overexpressed hBMSCs was decreased compare to 

those of control hBMSCs and STAT5B-overexpressed hBMSCs (Fig. 4a and 4b). 

Following alizarin red S staining and quantification, I also confirmed protein levels 

of osteogenic marker genes such as DLX5 and RUNX2. Overexpression of STAT5A 

in hBMSCs significantly decreased DLX5 expression, not RUNX2 expression. 

Overexpression of STAT5B, however, had no effect on those proteins (Fig. 4c and 

4d). Accordingly, STAT5A decreased mRNA levels of DLX5 and its downstream 

genes such as bone sialoprotein (BSP) and osteopontin (OPN) (Fig. 5). These findings 

imply that STAT5A functions during osteogenesis of hBMSCs by regulating DLX5. 
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Figure 4. Suppressed osteoblastic differentiation of hBMSCs by overexpression 

of STAT5A. (a) Alizarin red S staining for effect of STAT5 overexpression at 

osteogenesis 14 days. Scale bar, 60 μm. (b) Quantification of alizarin red S staining. 
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Figure 4. Suppressed osteoblastic differentiation of hBMSCs by overexpression 

of STAT5A. (c) Western blot analysis for protein expression level of osteogenic 

master proteins such as DLX5 and Runx2 by STAT5 overexpression. GAPDH was 

used as a control. (d) Quantification of DLX5 and RUNX2 protein levels.  
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Figure 5. Suppressed mRNA expression of the osteoblast related genes by 

overexpression of STAT5A. Gene expression of DLX5 and downstream genes of 

DLX5 after 4 days of STAT5 overexpression in hBMSCs using real-time PCR. All 

mRNA levels were normalized with GAPDH. All experiments were performed in 

triplicate. All data are the mean ± S.D. (*P < 0.05), compared to pcDNA transfected 

cells. Statistical significance was determined by Student’s t- test. 
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2. Suppression of STAT5A promotes osteogenic differentiation in hBMSCs 

To clarify the distinct role of STAT5A and STAT5B in osteogenesis of hBMSCs, 

I knocked down STAT5A or STAT5B using each siRNA and I also treated hBMSCs 

with a STAT5 inhibitor. siRNA mediated knockdown of STAT5A promoted osteoblast 

differentiation, while siRNA mediated knockdown of STAT5B had no effect (Fig. 6a 

and 6b).  

 

 

 

Figure 6. Induced osteoblastic differentiation through the increased DLX5 

expression by siSTAT5A in hBMSCs. (a) Alizarin Red S staining suppression effect 

of STAT5A and STAT5B on osteogenesis using target siRNA. Staining was performed 

at osteogenesis 14 days. Scale bar, 30 μm. (b) Quantification of alizarin red S staining. 

I then tested whether STAT5A regulates the expression of DLX5.  
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Figure 6. Induced osteoblastic differentiation through the increased DLX5 

expression by siSTAT5A in hBMSCs. siRNA- mediated knockdown of STAT5A 

increased DLX5 protein expression. (c) Western blot analysis for protein expression 

level of DLX5 by silencing of STAT5A and STAT5B. (d) Quantification of DLX5 

protein level was compared with GAPDH expression level. 
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Consistently, a STAT5 inhibitor induced a mineral accumulation in a dose-

dependent manner at 14th day after the induction of osteogenesis (Fig. 7a). At the 

dose which STAT5 inhibitor exhibited its maximal effect (10μM), STAT5 inhibitor 

increased a mineral accumulation about 2.5-fold over the vehicle control (Fig. 7b). 

Accordingly, a STAT5 inhibitor increased DLX5 mRNA and protein expression in a 

dose-dependent manner in hBMSCs (Fig. 7c and 7d).  

 

 

 

 

Figure 7. Induced osteoblastic differentiation through the increased DLX5 

expression by STAT5 inhibitor in hBMSCs. (a) Alizarin red S staining to determine 

the effect of STAT5 inhibitor (sc-355979) during osteogenesis of hBMSCs. STAT5 

inhibitor was used with the concentrations of 0, 2, 6, and 10μM. Staining was 

performed at osteogenesis 14 days. Scale bar, 30 μm. (b) Quantification of alizarin 

red S staining.  
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Figure 7. Induced osteoblastic differentiation through the increased DLX5 

expression by STAT5 inhibitor in hBMSCs. (c) Analysis of DLX5 mRNA level by 

STAT5 inhibitor (10μM) treatment. (d) Western blot analysis for protein expression 

level of DLX5 by STAT5 inhibitor treatment. All experiments were performed in 

triplicate and determined by Student’s t-test. All data are the mean ± S.D. (* P < 0.05, 

** P < 0.01). 
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Furthermore, DLX5 promoter assays showed that STAT5 inhibitor partially 

reversed DLX5 activity which was decreased by STAT5A (Fig. 7e). 

 

 

 

Figure 7. Relative DLX5 promoter activity by STAT5 suppression with STAT5 

inhibitor. (e) STAT5 inhibitor was treated after 6hrs of transfection. Luciferase 

activity was normalized with renilla. All experiment were performed in triplicate and 

determined by Student’s t-test. All data are the mean ± S.D. (* P < 0.05, ** P < 0.01). 
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3. STAT5A directly regulates DLX5 in osteoblasts 

To examine the relation between STAT5A and osteogenic transcriptional 

regulators such as RUNX2, DLX5 and OSX, the luciferase assays for each factors 

were performed at 5th day after the osteogenesis of hBMSCs. STAT5A reduced DLX5 

promoter activity in a dose-dependent manner (Fig. 8a), while RUNX2 and OSX 

promoter activities were not changed (Fig. 8b). To identify the detail mechanism by 

which STAT5A suppress DLX5 activity, I first predicted a STAT5A binding site within 

the DLX5 promoter region (Fig. 1 upper, asterisk) using the Transcription Element 

Search System (TESS). I then designed truncated constructs of DLX5 promoter (Fig. 

1 bottom). Promoter assays showed significantly decreased DLX5 activity in the 

constructs containing the STAT5A binding site relative to the control, whereas no 

change in the construct without STAT5A binding site (Fig. 8c).  
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Figure 8. Decreased transcriptional activity of DLX5 by STAT5A during 

osteogenesis in hBMSCs. (a) Relative promoter activity of DLX5 by increasing 

amount of STAT5A transfected. The overexpression vector of STAT5A was used 

from 0μg to 1μg amount. (b) Promoter activity of osteoblast transcriptional factors by 

STAT5A. Relative promoter activity of Runx2 and Osx by STAT5A. The 

overexpression vector of STAT5A was used 1μg concentration. At 4th day after 

overexpression and 2nd day after osteogenesis, the cells were harvested and luciferase 

activity was normalized with renilla. (c) Relative transcriptional activity of truncated 

DLX5 promoter vectors depending on STAT5A binding prediction site. All 

experiment were performed in triplicate and determined by Student’s t-test. All data 

are the mean ± S.D. (* P < 0.05, ** P < 0.01, *** P < 0.001). 
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Furthermore, ChIP assays showed that osteogenic stimulation for 5 days induced 

recruitment of STAT5A to the DLX5 promoter, supporting direct regulation of DLX5 

by STAT5A (Fig. 8d and 8e).  

 

  

 
Figure 8. Localization of the element in the DLX5 promoters responsible for 

transcriptional repression by STAT5A. (d) Chromatin immune-precipitation (ChIP) 

assay to assess direct binding region of STAT5A to the DLX5 promoter. PCR 

amplification for combined DLX5 promoter region was performed with specific 

primers such as pro1 to pro 5 in the DLX5 promoter. (e) Quantification of STAT5A 

binding amounts to the DLX5 promoter region. All experiment were performed in 

triplicate and determined by Student’s t-test. All data are the mean ± S.D. (** P < 

0.01). 
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4. STAT5A deletion in mice leads to high bone mass and protects against age-

related osteoporosis 

To determine the in vivo role of STAT5A in the skeletal development, I generated 

mice with a global deletion of Stat5a (referred to herein as Stat5a-/-(Fig. 9a). 

According to whole mount alizarin red/alcian blue–stained skeletal preparations, 

general aspects of skeletal development had no difference between E19.5 embryos of 

Stat5a-/- mice (KO) and wild type (WT) mice (Fig. 9b). However, postnatal histologic 

analysis using Masson’s trichrome staining revealed that trabecular bone mass in long 

bones was markedly increased in Stat5a-/- mice than in wild type mice at 10 weeks and 

40 weeks (Fig. 9c). Microcomputed tomography (μCT) analysis in long bone showed 

that Stat5a deletion resulted in increased trabecular and cortical bone mass relative to 

wild type mice in 10 weeks and 40 weeks (Fig. 9d and 9e).  
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Figure 9. Increased bone formation of stat5a-/- mice. (a) Western blotting for 

analysis of DLX5 protein expression level at 10 weeks old male Stat5a-/- and wild 

type mice spleen. (b) Skeletal phenotype of Stat5a-/- and wild type mice. Whole-mount 

alizarin red S and alcian blue staining of embryos (E19.5) and hindlimb from Stat5a-

/- and wild type mice. Scale bars: 2 mm (top), 1 mm (hindlimb), and 2.5 mm (tibia) (n 

= 8 per each group). 
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Figure 9. Increased bone formation of stat5a-/- mice. (c) Masson’s trichrome 

staining of a longitudinal sections at 10 and 40 weeks old male Stat5a-/- and wild type 

femurs. Scale bar: 500 μm (top) and 200 μm (bottom) (n = 10 per each group and 8 

section histology analysis). (d) Representative micro-CT images of trabecular bone at 

10 and 40 weeks old male Stat5a-/- and wild type femurs. Scale bars, 0.5 mm (total n 

= 20 per 10 weeks group and 12 for 40 weeks). (e) Representative micro-CT images 

of cortical bone at 10 and 40 weeks old male Stat5a-/- and wild type femurs. Scale bars, 

0.5 mm (total n = 20 per 10 weeks group and 12 for 40 weeks).  



- 39 - 

 

Various μCT parameters of trabecular bones increased in Stat5a-/- mice compared 

to wild type mice (Fig. 9f-9j). Notably, I found that Stat5a deletion reversed the age-

related reductions of bone mass and bone mineral density in 40-week old mice, 

suggesting that Stat5a deletion has a protective effect against age-related osteoporosis. 

Additionally, cortical thickness which is one of important factors to determine a 

mechanical strength was significantly higher in Stat5a-/- mice compared to wild type 

mice (Fig. 9k).  Cortical cross-sectional area (Cs. area) and cortical bone volume 

were also higher in Stat5a-/- mice compared to wild type mice (Fig. 9l and 9m). 

Biomechanical properties of the femurs were assessed by three-point bending, and 

Stat5a deletion resulted in significant increase of bone strength compared to wild type 

mice (Fig. 9n). Taken together, out results suggest a role for STAT5A in the 

maintenance of bone mass and strength. 
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Figure 9. Increased bone formation of stat5a-/- mice. (f-k) Quantitative micro-CT 

analysis of trabecular bone parameters at 10 weeks old male Stat5a-/- and wild type 

femurs, including (f) bone volume fraction ratio (BV/TV), (g) Volumetric BMD of 

trabecular bone, (h) trabecular thickness (Tb.Th), (i) trabecular number (Tb.N), (j) 

trabecular separation (Tb.Sp) are shown. (n = 10 for each group). (k-m) Quantitative 

micro-CT analysis of cortical bone parameters at 10 weeks old male stat5a-/- and wild 

type femurs, with (k) Cross-sectional thickness (Cs.Th) of cortical bone, (l) bone 

volume, and (m) cross-sectional area (Cs. area) are shown. (n = 10 for each group). 

(n) Maximum load on femurs from post-natal 10 weeks mice (n= 8 for each group). 

All parametric data were analyzed with two-tailed Student’s t tests. And 

nonparametric data were analyzed using a Mann-Whitney test. All error bar indicate 

S.D. (* P < 0.05, ** P < 0.01, *** P < 0.001). 
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5. STAT5A deletion promotes osteogenic differentiation in mBMSCs 

To investigate osteoblast activity of mouse bone marrow-derived stromal cells 

(mBMSCs), mBMSCs were isolated from Stat5a -/- mice and wild type mice. Stat5a-/- 

mBMSCs showed significantly higher baseline ALP activity compared to wild type 

mice (Fig. 10a and 10b). Regardless of ages, mineral accumulations in Stat5a-/- 

mBMSCs were markedly higher compared to wild type mice at 8th day after the 

induction of osteogenesis (Fig. 10c and 10d). Interestingly, a mineral accumulations 

in 30-week old Stat5a-/- mBMSCs was decreased compare to 10-week old Stat5a-/- 

mBMSCs, but comparable to 10-week old wild type mice (Fig. 10d). 
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Figure 10. Induced osteoblast differentiation in Stat5a-/- mice BMSCs via up-

regulation of DLX5. mBMSCs was obtained from 15 mice per each group. (a) ALP 

staining of 10 weeks old Stat5a-/- and wild type mBMSCs at osteogenesis 3rd day, as 

indicated. Scale bar, 60 μm. (b) Relative ALP activity assay at 0 day in Stat5a-/- and 

wild type mBMSCs. (c) Alizarin red S staining of 10, 20, and 30 weeks old mBMSC 

at 8th day after osteogenesis. (d) Quantification of alizarin red S staining in Stat5a-/- 

and wild type mBMSCs. 
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Accordingly, DLX5 protein and mRNA expressions in Stat5-/- mBMSCs were 

higher compared to wild type mice (Fig. 10e and 10f). Stat5a deletion led to 

significant increases in mRNA expressions of osteogenic genes such as Alp, Bsp, Opn, 

and Ocn (Fig. 10g).  

 

 

 
 

Figure 10. Induced osteoblast differentiation in Stat5a-/- mice BMSCs via up-

regulation of DLX5. (e) Protein expression level of DLX5 in 10, 20, and 30 weeks 

old male Stat5a-/- and wild type mBMSCs using western blotting. (f) mRNA level of 

Dlx5 in Stat5a-/- and wild type mBMSCs at 0 day and 3rd day after osteogenesis. (g) 

At 3rd day after osteogenic induction of mBMSCs, mRNA level of osteoblast related 

genes such as Alp, Bsp, Opn, and Ocn. 
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Next, I examined whether Stat5a overexpression reversed DLX5 expression in 

Stat5a-/- mBMSCs. Stat5a overexpression in Stat5a-/- mBMSCs significantly reversed 

DLX5 mRNA and protein expression which were increased by STAT5A deletion (Fig. 

10h-10j). In accordance with these findings, Stat5a overexpression decreased a 

mineral accumulation and calcification in Stat5a-/- mBMSCs (Fig. 10k and 10i). 

These results demonstrate that STAT5A inhibits osteogenic differentiation by 

suppression of DLX5. 

 

 

 
Figure 10. Induced osteoblast differentiation in Stat5a-/- mice BMSCs via up-

regulation of DLX5. (h) Relative mRNA level of Dlx5 depending on exogenously 

increased Stat5a expression in Stat5a-/- and wild type mBMSCs.  
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Figure 10. Induced osteoblast differentiation in Stat5a-/- mice BMSCs via up-

regulation of DLX5. (i) DLX5 protein level when Stat5a was overexpressed in 

Stat5a-/- and wild type mBMSCs. (j) Quantification of DLX5 protein level when 

Stat5a was overexpressed in mBMSCs. (k) The osteoblast differentiation of Stat5a-/- 

mBMSCs by overexpression of Stat5a using alizarin red S and von kossa staining. (l) 

Quantification of alizarin red S staining in Stat5a-/- mBMSCs. All experiment were 

performed triplicate cultures of bone marrow whole cells pooled from five individual 

mice. All data are the mean ± S.D. (∗ P < 0.05, ∗∗ P < 0.01, *** P < 0.001). 
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6. STAT5A deletion has no effect in osteoclast differentiation in vitro 

Next, I examined an effect of STAT5A on osteoclast differentiation of mouse bone 

marrow monocytes (mBMMs). mBMMs from Stat5a-/- and wild type mice were 

cultured for 3~4 days in α-MEM with RANKL (receptor activator of nuclear factor-

kappa B ligand) and M-CSF (macrophage colony stimulating factor). At 4th day after 

the induction of osteoclastogenesis, abilities of osteoclast differentiation were 

measured by counting of TRAP (tartrate resistant acid phosphatase) positive 

multinucleated osteoclasts (nuclei ≥ 3). STAT5A deletion, however, had no effect 

osteoclast differentiation. The numbers of TRAP positive multinucleated osteoclasts 

showed no difference between Stat5a-/- and wild type (Fig. 11a and 11b).  

Intriguingly, mRNA expression of Rankl and Opg (osteoprotegerin) were was 

increased in Stat5a-/- mBMSCs compared to wild type mBMSCs under the osteogenic 

condition (Fig. 12a and 12b). Additionally, Rankl/Opg ratio, which controls the 

osteoclast differentiation, was also increased in Stat5a-/- mBMSCs (Fig. 12c). These 

results indicate that STAT5A deletion had no effect in osteoclast differentiation in vitro 

but would enhance osteoclast differentiation and function in vivo by coupling effect 

between osteoblasts and osteoclasts. 
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Figure 11. No difference in osteoclast differentiation in vitro. (a) After 4 days of 

osteoclastogenesis induction with M-CSF (40 ng/ml), mRANKL (20 ng/ml), 

RANKL-induced osteoclast formation and fusion assay of 10 weeks old male Stat5a-

/- and wild type mBMMs by trap staining. Scale bar, 60 μm. (b) Quantification of 

TRAP-positive multinucleated cells (nuclei ≥ 3) of Stat5a-/- and wild type mBMMs. 
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Figure 12. Increased ratio of rankl/opg in stat5a-/- mice BMSCs. Relative mRNA 

level in Stat5a-/- and wild type mBMSCs at 0 day and 5th day after osteogenesis. With 

(a) Opg mRNA level, (b) Rankl mRNA level, and (c) Ratio of Rankl/Opg mRNA level. 

All experiment were performed triplicate. All data are the mean ± S.D. (* P < 0.05, 

**P < 0.01). 
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7. Stat5a deletion has negative effect in adipocyte differentiation in vitro 

According to previous report, STAT5A increases the adipogenic differentiation of 

hBMSCs by correlation with pparγ34. To investigate this effect, BMSCs of Stat5a-/- 

and wild type mice were induced into adipogenic differentiation for 21days. Then 

lipid drops were stained with oil-red O solution. Results show that lipid drop 

formations were more frequent in wild type mBMSCs than Stat5a-/- mBMSCs (Fig. 

13a and 13b).  

 

 

 

 
Figure 13. Reduced adipogenic differentiation in Stat5a-/- mice. (a) Oil-red O 

staining at adipogenesis 21 days of 10 weeks old male Stat5a-/- and wild type 

mBMSCs. Scale bar, Scale bar, 30 μm. (b) Quantification analysis of oil-red O 

staining.  
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Next, I also checked protein expressions and mRNA levels of adipocyte master 

regulator genes such as pparγ and c/ebpα after 5 days of adipogenesis. As expected, 

protein levels of both regulators were significantly decreased in Sata5a-/- BMSCs (Fig. 

13c). Additionally, mRNA levels of adipocyte related genes such as adiponectin and 

leptin were clearly reduced in Sata5a-/- BMSCs (Fig. 13d). In accordance with 

previous differentiation data, adipocyte formation in the bone marrow of wild type 

femurs was more improved than in Stat5a -/- mice (Fig. 13e). Taken together, STAT5A 

is positive regulator in adipocyte differentiation.  

 

 

 

Figure 13. Reduced adipogenic differentiation in Stat5a-/- mice. (c) Western blot 

analysis for protein expression of adipocyte related factors in adipogenesis of Stat5a-

/- and wild type mBMSC, as indicated. 
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Figure 13. Reduced adipogenic differentiation in Stat5a-/- mice. (d) Relative 

mRNA level of adipo related genes such as Pparγ, C/ebpα, Adiponectin, and Leptin 

in mBMSC by real time PCR analysis at 5th day after adipogenesis. (e) The adipocytes 

in bone marrow of Stat5a-/- and wild type mice. The distal femurs from 10 weeks old 

mice stained with Masson’s trichrome. Scale bar, 200 μm. All experiment were 

performed triplicate. All data are the mean ± S.D. (* P < 0.05, **P < 0.01). 
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8. STAT5A deletion promotes bone regeneration in a murine fracture model. 

I next investigate the possible roles of STAT5A in a fracture healing by using a 

murine fracture model. I generated fracture models with femurs of 6-week old Stat5a-

/- and wild type mice as previously described28. At post-fracture 2 and 4 weeks, I 

examined fracture healing using longitudinal sections of microCT images (Fig. 14a). 

MicroCT analysis showed that bony callus at post-fracture 2 weeks increased in 

femurs of Stat5a-/- mice as compared to wild type mice (Fig. 14b). Subsequently, bony 

callus at post-fracture 4 weeks decreased in femurs of Stat5a-/- mice compared to wild 

type mice (Fig. 14b). Suggesting that STAT5A deletion accelerates fracture healing 

by resorption of bony callus. 

To determine whether STAT5A involved the formation of cartilaginous callus 

along with the process of developing bony callus from cartilaginous callus, I stained 

femurs at post-fracture 2 and 4 weeks with Masson`s trichrome and safranin O. At 

post-fracture 2 weeks, area of bony callus was increased in Stat5a-/- mice compared to 

wild type mice (Fig. 14c and 14d). But at post-fracture 4 weeks, the residual 

cartilaginous callus was decreased in Stat5a-/- mice compared to wild type mice (Fig. 

14e and 14f). These results suggest that the cartilaginous callus of the Stat5a-/- mice 

was more quickly transformed into the bony callus and mineralized bone compared 

to wild type mice.  
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Figure 14. Enhanced bone fracture healing in Stat5a-/- mice. (a) Representative 

longitudinal sections of fractured femurs from Stat5a-/- and wild type mice at post 

fracture 2 weeks (2-wks) and 4 weeks (4-wks). The 6 weeks old male mice were used 

for fracture model. Scale bar, 4 mm (n = 16 per each group). (b) Quantitative analysis 

of newly formed callus volume at post fracture 2-wks and 4-wks.  
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Figure 14. Enhanced bone fracture healing in Stat5a-/- mice. (c-f) Representative 

histological analysis of paraffin sections of calluses from Stat5a-/- and wild type mice 

at post fracture 2-wks and 4-wks stained with (c) Masson’s trichrome for total collagen, 

(d) Quantitative analysis of bony callus area at 2-wks and 4-wks. (e) Safranin O fast 

green for cartilaginous callus bones, and (f) Quantitative analysis of remained 

cartilaginous callus area at 2-wks and 4-wks. Scale bar, 0.5 mm. 
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Furthermore, immunohistochemical staining showed that DLX5 expression was 

increased on the fracture site of Stat5a-/- mice (Fig. 14g). Notably, periosteal bone of 

the fracture site highly expressed DLX5 in Stat5a-/- mice (Fig. 14g, bottom). The 

numbers of osteoblasts and osteoclasts around the newly formed bone were increased 

in Stat5a-/- mice compared to wild type mice (Fig. 14h). Similarly, biomechanical 

properties of regenerated femurs at post-fracture 4 weeks revealed that maximum load 

to failure was increased in Stat5a-/- mice compared to wild type mice (Fig. 14i). 

Overall, these results suggest that STAT5A deletion promotes bone regeneration after 

a fracture. 

 

 

 



- 57 - 
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Figure 14. Enhanced bone fracture healing in Stat5a-/- mice. (g) 

Immunohistochemistry against DLX5 at post fracture 2-wks. The endosteal bone 

(upper) and the periosteal bone (bottom) in fractured femoral section. Scale bars; 100 

μm. (h) Osteoblast, osteoclast, and osteocyte in regenerated bone of fractured mice 

femurs. Magnification; 20 x (top, scale bar; 50 μm), 40 x (bottom). Black, red, and 

green arrows indicated osteoblast, osteoclast, and osteocyte, respectively. (i) 

Biomechanical analysis of regenerated bone. Maximum load was assessed by three 

point bending method on mid-shaft femurs from post fracture 4-wks mice. All data 

are the mean ± S.D. (*P < 0.05, ** P < 0.01, n = 8 per each group) 
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Ⅳ. DISCUSSION 

Emerging evidences suggest that Janus-activated kinase (JAK)-STAT signaling 

plays an important role as a negative regulator in osteoblast differentiation and bone 

formation28-30. Tajima et al. reported that inhibition of STAT1 accelerates osteoblast 

differentiation and bone fracture healing by regulating OSTERIX (OSX)28, and Levy 

et al. reported that inhibition of STAT3 results in the augmentation of BMP-induced 

osteogenic differentiation29. Furthermore, chemical inhibitors of STAT1 and STAT3 

have proposed for the treatment of skeletal bone fracture. A recent study reported that 

pharmacological inhibition of STAT5 reversed c-Cbl mediated osteogenesis in 

mBMSCs31. However, they had no evidence for isoform specific functions of STAT5 

as a regulator of osteoblast differentiation. 

Here, I found that inhibition of STAT5A by siSTAT5A significantly increased the 

osteoblast differentiation in hBMSCs, whereas inhibition of STAT5B by siSTAT5B 

had no remarkable effect in the osteogenesis (Fig. 6a and 6b). These data suggest that 

STAT5A may be a more important factor than STAT5B in the osteoblast 

differentiation of hBMSCs. Moreover, I found that Stat5a-/- mice showed higher bone 

mass than wild type mice. Interestingly, the increase of bone mass in Stat5a-/- mice 

was maintained with aging. Age-related bone loss was partially protected in Stat5a-/- 

mice and bone mineral densities of 40 week-old Stat5a-/- mice was comparable to 

those of young mice (Fig. 9c and 9d). During fracture healing process, these effects 

of STAT5A deletion led to enhance bone regeneration in vivo by stimulating bone 

formation. Accordingly, the mechanical strength of the regenerated bone was 
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significantly higher in Stat5a-/- mice compared to wild type mice (Fig. 14i), suggesting 

that the quality of the regenerated bone improved by STAT5A deletion. Together, 

these findings suggest STAT5A acts as a negative regulator of osteoblast 

differentiation and bone formation. 

For an unbiased search for osteogenic transcriptional factors affected by STAT5A, 

I performed the luciferase reporter assay for well-known transcriptional factors, such 

as RUNX2, OSX, and DLX5. We found that STAT5A down-regulated DLX5, not 

RUNX2 and OSX (Fig. 8b). Additionally, I identified a STAT5A binding region on 

DLX5 promoter by ChIP assay (Fig. 8d and 8e). Thus, I focused on DLX5 as a target 

of STAT5A in osteoblast differentiation of hBMSCs. Previous studies have reported 

that DLX5 activity is required for RUNX2 expression under BMP signaling32-34. One 

study reported that Dlx5 is a central regulator for bone homeostasis through direct 

regulation of osteogenesis35. I found that ALP activity and DLX5 expression in Stat5a-

/- mBMSCs were higher than those in wild type mice during osteogenic differentiation 

(Fig. 10a and 10b). STAT5A overexpression in Stat5a-/- mBMSCs decreased DLX5 

expression and impaired the osteogenic differentiation (Fig. 10k and 10l). These 

results indicated that DLX5 expression is controlled by STAT5A. 

Intriguingly, I found that DLX5 activated STAT5 promoter activity (data not 

shown), while STAT5A reduced promoter activity of DLX5. Also, protein levels of 

STAT5A and DLX5 show conflicting manner during osteogenesis (Fig. 3b). I show 

that STAT5A expression increased and DLX5 expression decreased at late stage of 

osteogenesis. Overexpression of DLX5 does not affect early stage but prevents 

terminal stage of osteogenic differentiation in vitro36. However, in this study, Stat5a-/- 
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mBMSCs had relatively higher expression of DLX5 than wild type, the mineralization 

of Stat5a-/- mBMSCs was better than that of wild type. Ryoo et al. reported that DLX5 

expresses similar pattern with OCN during osteogenic differentiation and also 

temporary overexpression or repression of DLX5 has negative effects on Ocn 

expression, but DLX5 regulates only hyperactive level of Ocn gene expression12. Thus, 

I considered that the calcification of Stat5a-/- mMSCs was not repressed in 

osteogenesis, regardless of increased DLX5 expression. These results suggest that the 

negative feedback between STAT5A and DLX5 may present during osteoblast 

differentiation. 

In the present study, I considered that the increase of DLX5 expression which is 

caused by STAT5A deletion is especially effective in periosteal bone remodeling that 

leads to greater mechanical strength in Stat5a-/- mice bone when compared to wild 

type. This speculation can be supported by this results showing that DLX5 expression 

is predominant in the periosteal bone (Fig. 14g), which might represent osteoblasts at 

a specific stage of differentiation13,37,38. Overall, these studies demonstrate that 

STAT5A deletion promotes osteoblast activity and plays an important role in callus 

formation and remodeling. 

The balance between osteogenesis and adipogenesis is important for the 

maintenance of bone structure and volume25,39-41. In our previous studies, we 

demonstrated that upregulation of STAT5A by PPARγ accelerated a formation of lipid 

droplet during adipogenesis of hBMSCs. Conversely, inhibition of STAT5A 

suppressed adipogenic differentiation25. In this study, the opposite levels of osteoblast- 

and adipocyte-related genes demonstrate that the correlation between DLX5 and 
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STAT5A is important in balancing osteogenesis and adipogenesis. 

The balance between bone formation and bone resorption is also essential for bone 

homeostasis. This process is known to be regulated by the OPG-RANK-RANKL 

pathway42,43. Because deletion of Stat5a had no effect on osteoclast differentiation, I 

considered the effect of osteoblast/osteoclast coupling. These results show that Stat5a-

/- osteoblasts are comparatively undifferentiated to osteoclastogenesis, but that 

osteoclast activity could be increase via osteoblast/ osteoclast coupling effects in 

Stat5a-/- mice. Therefore, these findings that the deletion of STAT5A increased DLX5 

expression in vitro and in vivo, suggest that DLX5 may functionally contribute to the 

observed induction of osteogenic functionally contribute to the observed induction of 

osteogenic differentiation and bone formation.  

 

Ⅴ. CONCLUSION   

I figured out that STAT5A attenuates osteoblast differentiation by regulating 

DLX5 in vitro and STAT5A deletion promotes bone formation, prevents age-related 

osteoporosis and accelerates fracture healing in vivo. These results suggest that 

targeting STAT5A inhibition as a new therapeutic strategy to control bone homeostasis 

and fracture healing. 
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ABSTRACT (IN KOREAN) 

 

골아세포 분화 및 골 형성에서 STAT5A 의 역할 

 

<지도교수 이 진 우> 

 

연세대학교 대학원 의과학과 

 

이 경 미 

  

 

 사람의 골수 유래 중간엽 줄기세포 (hBMSCs)의 골분화 과정의 

조절은 골형성에 중요한 영향을 준다. 골분화 과정의 분자적 

메커니즘에 대한 연구가 활발함에도 불구하고, 골절치유에 

작용하는 핵심인자에 대한 규명은 미흡한 실정이다. 신호전달 조절 

인자인 STAT5 (Signal transducer and acivator of transcription 5)는 다양한 

세포에서 cytokine 에 의해 조절되는 과정 즉, 세포의 생존, 증식, 

그리고 분화에 필수적인 요소이다.  

본 연구에서는 hBMSCs 의 골 분화과정에서 STAT5 의 역할을 

밝히고자 하였다. STAT5 억제제와 siRNA 를 이용한 STAT5A 의 

저해는 hBMSCs 의 골분화를 현저히 증가시킨 반면, STAT5B 의 
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저해는 대조군과 유사한 골분화능을 보여주었다. 특히, STAT5A 의 

저해는 골 분화 전사인자인 DLX5 의 mRNA 및 단백질 발현을 

증가시켰다. 또한, ChIP (Chromatin immunoprecipitation) 분석을 통하여 

STAT5A 가 골분화 기간 동안 DLX5 의 프로모터 부위에 결합하여 

전사활성을 감소시킴을 확인하였다. 더불어, STAT5A 유전자가 

결핍된 마우스를 이용하여 STAT5A 가 골형성에 미치는 영향을 

분석한 결과, Stat5a 결손 마우스에서 골형성이 대조군에 비해 

현저히 증가되었음을 확인하였다. 특히, Stat5a 결손 마우스 

BMSCs 의 골분화력 역시 활성화 되었으며, DLX5 의 단백질 발현양 

또한 증가하였다. 이러한 증가된 조골세포의 활성을 검증하기 위해 

Stat5a 결손 골절 모델을 이용하여 골절 치유력을 살펴보았다. 골절 

유발 2 주 후, Stat5a 결손 마우스의 골절부위 신생골 형성이 

대조군에 비해 증가하였고, 4 주 후 남아있는 연골성 신생골의 양은 

Stat5a 결손 마우스에서 현저히 줄어들었음을 확인 하였다. 이는 

Stat5a 결손 마우스의 골 리모델링 능력이 대조군에 비해 우수함을 

나타낸다. 요약하면, STAT5A 의 억제는 DLX5 의 발현을 

증가시킴으로써, 생체 외 골분화력 뿐만아니라, 생체 내 골형성 

능력을 증가시켰다. 또한, Stat5a 결손 마우스의 경우, 노화로 인해 
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유도되는 골밀도와 골강도의 감소가 대조군에 비해 완화되어 

있었다. 특히, 골절치유 모델에서 Stat5a 의 결손은 신생골의 

형성능을 현저히 증가시켰다. 

종합해보면, STA5A 는 골분화 과정 동안 DLX5 발현조절을 통해 

골분화, 골형성 및 골절치유를 조절하는 중요한 전사조절 인자임을 

시사한다. 따라서, STA5A 가 노화로 인해 야기되는 골다공증 및 

골절과 같은 골 리모델링 관련 골격 질환의 치료 표적이 될 수 

있을 것이다. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

핵심되는 말: 골분화, 골형성, STAT5A, DLX5, 골리모델링  
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