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Abstract 

Spatial scan statistics are widely used in spatial epidemiology to identify 

areas with high or low rates of outcome. This scan-based method needs a scanning 

window, which is defined by its shape and maximum size. When deciding on the 

upper limit of the window size, 50% of the total population is often used. 

However, there is no rationale and the reported clusters could be too larger than 

the true ones.  

Recently, Han et al. (2011) proposed using the Gini coefficient as a measure 

to assess the degree of heterogeneity of the cluster models. They also considered 

another measure called the Cluster Information Criterion (CLIC) similar to 

Akaike‟s Information Criterion (AIC). The two measures were evaluated for the 

Poisson model only and applicability to other models has not been proved.  

In this study, we adapt the two measures applicable to the ordinal model 

proposed by Jung, Kulldorff, and Klassen (2007). Through a simulation study and 

real data examples, we show that the two measures give consistent results except 

when the true clusters are irregular-shaped or located slightly apart from each 

other. In these cases, the Gini coefficient picks a smaller window size as an 
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optimal maximum than CLIC. In doing so, it reflects a tendency to detect the 

clusters that are more close to true ones by detecting a set of several small clusters. 

The results of this study demonstrate the necessity of optimizing the 

maximum window size in spatial scan statistic for ordinal data as well as for the 

Poisson model. Further, we believe that the two measures can be useful to 

optimize the maximum scanning window size in spatial scan statistic for ordinal 

data.   

 

Key words: Spatial scan statistic; ordinal data; maximum window size; Gini 

coefficient; Cluster Information Criterion  
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1. Introduction  

The spatial scan statistic based on the likelihood ratio test has been widely 

used in many fields, such as epidemiology and disease surveillance. The purpose 

of this method is to detect any statistically significant spatial cluster where the 

distribution of events (e.g., disease prevalence, incidence, and mortality) differs 

from that of other regions.  

In this process, the candidate areas (scanning windows) are created at the 

centroids across the study region in varying pre-defined shapes and sizes. 

Numerous studies have been made on comparing methods for scan-based cluster 

detection methods in different shapes (e.g., circular, elliptic) (Goujon-Bellec et al., 

2011; Grubesic, Wei, and Murray, 2014; Huang, Pickle, and Das, 2008). On the 

other hand, the subject of scanning window sizes has received relatively less 

attention.  

The scanning window size is usually set to a maximum 50% of the total 

population, as in the case of many researches. However, it may draw an 

exaggerated conclusion. That is, with a larger scanning window size, the most 

likely cluster will potentially include several secondary clusters and less 

informative areas. Furthermore, Ribeiro and Coasta (2012) have mentioned that 

cluster detection results can be sensitive to the maximum size. 
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Recently, Han et al. (2011) suggested using the Gini coefficient and Cluster 

Information Criterion (CLIC) to determine the optimal maximum window size. 

However, this research only evaluated for a Poisson model and the applicability of 

other probability models has not been proven yet.  

In this paper, we propose the application of the two measures for an ordinal 

model put forward by Jung, Kulldorff, and Klassen (2007). In chapter 2, we 

briefly review the spatial scan statistic for count and ordinal data and provide 

descriptions of the Gini coefficient and Cluster Information Criterion (CLIC) 

required for optimizing maximum window size for count data. From there, the 

application of two optimization criteria for ordinal data is proposed and in 

chapters 3 and 4, the performance of the criteria is evaluated via simulation study 

and real data examples. We discuss our findings and present the conclusion in 

chapter 5.  
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2. Method 

2.1  Spatial scan statistic 

The spatial scan statistic based on the likelihood ratio test is one of the 

cluster detection methods. Starting with the Bernoulli and Poisson model 

(Kulldorff, 1997), methods for various models have been developed, such as 

ordinal, exponential, multinomial, and normal (Cook, Gold, and Li, 2007; Huang, 

Kulldorff, and Gregorio, 2007; Jung, Kulldorff, and Klassen, 2007; Jung, 

Kulldorff, and Richard, 2010; Kulldorff, Huang, and Konty, 2009). These are used 

to detect any statistically significant spatial cluster where the distribution of event 

(e.g., disease prevalence, incidence, and mortality) differs from that of other 

regions. For each centroid of the study region, the candidate areas (scanning 

window 𝑍) are formed as pre-defined shapes with maximum window size, over 

which likelihood ratio test statistics are calculated. The candidate area with the 

maximum likelihood defines the most likely cluster and those that are able to 

reject the null hypothesis on their own strength define the secondary clusters. This 

process is represented as follows:  

λ =
𝑚𝑎𝑥𝑍,𝐻𝑎𝐿(𝑍, 𝜃)

𝑚𝑎𝑥𝑍,𝐻0𝐿(𝑍, 𝜃)
=
𝑚𝑎𝑥𝑍𝐿(𝑍, 𝜃)

𝐿(𝜃0̂)
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In most cases, the maximum cluster size is selected to be less than, or equal 

to, 50% of the total population with circular or elliptic shape. The spatial scan 

statistics for several models with these two shapes can be implemented using the 

SaTScan (www.satscan.org). The elliptic version of the spatial scan statistic uses 

the elliptic-shaped scanning window with three options (shapes, angles, and non-

compactness) (Kulldorff et al., 2006). The shape of the ellipse is defined by the 

ratio of the longest to the shortest axis of the ellipse. The default values of shapes 

provided by SaTScan software are 1 (= circle), 1.5, 2, 3, 4 or 5. Each shape has 

the angle between the horizontal line and the semi-major axis of the ellipse (4, 6, 

9, 12, and 15). Further, we can customize the option for non-compactness penalty 

in the form of ,4𝑠/(𝑠 + 1)2-𝑎, where 𝑠 is the shape parameter and 𝑎 is the 

non-compactness penalty parameter (a = 1: strong penalty; a = 1/2: medium 

penalty (default); a = 0: no penalty). It multiplies the log likelihood ratio and the 

ellipses with the larger penalty are better-fitted for compact clusters. 

 

2.1.1 Scan statistic for count data 

The scan statistic for count data assumed a Poisson distribution. The null 

hypothesis is that the incidence rates of events are the same within and outside the 
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scanning window, while the alternative hypothesis is that the rate inside the 

scanning window is higher (or lower) than outside: 

𝐻0 ∶ 𝑝 = 𝑞  𝑣𝑠.  𝐻𝑎 ∶ 𝑝 > 𝑞 (𝑜𝑟 𝑝 < 𝑞) 

where 𝑝 is the incidence rate of events within scanning window 𝑍 and 𝑞 is the 

incidence rate outside it. If 𝑐𝑍  and 𝑛𝑍  represent the number of cases and 

populations in scanning window 𝑍, then C = ∑ 𝑐𝑍𝑧  and N = ∑ 𝑛𝑍𝑧  will be the 

total number of cases and populations in the study area. The likelihood ratio test 

statistic with scanning window 𝑍 in a Poisson model (Kulldorff, 1997) is given 

by 

𝜆𝑍 =
.
𝑐𝑍
𝑛𝑍
/
  
.
𝐶  𝑐𝑍
𝑁  𝑛𝑍

/
    

.
𝐶
𝑁
/
  (

𝑐𝑍
𝑛𝑍
>
𝐶  𝑐𝑍
𝑁  𝑛𝑍

)  

and 𝑍 with the maximum likelihood ratio test statistic being the most likely 

cluster. If the cluster area has a lower incidence rate of events, the indicator 

function is replaced by  .
  

𝑛 
<

    

𝑁 𝑛 
/.  
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2.1.2 Scan statistic for ordinal data 

Jung, Kulldorff, and Klassen (2007) proposed the spatial scan statistic for 

ordinal data, such as education level and cancer stage. In the ordinal model, an 

alternative hypothesis for detecting clusters with high rates of higher-valued 

category has an order restriction called the likelihood ratio ordering (LRO) 

(Dykstra, Kochar, and Robertson, 1995).  

If an ordinal variable has 𝐾 categories (𝑘 = 1,… , 𝐾), the probability of 

being in 𝑘 of inside and outside the scanning window 𝑍 denote 𝑝𝑘 and 𝑞𝑘, 

respectively. The likelihood ratio test statistics in sub-regions 𝑖 (𝑖 = 1, … ,  ) for 

testing 𝐻0: 𝑝1 = 𝑞1, … , 𝑝𝐾 = 𝑞𝐾 against 𝐻𝑎 : 
𝑝1

𝑞1
≤
𝑝2

𝑞2
≤ ⋯ ≤

𝑝𝐾

𝑞𝐾
 is 

λ =
𝑚𝑎𝑥𝑍,𝐻𝑎𝐿(𝑍, 𝑝1, … , 𝑝𝐾, 𝑞1, … , 𝑞𝐾)

𝑚𝑎𝑥𝑍,𝐻0𝐿(𝑍, 𝑝1, … , 𝑝𝐾, 𝑞1, … , 𝑞𝐾)
=
𝑚𝑎𝑥𝑍𝐿(𝑍)

𝐿0
 

with  

L(Z) =∏(∏𝑝̂𝑘
 𝑖𝑘

𝑖∈𝑍

∏𝑞̂𝑘
 𝑖𝑘

𝑖∉𝑍

)

𝑘

 

𝐿0 =∏∏𝑝̂0𝑘
 𝑖𝑘

𝑖

=∏(
𝐶𝑘
𝐶
)
∑  𝑖𝑘𝑖

𝑘

=∏(
𝐶𝑘
𝐶
)
 𝑘

𝑘𝑘
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where 𝑐𝑖𝑘 is the number of observations in region 𝑖 and category 𝑘,  𝑝̂0𝑘 =

𝐶𝑘 𝐶⁄  is the maximum likelihood estimator (MLE) of 𝑝𝑘  under the null 

hypothesis, and 𝑝̂𝑘  and 𝑞̂𝑘  are MLEs of 𝑝𝑘  and 𝑞𝑘  under the alternative 

hypothesis. The MLEs of 𝑝𝑘 and 𝑞𝑘 are expressed by Dykstra, Kochar, and 

Robertson (1995) as follows: 

𝑝̂𝑘 = (
𝑊𝑘 + 𝑈𝑘
𝑊

)𝐸(𝑊+𝑈) (
𝑊

𝑊 + 𝑈
|Γ)

𝑘
= 𝑝̃𝑘 (

𝑊𝑘 + 𝑈𝑘
𝑊𝑘

)𝐸(𝑊+𝑈) (
𝑊

𝑊 + 𝑈
|Γ)

𝑘
 

𝑞̂𝑘 = (
𝑊𝑘 + 𝑈𝑘
𝑈

)𝐸(𝑊+𝑈) (
𝑈

𝑊 + 𝑈
|A)

𝑘
= 𝑞̃𝑘 (

𝑊𝑘 + 𝑈𝑘
𝑈𝑘

)𝐸(𝑊+𝑈) (
𝑈

𝑊 + 𝑈
|A)

𝑘
 

where 𝑊𝑘 = ∑ 𝑐𝑖𝑘𝑖∈𝑍 , 𝑈𝑘 = ∑ 𝑐𝑖𝑘𝑖∉𝑍 , 𝑊 = ∑ 𝑊𝑘𝑘 , and  = ∑ 𝑈𝑘𝑘 . Total 

number of observations in category 𝑘 (= 𝐶𝑘) is the sum of 𝑊𝑘 and 𝑈𝑘; thus, 

the total number of observations in study region C =  +  . Each isotonic 

regression on Γ = *(𝜃1, … , 𝜃𝑘) 𝜃1 ≤ ⋯ ≤ 𝜃𝑘+  or A = *(𝜃1, … , 𝜃𝑘) 𝜃1  ⋯  

𝜃𝑘+ with 𝜃𝑘 = 𝑊𝑝𝑘 (𝑊𝑝𝑘 + 𝑈𝑞𝑘)⁄ . When the ratio of the unrestricted MLEs 

𝑝̃𝑘/𝑞̃𝑘 is non-decreasing for all 𝑘 (= 1,… , 𝐾), 𝑝̃𝑘 and 𝑞̃𝑘 are the MLEs under 

the 𝐻𝑎 . If 𝑝̃𝑘/𝑞̃𝑘  is not satisfied with 𝐻𝑎 : 
𝑝1

𝑞1
≤
𝑝2

𝑞2
≤ ⋯ ≤

𝑝𝐾

𝑞𝐾
, the „Pool-

Adjacent-Violators‟  algorithm (Brunk et al. 1972) works to update 𝑝̂𝑘 and 𝑞̂𝑘 

until 𝑝̂𝑘/𝑞̂𝑘 does not decrease. Thereafter, the final updated estimates are MLEs 

of 𝑝𝑘 and 𝑞𝑘. 
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2.2  Optimizing maximum window size for count data 

The scanning window size is one of the parameters that should be selected by 

the researcher in cluster detection. Once this is determined, the result reports a 

cluster of closer size to maximum window size rather than smaller sub regions. 

With a larger scanning window size, the most likely cluster has the potential to 

exaggerate the conclusion. The cluster formed from combinations of small 

clusters in close could have the largest likelihood ratio test statistic, although it 

includes some areas with few events.  

To optimize maximum window size, Han et al. (2011) proposed two 

measures for count data: the Gini coefficient and the Cluster Information Criterion 

(CLIC). Each criterion offers optimal cluster size for detecting a collection of non-

overlapping clusters. 

 

2.2.1 Gini coefficient 

The Gini coefficient is a measurement of income distribution inequality 

developed by Gini (1912). It is based on the Lorenz curve, which consists of the 

percentage of population (𝑥-axis) and the proportion of the total income of the 

bottom 𝑥% of the population (𝑦-axis). Using a 45 degree line (𝑦 = 𝑥) to denote 
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perfect income distribution equality, the ratio of the area between the line of 

equality and Lorenz curve (𝐴) to the area under the 45 degree line (𝐴 + 𝐵) is 

defined as the Gini coefficient (Figure 1). It ranges from 0 to 1, with a value of 0 

and 1 corresponding to complete equality and inequality, respectively. Higher 

values indicate a higher income distribution disparity. 

Han et al. (2011) applied this concept to describe the distribution of events 

(e.g., death from cancer). In Figure 1, 𝑥-axis is the same as above, with the 

cumulative percentage of event plotted along the 𝑦-axis. The line at 45 degrees 

means that the events are randomly distributed–that is, that the number of events 

is proportional to the population of each region. If there is a significant cluster in 

the study region, it means that the distribution of events is not random but a biased 

state. 

 

 

 

 

 

 

 

 

 
A 

B 

Cumulative % of population  

•   𝑃 (𝑥, 𝑦) 

Cumulative % 

of income (or event) 

Figure 1. Graphical representation of the Gini coefficient 
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2.2.2 Cluster Information Criterion (CLIC) 

The scan-based cluster detection methods are a likelihood-based test. 

Therefore, Han et al. (2011) also proposed the Cluster Information Criterion 

(CLIC) similar to the Akaike‟s Information Criterion (AIC) (Akaike, 1974). AIC 

as the good criterion of model selection is 

AIC =  2(𝑙𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑) + 2(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝑖𝑛 𝑡𝑕𝑒 𝑚𝑜𝑑𝑒𝑙) 

It consists of two terms; one represents the goodness-of-fit and the other functions 

as a penalty for a model having too many parameters. The model with the 

minimum AIC value is the better model. 

Similarly, the CLIC for the Poisson model 𝑀 is defined as 

CLIC(𝑀) =  2∑𝐿𝐿𝑅(𝑧𝑖) + 𝑚𝑙𝑜𝑔(𝑝)

𝑚

𝑖=1

 

where 𝑧1, 𝑧2, … , 𝑧𝑚 represent the significant clusters (zones) in cluster model 𝑀, 

𝑚 the number of significant clusters in the model and 𝑝 the total population in 

those clusters. The sum of the log likelihood ratio of the significant clusters in the 

model represents the goodness-of-fit. 𝑚𝑙𝑜𝑔(𝑝) is regarded as the penalty term, 

reflecting that the number of significant clusters (𝑚) and the total population in 

those clusters (𝑝) have an inverse relationship. In other words, 𝑝 decreases as 𝑚 
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increases (more significant clusters) and 𝑝  increases as 𝑚  decreases (less 

significant clusters). Like AIC, the model with the lowest CLIC is preferred. 

 

2.3  Optimizing maximum window size for ordinal data 

Two measures, the Gini coefficient and Cluster Information Criterion (CLIC) 

proposed by Han et al. (2011), are evaluated for the Poisson model only. Here we 

adapt the two criteria applicable to the spatial scan statistic for ordinal model 

proposed by Jung, Kulldorff, and Klassen (2007). 

 

2.3.1 Gini coefficient 

In ordinal data, the Lorenz curve represents the distribution of higher order 

categories according to cumulative percentages of total cases. Therefore, if a 

detected cluster is significant, there are areas with high rates of higher-valued 

categories than others.  

Here we consider that there is only one significant cluster 𝑧  in the model. 

The 𝑥-coordinate of point 𝑃(𝑥, 𝑦) in Figure 1 is defined as: 

1  
∑ ∑ 𝑐𝑖𝑘𝑖∈𝑧 𝑘

∑ 𝐶𝑘𝑘
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To define the 𝑦-coordinate of 𝑃(𝑥, 𝑦), we need to consider how to weight 

on each category 𝑘 with the pool-adjacent-violators algorithm for the satisfaction 

of the order restriction called LRO (Jung, Kulldorff, and Klassen, 2007). We can 

write down the 𝑦-coordinate of 𝑃(𝑥, 𝑦) as 

1  
∑ 𝑘(𝑝̂𝑘 ∑ ∑ 𝑐𝑖𝑘𝑖𝜖𝑧 𝑘 )𝑘

∑ (𝑘𝐶𝑘)𝑘
 

Here, we assigned ordinal scores for the cases per category to reflect the order of 

categories. This idea is from the method of goodness-of-fit in ordinal response 

regression models (Lipsitz, Fitzmaurice, and Molenberghs, 1996). Plus, in 

numerator, to consider the case of the combined categories using the algorithm, 

we give a weighting on the total number of observations in the significant cluster 

𝑧  multiplied by MLE of 𝑝𝑘 under the alternative hypothesis. 

If more than two significant clusters exist, we can calculate each coordinates 

by cumulatively subtracting from 1. 
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2.3.2 Cluster Information Criterion (CLIC) 

Let 𝑧1, 𝑧2, … , 𝑧𝑚 be significant clusters (zones) in cluster model O, 𝑚 the 

number of significant clusters in the model and 𝑐𝑖𝑘 the number of observations in 

location 𝑖 and category 𝑘, then the CLIC for ordinal data can be expressed as  

CLIC(𝑂) =  2∑𝐿𝐿𝑅(𝑧𝑖) + 𝑚𝑙𝑜𝑔 (∑∑𝑐𝑖𝑘

𝐾

𝑘=1

𝑚

𝑖=1

)

𝑚

𝑖=1

 

The only difference from the CLIC for Poisson distribution is that 𝑝 is 

replaced by ∑ ∑ 𝑐𝑖𝑘
𝐾
𝑘=1

𝑚
𝑖=1  as a penalty term. It considers that the number of total 

observations in the significant clusters are an element of complexity in the ordinal 

model as the total population (𝑝) in 𝑧1, 𝑧2, … , 𝑧𝑚 in the Poisson model.  
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3. Simulation study 

3.1  Simulation setting 

In order to evaluate the performance of the two criteria in ordinal data, we 

conducted simulation studies using several cluster models in 25 districts (gu) of 

Seoul, Korea.  

In the first cluster model, we set 2,000 cases in the whole study region. A true 

cluster with high rates of higher-valued categories comprises three regions 

(Seocho-gu, Gangnam-gu, and Songpa-gu) with 200, 400, and 800 cases (see 

Figure 2). We assumed 𝐻0: 𝑝 = 𝑞 = (0.25, 0.25, 0.25, 0.25)  against five 

different alternative hypotheses meeting the LRO: 

Scenario A: 𝑝 = (0.10, 0.30, 0.30, 0.30) 

Scenario B: 𝑝 = (0.20, 0.20, 0.30, 0.30) 

Scenario C: 𝑝 = (0.20, 0.20, 0.20, 0.40) 

Scenario D: 𝑝 = (0.15, 0.25, 0.25, 0.35) 

Scenario E: 𝑝 = (0.15, 0.20, 0.25, 0.40) 

For the 15 situations, we generated 1,000 random data sets and searched for 

the clusters with high rates of high-valued categories using the circular SaTScan. 
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Then, we calculated the value of the two criteria for each candidate of maximum 

size (1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 25, 30, 35, 40, 45 and 50% of the total cases) 

and reported the frequency of optimal maximum window size chosen by the Gini 

(highest value) and CLIC (lowest value) among 1,000 random data sets. 

We also estimated sensitivity and positive predicted value (PPV) to evaluate 

the accuracy of the proposed criteria for ordinal data. The sensitivity and PPV are 

defined in each upper limit. In the case of the significant data sets at the α = 0.05 

level, sensitivity is the proportion of districts detected correctly among the 

districts in the true cluster, and PPV the proportion of districts detected correctly 

among the districts in the detected cluster. Larger values of these measures 

indicate that the result with the upper limit is more precise in detecting the true 

cluster.  

 

 

Figure 2. Study region for simulated cluster model 1 
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In addition, we considered three models with 𝐻𝑎 ∶ 𝑝 = (0.15, 0.20, 0.25,  

0.40) and 10,000 cases using both circular and elliptic shapes with default 

options for the shape, angle, and non-compactness parameter (medium penalty). 

Figure 3 and Table 1 show the details of these cluster models.  

 

 

Figure 3. Study region for simulated cluster model 2, 3, 4 

 

(a) Cluster model 2               (b) Cluster model 3                             

       (c) Cluster model 4                            
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Table 1. Simulated cluster model 2, 3, 4 

Cluster 

model 

Number of 

clusters 

Number of 

districts 

Number of cases  

in clusters 

2 1 5 2000, 3000, 4000 

3 2 1 / 2 1500 / 2000 

4 2 2 / 3 1500 / 2000 

 

3.2  Results 

Tables 2–4 show the results of the first simulated cluster model. For each 

scenario and criterion, the cells most chosen as the optimal maximum window 

size are shaded in gray (the same in Tables 5–8). The most picked upper limits are 

the same for both Gini coefficient and CLIC. In most cases, the best upper limit is 

achieved in each percentage of cases in true cluster. In addition, the sensitivity and 

PPV are high results in the best upper limit category in each except for scenario B 

with 10% of the total cases. This is because the ordinal model for 𝐻𝑎: 𝑝 =

(0.20, 0.20, 0.30, 0.30) attains the lower power, sensitivity, and PPV than others 

according to Jung, Kulldorff, and Klassen (2007) as well as a small number of 

cases in true cluster. The sensitivity trend toward decrease was observed when the 

upper limits are lower than the best upper limit. Conversely, PPV tends to 

decrease when the upper limits are higher than the best upper limit. Compared to 
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the true cluster, the results imply that the significant clusters detected the small 

area with the lower upper limit and large area with the higher upper limit. 

The results of the simulated cluster model 2 are listed in Tables 5–6. The 

study region of the second model is irregularly shaped as shown in Figure 3a. As a 

result, CLIC tends to pick a higher upper limit (close to the percentage of total 

cases) than the Gini coefficient. The SaTScan outputs show that the districts in 

true clusters are detected separately when using the scanning window size chosen 

by the Gini coefficient. With CLIC criteria, we identified only one (exactly the 

same as the true cluster) or two (making up the true cluster) significant clusters.  

Further, we found that the results of the CLIC using the elliptic shape are closer to 

the percentage of the total cases, in comparison to using the circular shape. 

In the case of cluster model 3 and 4, the Gini and CLIC generally picked the 

upper limit being similar to 15% or 20% of the total cases as shown in Tables 7 

and 8. However, when using the elliptic shape, the most chosen upper limit based 

on CLIC was off from our estimate. According to the SaTScan output, there were 

some districts in-between the true clusters. 
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Table 2. Simulation results of cluster model 1 (10% of the total cases in study region) 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

Scenario A  
                 

Gini 
                 

# of OMWS 0 0 3 0 36 40 109 729 5 36 24 15 2 1 0 0 0 

Sensitivity - - 0.667 - 0.648 0.642 0.765 0.998 0.800 0.991 0.986 1.000 1.000 1.000 - - - 

PPV - - 1.000 - 1.000 0.979 0.980 0.997 0.650 0.748 0.580 0.495 0.429 0.375 - - - 

CLIC 
                 

# of OMWS 0 0 7 0 6 8 138 771 5 31 21 11 1 1 0 0 0 

Sensitivity - - 0.571 - 0.444 0.583 0.676 0.996 0.800 0.978 0.984 1.000 1.000 1.000 - - - 

PPV - - 1.000 - 1.000 1.000 0.989 0.996 0.650 0.745 0.582 0.494 0.429 0.375 - - - 

Scenario B 
                 

Gini 
                 

# of OMWS 0 26 120 17 16 15 31 2 19 20 23 16 9 11 8 11 12 

Sensitivity - 0.167 0.325 0.098 0.229 0.333 0.645 0.000 0.614 0.700 0.739 0.917 1.000 0.788 0.917 0.879 0.889 

PPV - 0.500 0.942 0.294 0.656 1.000 0.946 0.000 0.610 0.567 0.489 0.463 0.417 0.277 0.278 0.245 0.217 

CLIC 
                 

# of OMWS 0 26 122 17 16 16 32 3 17 19 24 17 9 10 9 10 9 

Sensitivity - 0.167 0.325 0.098 0.229 0.333 0.646 0.111 0.608 0.702 0.750 0.922 1.000 0.767 0.889 0.900 0.852 

PPV - 0.500 0.939 0.294 0.656 1.000 0.948 0.111 0.603 0.570 0.494 0.465 0.417 0.271 0.269 0.252 0.209 

                  

                  

                  

                  

                  



20 

 

Scenario C                  

Gini                  

# of OMWS 0 0 9 3 11 14 180 598 13 60 60 28 11 5 3 2 3 

Sensitivity - - 0.407 0.333 0.515 0.357 0.670 0.997 0.692 0.944 0.967 1.000 1.000 1.000 1.000 0.833 1.000 

PPV - - 1.000 0.667 1.000 0.964 0.990 0.997 0.633 0.728 0.592 0.492 0.424 0.350 0.300 0.220 0.237 

CLIC                  

# of OMWS 0 0 26 3 7 16 198 600 9 55 51 19 9 3 3 0 1 

Sensitivity - - 0.436 0.333 0.333 0.333 0.670 0.997 0.704 0.945 0.967 1.000 1.000 1.000 1.000 - 1.000 

PPV - - 1.000 0.833 0.929 1.000 0.987 0.998 0.648 0.727 0.592 0.489 0.423 0.361 0.300 - 0.231 

Scenario D                  

Gini                  

# of OMWS 0 0 23 3 14 15 214 450 26 78 71 45 24 13 8 8 8 

Sensitivity - - 0.333 0.333 0.429 0.378 0.667 0.993 0.667 0.932 0.953 0.993 0.986 1.000 1.000 0.958 0.958 

PPV - - 1.000 0.667 1.000 0.967 0.988 0.997 0.656 0.708 0.592 0.483 0.416 0.349 0.308 0.268 0.237 

CLIC                  

# of OMWS 0 0 45 8 14 21 252 426 29 72 60 34 15 8 7 5 4 

Sensitivity - - 0.400 0.417 0.381 0.365 0.667 0.993 0.667 0.926 0.939 0.990 0.978 1.000 1.000 1.000 1.000 

PPV - - 0.989 0.813 1.000 0.976 0.990 0.997 0.657 0.702 0.590 0.481 0.408 0.354 0.305 0.278 0.245 

Scenario E                  

Gini                  

# of OMWS 0 0 1 0 29 25 130 684 9 47 40 18 5 5 6 1 0 

Sensitivity - - 0.333 - 0.586 0.573 0.705 0.995 0.667 0.950 1.000 1.000 1.000 1.000 1.000 1.000 - 

PPV - - 1.000 - 0.954 1.000 0.996 0.997 0.667 0.734 0.601 0.492 0.429 0.367 0.311 0.273 - 

CLIC                  

# of OMWS 0 1 5 1 12 17 170 693 9 35 35 12 4 3 2 1 0 

Sensitivity - 0.333 0.600 0.667 0.472 0.529 0.671 0.995 0.667 0.962 1.000 1.000 1.000 1.000 1.000 1.000 - 

PPV - 1.000 0.933 1.000 0.958 1.000 0.995 0.997 0.667 0.740 0.601 0.500 0.429 0.375 0.317 0.273 - 
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Table 3. Simulation results of cluster model 1 (20% of the total cases in study region) 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

Scenario A  
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 97 76 214 549 36 22 5 1 0 0 

Sensitivity - - - - - - - 0.924 0.904 0.992 0.995 1.000 1.000 1.000 1.000 - - 

PPV - - - - - - - 0.989 0.964 0.983 1.000 0.750 0.595 0.486 0.429 - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 3 0 17 912 37 25 5 1 0 0 

Sensitivity - - - - - - - 0.556 - 0.706 0.991 1.000 1.000 1.000 1.000 - - 

PPV - - - - - - - 1.000 - 1.000 0.997 0.750 0.596 0.486 0.429 - - 

Scenario B 
                 

Gini 
                 

# of OMWS 0 2 4 2 17 21 0 18 8 88 321 88 76 86 38 23 28 

Sensitivity - 0.000 0.000 0.000 0.333 0.333 - 0.333 0.333 0.659 0.849 0.939 0.996 1.000 0.991 0.971 0.988 

PPV - 0.000 0.000 0.000 1.000 0.976 - 0.894 1.000 0.978 0.940 0.694 0.568 0.477 0.399 0.314 0.280 

CLIC 
                 

# of OMWS 0 2 4 2 25 23 0 21 10 100 311 93 75 79 33 20 22 

Sensitivity - 0.000 0.000 0.000 0.333 0.333 - 0.333 0.333 0.660 0.842 0.928 0.991 1.000 0.990 0.983 0.985 

PPV - 0.000 0.000 0.000 0.960 0.978 - 0.909 1.000 0.981 0.937 0.686 0.565 0.476 0.400 0.318 0.279 
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Scenario C 
 

                

Gini                  

# of OMWS 0 0 0 0 0 0 0 34 19 118 705 57 31 29 4 2 1 

Sensitivity - - - - - - - 0.657 0.667 0.932 0.981 0.994 1.000 1.000 1.000 1.000 1.000 

PPV - - - - - - - 1.000 0.921 0.986 0.993 0.746 0.584 0.485 0.388 0.333 0.273 

CLIC                  

# of OMWS 0 0 0 0 0 1 0 1 0 53 827 58 29 27 3 1 0 

Sensitivity - - - - - 0.333 - 0.333 - 0.667 0.976 0.994 1.000 1.000 1.000 1.000 - 

PPV - - - - - 1 - 1.000 - 0.978 0.993 0.746 0.586 0.484 0.375 0.333 - 

Scenario D                  

Gini                  

# of OMWS 0 0 0 0 1 0 0 18 14 68 701 78 57 43 9 6 5 

Sensitivity - - - - 0.333 - - 0.611 0.619 0.824 0.977 0.991 1.000 1.000 1.000 1.000 0.933 

PPV - - - - 1.000 - - 1.000 0.905 0.978 0.992 0.736 0.588 0.483 0.417 0.324 0.269 

CLIC                  

# of OMWS 0 0 0 0 2 2 0 5 6 56 757 70 57 32 7 5 1 

Sensitivity - - - - 0.333 0.500 - 0.467 0.500 0.679 0.969 0.990 1.000 1.000 1.000 1.000 1.000 

PPV - - - - 1.000 0.750 - 1.000 0.833 0.994 0.991 0.735 0.589 0.484 0.421 0.313 0.273 

Scenario E                  

Gini                  

# of OMWS 0 0 0 0 0 1 0 40 19 87 752 55 29 15 2 0 0 

Sensitivity - - - - - 0.667 - 0.858 0.825 0.946 0.991 0.976 1.000 1.000 1.000 - - 

PPV - - - - - 1.000 - 1.000 1.000 0.981 0.998 0.732 0.593 0.486 0.402 - - 

CLIC                  

# of OMWS 0 0 0 0 0 1 0 2 1 34 866 55 28 11 2 0 0 

Sensitivity - - - - - 0.667 - 0.333 0.667 0.706 0.985 0.970 1.000 1.000 1.000 - - 

PPV - - - - - 1.000 - 1.000 1.000 1.000 0.997 0.728 0.593 0.494 0.402 - - 
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Table 4. Simulation results of cluster model 1 (40% of the total cases in study region) 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

Scenario A 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 134 109 189 3 492 55 18 

Sensitivity - - - - - - - - - - 0.983 0.976 1.000 0.889 1.000 1.000 1.000 

PPV - - - - - - - - - - 0.994 0.989 0.993 0.622 1.000 0.709 0.524 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 0 2 900 74 24 

Sensitivity - - - - - - - - - - - - - 0.667 1.000 1.000 1.000 

PPV - - - - - - - - - - - - - 1.000 1.000 0.709 0.532 

Scenario B 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 1 5 0 0 4 41 85 442 191 231 

Sensitivity - - - - - - - 0.333 0.333 - - 0.333 0.667 0.667 0.992 0.997 0.996 

PPV - - - - - - - 1.000 1.000 - - 1.000 1.000 0.857 0.988 0.677 0.513 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 1 8 0 0 4 49 93 452 176 217 

Sensitivity - - - - - - - 0.333 0.333 - - 0.333 0.667 0.667 0.994 0.996 0.995 

PPV - - - - - - - 1.000 1.000 - - 1.000 1.000 0.851 0.990 0.677 0.514 
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Scenario C 
 

                

Gini                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 12 10 94 11 717 111 45 

Sensitivity - - - - - - - - - - 0.667 0.700 0.972 0.788 1.000 1.000 1.000 

PPV - - - - - - - - - - 1.000 0.867 0.977 0.894 0.999 0.709 0.522 

CLIC                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 9 11 818 114 48 

Sensitivity - - - - - - - - - - - - 0.667 0.667 1.000 1.000 1.000 

PPV - - - - - - - - - - - - 1.000 1.000 1.000 0.712 0.521 

Scenario D                  

Gini                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 7 8 55 16 658 153 103 

Sensitivity - - - - - - - - - - 0.667 0.667 0.915 0.708 0.999 1.000 1.000 

PPV - - - - - - - - - - 1.000 0.917 0.975 0.958 0.999 0.698 0.533 

CLIC                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 24 24 690 160 102 

Sensitivity - - - - - - - - - - - - 0.667 0.681 1.000 1.000 1.000 

PPV - - - - - - - - - - - - 1.000 0.944 0.999 0.697 0.532 

Scenario E                  

Gini                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 36 19 37 4 767 115 22 

Sensitivity - - - - - - - - - - 1.000 0.965 0.973 0.833 1.000 1.000 1.000 

PPV - - - - - - - - - - 1.000 0.970 1.000 0.750 1.000 0.710 0.515 

CLIC                  

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 3 4 850 121 22 

Sensitivity - - - - - - - - - - - - 0.667 0.667 1.000 1.000 1.000 

PPV - - - - - - - - - - - - 1.000 0.875 1.000 0.708 0.515 
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Table 5. Simulation results of cluster model 2 (Circular shape) 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

4000 cases 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 29 536 231 101 57 36 0 0 0 0 

Sensitivity - - - - - - - 1.000 1.000 1.000 1.000 1.000 1.000 - - - - 

PPV - - - - - - - 1.000 1.000 1.000 0.986 0.990 1.000 - - - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 125 135 0 0 1 739 

Sensitivity - - - - - - - - - - - 1.000 1.000 - - 0.800 1.000 

PPV - - - - - - - - - - - 1.000 1.000 - - 0.667 0.714 

3000 cases 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 556 27 317 8 92 0 0 0 0 0 0 

Sensitivity - - - - - - 0.999 1.000 0.999 1.000 0.998 - - - - - - 

PPV - - - - - - 1.000 1.000 1.000 0.750 1.000 - - - - - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 1 954 0 0 0 45 0 0 

Sensitivity - - - - - - - - - 0.800 0.999 - - - 1.000 - - 

PPV - - - - - - - - - 1.000 1.000 - - - 0.714 - - 
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2000 cases                  

Gini                  

# of OMWS 0 0 0 0 28 554 291 10 9 98 0 0 10 0 0 0 0 

Sensitivity - - - - 1.000 0.997 0.999 0.980 1.000 1.000 - - 1.000 - - - - 

PPV - - - - 1.000 1.000 1.000 0.771 0.778 1.000 - - 0.714 - - - - 

CLIC                  

# of OMWS 0 0 0 0 0 0 0 3 14 982 0 0 1 0 0 0 0 

Sensitivity - - - - - - - 0.800 0.957 0.999 - - 1.000 - - - - 

PPV - - - - - - - 1.000 1.000 1.000 - - 0.714 - - - - 
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Table 6. Simulation results of cluster model 2 (Elliptic shape) 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

4000 cases 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 33 557 217 16 73 32 0 69 3 0 

Sensitivity - - - - - - - 1.000 0.999 1.000 0.988 1.000 - 1.000 1.000 1.000 - 

PPV - - - - - - - 1.000 0.999 0.984 0.850 0.960 - 0.809 1.000 0.833 - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 0 8 990 2 0 

Sensitivity - - - - - - - - - - - - - 0.800 0.999 1.000 - 

PPV - - - - - - - - - - - - - 1.000 1.000 0.833 - 

3000 cases 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 663 32 105 14 123 11 46 6 0 0 0 

Sensitivity - - - - - - 0.997 1.000 1.000 1.000 0.998 1.000 0.991 1.000 - - - 

PPV - - - - - - 0.998 0.995 0.856 0.782 0.958 0.779 1.000 0.833 - - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 999 1 0 0 0 

Sensitivity - - - - - - - - - - - - 0.990 1.000 - - - 

PPV - - - - - - - - - - - - 1.000 0.833 - - - 
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2000 cases 
 

                

Gini                  

# of OMWS 0 0 0 0 37 672 104 35 5 102 40 5 0 0 0 0 0 

Sensitivity - - - - 0.989 0.987 0.996 0.977 0.920 0.994 0.995 1.000 - - - - - 

PPV - - - - 1.000 0.998 0.923 0.849 1.000 0.867 1.000 0.833 - - - - - 

CLIC                  

# of OMWS 0 0 0 0 0 0 0 0 0 1 999 0 0 0 0 0 0 

Sensitivity - - - - - - - - - 1.000 0.963 - - - - - - 

PPV - - - - - - - - - 1.000 1.000 - - - - - - 
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Table 7. Simulation results of cluster model 3 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

Circular shape 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 942 57 0 0 0 1 0 0 

Sensitivity - - - - - - - - - 1.000 1.000 - - - 1.000 - - 

PPV - - - - - - - - - 1.000 1.000 - - - 0.375 - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 748 0 0 0 0 241 11 

Sensitivity - - - - - - - - - - 1.000 - - - - 1.000 1.000 

PPV - - - - - - - - - - 1.000 - - - - 0.500 0.429 

Elliptic shape 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 940 49 0 0 0 11 0 0 

Sensitivity - - - - - - - - - 1.000 1.000 - - - 1.000 - - 

PPV - - - - - - - - - 1.000 1.000 - - - 0.682 - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 998 2 0 

Sensitivity - - - - - - - - - - - - - - 1.000 1.000 - 

PPV - - - - - - - - - - - - - - 0.666 0.500 - 
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Table 8. Simulation results of cluster model 4 

  Upper limit 

  1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50 

Circular shape 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 376 407 99 101 6 11 0 0 0 0 

Sensitivity - - - - - - - 1.000 1.000 1.000 0.998 1.000 1.000 - - - - 

PPV - - - - - - - 1.000 1.000 1.000 0.833 0.813 0.833 - - - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 2 3 25 965 1 0 4 0 0 0 

Sensitivity - - - - - - - 1.000 0.933 0.976 0.998 1.000 - 1.000 - - - 

PPV - - - - - - - 1.000 1.000 1.000 0.835 0.714 - 0.714 - - - 

Elliptic shape 
                 

Gini 
                 

# of OMWS 0 0 0 0 0 0 0 317 556 19 93 3 0 0 12 0 0 

Sensitivity - - - - - - - 1.000 0.933 0.976 0.998 1.000 - - 1.000 - - 

PPV - - - - - - - 1.000 1.000 1.000 0.835 0.714 - - 0.714 - - 

CLIC 
                 

# of OMWS 0 0 0 0 0 0 0 0 0 0 0 0 2 2 996 0 0 

Sensitivity - - - - - - - - - - - - 0.800 0.800 1.000 - - 

PPV - - - - - - - - - - - - 1.000 1.000 0.833 - - 
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4. Application 

4.1  Data explanation 

Two real data examples were used for demonstrating the utility of the two 

criteria in the ordinal model. The first data set is the 2013 birth order data based 

on birth certificate registrations provided by the Korean Statistical Information 

Service (KOSIS). Birth order was recorded as first, second, and third child and 

over, and we used the data set of 25 districts (gu) in Seoul only. Table 9 shows the 

number of cases and percentage by category of the birth order. 

Table 9. Data on birth order in Seoul (2013) 

    Birth order n % 

1 
 

First child 48248 57.5 

2 
 

Second child 29656 35.4 

3   Third child and over 5944 7.09 

 

The second data set is obtained from the 2013 Korea Community Health 

Survey (KCHS) conducted by the Korea Centers for Disease Control and 

Prevention. The KCHS is an annual nationwide health survey, which uses 

multistage sampling design to obtain a representative sample of adults aged over 

19 in 253 communities. We used KCHS data on educational levels in 25 districts 

(gu) of Seoul, South Korea. We classified educational level into four categories: 
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elementary school and under, middle school, high school, and college and above. 

The data set is explained in detail in Table 10. 

Table 10. Data on educational levels in Seoul (2013) 

    Educational level  n % 

1 
 

Elementary school and under 2996 13.0 

2 
 

Middle school 1985 8.6 

3 
 

High school 6040 26.1 

4   College and above 12067 52.3 

 

For the two data sets, we used the spatial scan statistic for ordinal data to 

search the clusters with high rates of higher-valued categories, and determined the 

maximum scanning window size based on the Gini coefficient and the CLIC. Both 

circle and ellipse are used as the scanning window shape. 

 

4.2  Results 

The results of the birth order data are presented in Figure 4. First, when we 

applied the circular shape to the data, both Gini and CLIC picked 30% as the 

maximum scanning window size. At the same time, the detected clusters were 

exactly the same as the clusters chosen the maximum cluster size of 50%. In this 

case, the most likely cluster contained the 29.1 percentage of the total cases. The 
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elliptic scan statistic, however, provided slightly different results. Gini and CLIC 

picked 12% and 35% as the maximum scanning window size, respectively. The 

detected clusters based on the CLIC result (35%) were equal to that of using 50% 

and 34% of the total cases in the most likely cluster. However, we found that the 

result of the Gini included only some parts of the most likely cluster based on 

default size. According to Table 11, the most likely cluster and some secondary 

clusters based on the Gini result (12%) can reject the null hypothesis on their own 

strength. This means that the most likely cluster when using the default upper 

limit (50%) contains some districts whose tendency to be high rates in the higher-

valued category is unapparent than others. For example, the observed proportions 

of the three categories in the most likely clusters using 50% (default) and 12% 

(Gini result) as the upper limit are (0.555, 0.368, 0.077) and (0.546, 0.374, 0.080), 

respectively. Compare these with the observed proportions (0.575, 0.354, 0.071) 

in the whole study area, and the increasing order trend is more clear in the latter 

case, although it has the smaller log likelihood ratio (LLR) than the former.  
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Table 11. Some spatial clusters of high rates of later birth order appear in Figure 

4(b): Most likely cluster (upper limit at 50%); most likely cluster, 2nd secondary 

cluster, and 3rd secondary cluster (upper limit at 12%) 

Upper  

limit 
Cluster # Districts # Obs in each category LLR p-value 

50% Most likely 9 (15806, 10493, 2192) 40.00 0.001 
      

12% Most likely 3 (4894, 3348, 720) 19.23 0.001 

 
2nd Secondary 4 (5554, 3287, 794) 10.52 0.005 

  3rd Secondary 2 (5565, 3719, 729) 8.95 0.008 

 

Figure 5 summarizes the results for educational level data. In both scanning 

window shape, two criteria chose the same optimal maximum window sizes and 

CLIC picked the larger maximum window size than Gini (5% for Gini and 12% 

for CLIC). Further, the result in Figure 5 indicates that both scanning window 

shapes detected similar clusters. A characteristic feature of the results is that the 

detected districts in the significant clusters based on the Gini and CLIC results are 

more widespread than the results using the default size (50%). This indicates the 

possibility that the irregular-shaped clusters (not shaped in circle or ellipse) can be 

detected by using small maximum window size. 
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    Gini (30%)      CLIC (30%)      Default (50%) 

(a) Circular shape 

   

     Gini (12%)      CLIC (35%)      Default (50%) 
 

(b) Elliptic shape 

Figure 4. Results of the birth order data using the maximum scanning window size chosen by Gini, CLIC, and default setting 
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    Gini (5%)      CLIC (12%)      Default (50%) 
 

(a) Circular shape 

   

    Gini (5%)      CLIC (12%)      Default (50%) 

(b) Elliptic shape 

Figure 5. Results of the education level data using the maximum scanning window size chosen by Gini, CLIC, and default setting 
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5. Discussion and Conclusion 

The objective of this study was to examine the applicability of the Gini and 

CLIC to the ordinal model proposed by Jung, Kulldorff, and Klassen (2007). 

Through the simulation study and the real data examples, we conclude that the 

two criteria are proven to be useful criteria to optimize maximum window size in 

spatial scan statistic for ordinal data as well as for the Poisson model.  

There are several findings in the simulation studies and the applications. First, 

we found that using the default upper limit for the scanning window size (50% of 

the total cases) tends to detect the unnecessarily big cluster. Second, the two 

measures pick the same size as the optimal maximum window size in most cases. 

However, when the true clusters are irregular-shaped or located slightly apart from 

each other, the Gini chooses a smaller window size than the CLIC, which gives 

several smaller clusters. Although the results show that they are all in different 

clusters, the clusters can be regarded as one cluster if they are contiguous. In other 

words, the use of the Gini for optimizing scanning window size makes it possible 

to detect even the irregular-shaped clusters. 

In conclusion, the results of this study demonstrate the necessity of 

optimizing the maximum window size in spatial scan statistic for ordinal data, and 
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the Gini coefficient and the CLIC are applicable to the ordinal model for 

optimizing the maximum scanning window size.  
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국 문 요 약 

 

순서형 자료를 위한 공간검색통계량에서  

최대 후보 군집 크기의 최적화 

 

우도비 검정을 기반으로 하는 공간검색통계량은 어떤 사건에 대한 분포가 다른 

지역의 분포와 통계적으로 유의하게 다른 공간 군집(spatial cluster)을 탐색하기 

위한 방법으로 여러 분야에서 이용되고 있다. 이 때, 군집 탐색 결과는 사전에 

설정한 후보 군집(scanning window)의 모양뿐만 아니라 최대 군집 크기에 따라 

달라질 수 있다. 보통 최대 군집 크기를 보통 전체 인구의 50%로 설정하게 되는데 

이를 뒷받침할 만한 연구 결과가 충분하지 않다. 

최근 Han 등(2011)이 최적의 최대 후보 군집 크기를 결정하기 위한 방법으로 

지니계수(Gini Coefficient)와 Cluster Information Criterion (CLIC)를 제안하였다. 

하지만, 포아송 분포를 가정한 공간검색통계량에 제한하여 적용된 방법으로 다른 

분포에서의 활용 가능성은 밝혀진 바 없다. 본 연구는 순서형 자료를 위한 

공간검색통계량(Jung 등, 2007)에 적용할 수 있는 두 방법의 활용 방안을 제안하고, 

모의실험 및 실제 자료에의 적용을 통해 적합성을 살펴보는 데에 목적이 있다. 

그 결과, 지니계수와 CLIC 모두 실제 군집에 근사한 최대 후보 군집 크기를 

결정함을 확인할 수 있었다. 단, 예외적으로 실제 군집의 모양이 비정형이거나 

군집들이 다소 떨어져 있는 경우, 지니계수가 CLIC 보다 최대 후보 군집 크기를 작게 
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선택하였으며 결과적으로 작은 크기의 군집을 여러 개 탐색하게 됨으로써 실제 

군집을 좀 더 정확히 찾는 경향이 있었다.  

이로써 본 연구는 순서형 자료를 위한 공간검색통계량에서 최대 후보 군집 

크기를 이용하면 보다 효율적인 군집 탐색이 가능함을 보였고, 이에 지니계수와 

CLIC 가 유용하게 활용될 수 있을 것으로 기대된다. 

 

핵심되는 말: 공간검색통계량, 순서형 자료, 최대 후보 군집 크기, 지니계수, CLIC 

 

 

 


