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Abstract

Spatial scan statistics are widely used in spatial epidemiology to identify
areas with high or low rates of outcome. This scan-based method needs a scanning
window, which is defined by its shape and maximum size. When deciding on the
upper limit of the window size, 50% of the total population is often used.
However, there is no rationale and the reported clusters could be too larger than

the true ones.

Recently, Han et al. (2011) proposed using the Gini coefficient as a measure
to assess the degree of heterogeneity of the cluster models. They also considered
another measure called the Cluster Information Criterion (CLIC) similar to
Akaike’s Information Criterion (AIC). The two measures were evaluated for the

Poisson model only and applicability to other models has not been proved.

In this study, we adapt the two measures applicable to the ordinal model
proposed by Jung, Kulldorff, and Klassen (2007). Through a simulation study and
real data examples, we show that the two measures give consistent results except
when the true clusters are irregular-shaped or located slightly apart from each

other. In these cases, the Gini coefficient picks a smaller window size as an

Vi



optimal maximum than CLIC. In doing so, it reflects a tendency to detect the

clusters that are more close to true ones by detecting a set of several small clusters.

The results of this study demonstrate the necessity of optimizing the
maximum window Size in spatial scan statistic for ordinal data as well as for the
Poisson model. Further, we believe that the two measures can be useful to
optimize the maximum scanning window size in spatial scan statistic for ordinal

data.

Key words: Spatial scan statistic; ordinal data; maximum window size; Gini

coefficient; Cluster Information Criterion
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1. Introduction

The spatial scan statistic based on the likelihood ratio test has been widely
used in many fields, such as epidemiology and disease surveillance. The purpose
of this method is to detect any statistically significant spatial cluster where the
distribution of events (e.g., disease prevalence, incidence, and mortality) differs
from that of other regions.

In this process, the candidate areas (scanning windows) are created at the
centroids across the study region in varying pre-defined shapes and sizes.
Numerous studies have been made on comparing methods for scan-based cluster
detection methods in different shapes (e.qg., circular, elliptic) (Goujon-Bellec et al.,
2011; Grubesic, Wei, and Murray, 2014; Huang, Pickle, and Das, 2008). On the
other hand, the subject of scanning window sizes has received relatively less
attention.

The scanning window size is usually set to a maximum 50% of the total
population, as in the case of many researches. However, it may draw an
exaggerated conclusion. That is, with a larger scanning window size, the most
likely cluster will potentially include several secondary clusters and less
informative areas. Furthermore, Ribeiro and Coasta (2012) have mentioned that

cluster detection results can be sensitive to the maximum size.

1



Recently, Han et al. (2011) suggested using the Gini coefficient and Cluster
Information Criterion (CLIC) to determine the optimal maximum window size.
However, this research only evaluated for a Poisson model and the applicability of
other probability models has not been proven yet.

In this paper, we propose the application of the two measures for an ordinal
model put forward by Jung, Kulldorff, and Klassen (2007). In chapter 2, we
briefly review the spatial scan statistic for count and ordinal data and provide
descriptions of the Gini coefficient and Cluster Information Criterion (CLIC)
required for optimizing maximum window size for count data. From there, the
application of two optimization criteria for ordinal data is proposed and in
chapters 3 and 4, the performance of the criteria is evaluated via simulation study
and real data examples. We discuss our findings and present the conclusion in

chapter 5.



2. Method

2.1 Spatial scan statistic

The spatial scan statistic based on the likelihood ratio test is one of the
cluster detection methods. Starting with the Bernoulli and Poisson model
(Kulldorff, 1997), methods for various models have been developed, such as
ordinal, exponential, multinomial, and normal (Cook, Gold, and Li, 2007; Huang,
Kulldorff, and Gregorio, 2007; Jung, Kulldorff, and Klassen, 2007; Jung,
Kulldorff, and Richard, 2010; Kulldorff, Huang, and Konty, 2009). These are used
to detect any statistically significant spatial cluster where the distribution of event
(e.g., disease prevalence, incidence, and mortality) differs from that of other
regions. For each centroid of the study region, the candidate areas (scanning
window Z) are formed as pre-defined shapes with maximum window size, over
which likelihood ratio test statistics are calculated. The candidate area with the
maximum likelihood defines the most likely cluster and those that are able to
reject the null hypothesis on their own strength define the secondary clusters. This

process is represented as follows:

_maxzy,L(Z,0) max;L(Z, 0)
Cmaxzy L(Z,0)  L(B)




In most cases, the maximum cluster size is selected to be less than, or equal
to, 50% of the total population with circular or elliptic shape. The spatial scan
statistics for several models with these two shapes can be implemented using the
SaTScan (www.satscan.org). The elliptic version of the spatial scan statistic uses
the elliptic-shaped scanning window with three options (shapes, angles, and non-
compactness) (Kulldorff et al., 2006). The shape of the ellipse is defined by the
ratio of the longest to the shortest axis of the ellipse. The default values of shapes
provided by SaTScan software are 1 (= circle), 1.5, 2, 3, 4 or 5. Each shape has
the angle between the horizontal line and the semi-major axis of the ellipse (4, 6,
9, 12, and 15). Further, we can customize the option for non-compactness penalty
in the form of [4s/(s + 1)2]%, where s is the shape parameter and a is the
non-compactness penalty parameter (a = 1: strong penalty; a = 1/2: medium
penalty (default); a = 0: no penalty). It multiplies the log likelihood ratio and the

ellipses with the larger penalty are better-fitted for compact clusters.

2.1.1 Scan statistic for count data

The scan statistic for count data assumed a Poisson distribution. The null

hypothesis is that the incidence rates of events are the same within and outside the



scanning window, while the alternative hypothesis is that the rate inside the

scanning window is higher (or lower) than outside:

Hy:p=q vs. Hy:p>q(orp<q)

where p is the incidence rate of events within scanning window Z and q is the
incidence rate outside it. If ¢, and n, represent the number of cases and
populations in scanning window Z, then C=),c, and N =), n, will be the
total number of cases and populations in the study area. The likelihood ratio test
statistic with scanning window Z in a Poisson model (Kulldorff, 1997) is given

by

= C-c
Gl = N
¢ ny, N-—ny

(%)

and Z with the maximum likelihood ratio test statistic being the most likely

AZ:

cluster. If the cluster area has a lower incidence rate of events, the indicator

function is replaced by I (Z—Z < %)
Z —nz



2.1.2 Scan statistic for ordinal data

Jung, Kulldorff, and Klassen (2007) proposed the spatial scan statistic for
ordinal data, such as education level and cancer stage. In the ordinal model, an
alternative hypothesis for detecting clusters with high rates of higher-valued
category has an order restriction called the likelihood ratio ordering (LRO)

(Dykstra, Kochar, and Robertson, 1995).

If an ordinal variable has K categories (k =1, ...,K), the probability of
being in k of inside and outside the scanning window Z denote p, and g,

respectively. The likelihood ratio test statistics in sub-regions i (i =1,...,1) for

testing Hy: py = qq, ..., Px = qx against Hy: 22 <22 < ... < PK g
q1 qz dk

B maxz y L(Z,p1, - Pk Q1> k) _ maxzL(Z)
maxy y, L(Z,p1, -, Px> G1s -+ k) Ly

with

L(Z)=ﬂ<ﬂp | Jae

i€z i€z
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Zl Cik Ck

)
T16)



where c;, is the number of observations in region i and category k, Pox =
C,/C is the maximum likelihood estimator (MLE) of p, under the null
hypothesis, and p, and g, are MLEs of p, and g, under the alternative
hypothesis. The MLEs of p, and g, are expressed by Dykstra, Kochar, and

Robertson (1995) as follows:

(F7) oo (g |7, = 2 (F) B (55 1)
w WrDO\w +ul J, W, w+ul/,

W, + U, U W, + U, U
( U )E(W+U><W+UA),<=""( U )E(W+U)<W+UA>k

where Wk = ZiEZ Cik » Uk = ZieZ Cik » W = Zk Wk , and U= Zk Uk . Total

Pr

Gk

number of observations in category k (= Ci) is the sum of W, and Uy; thus,
the total number of observations in study region C = W + U. Each isotonic
regression on T = {(8y,..,0,); 60, < <6} or A={(6,...,0,);6, ==
6,} with 6, =W, /(W,, + U, ). When the ratio of the unrestricted MLEs
Pr/qr 1s non-decreasing for all k (=1, ...,K), p, and g, are the MLEs under

the H,. If $,/d, is not satisfied with H,: 22 <Pz <. <PK
q1 q2 dK

, the ‘Pool-

Adjacent-Violators’ algorithm (Brunk et al. 1972) works to update p, and gy
until p,/q, does not decrease. Thereafter, the final updated estimates are MLES

of p, and qy.



2.2 Optimizing maximum window size for count data

The scanning window size is one of the parameters that should be selected by
the researcher in cluster detection. Once this is determined, the result reports a
cluster of closer size to maximum window size rather than smaller sub regions.
With a larger scanning window size, the most likely cluster has the potential to
exaggerate the conclusion. The cluster formed from combinations of small
clusters in close could have the largest likelihood ratio test statistic, although it

includes some areas with few events.

To optimize maximum window size, Han et al. (2011) proposed two
measures for count data: the Gini coefficient and the Cluster Information Criterion
(CLIC). Each criterion offers optimal cluster size for detecting a collection of non-

overlapping clusters.

2.2.1 Gini coefficient

The Gini coefficient is a measurement of income distribution inequality
developed by Gini (1912). It is based on the Lorenz curve, which consists of the
percentage of population (x-axis) and the proportion of the total income of the
bottom x% of the population (y-axis). Using a 45 degree line (y = x) to denote

8



perfect income distribution equality, the ratio of the area between the line of
equality and Lorenz curve (A) to the area under the 45 degree line (A + B) is
defined as the Gini coefficient (Figure 1). It ranges from 0 to 1, with a value of 0
and 1 corresponding to complete equality and inequality, respectively. Higher

values indicate a higher income distribution disparity.

Han et al. (2011) applied this concept to describe the distribution of events
(e.g., death from cancer). In Figure 1, x-axis is the same as above, with the
cumulative percentage of event plotted along the y-axis. The line at 45 degrees
means that the events are randomly distributed-that is, that the number of events
Is proportional to the population of each region. If there is a significant cluster in
the study region, it means that the distribution of events is not random but a biased
state.

Cumulative %
of income (or event)

P (x)y)
B

»
>

Cumulative % of population

Figure 1. Graphical representation of the Gini coefficient
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2.2.2 Cluster Information Criterion (CLIC)

The scan-based cluster detection methods are a likelihood-based test.
Therefore, Han et al. (2011) also proposed the Cluster Information Criterion
(CLIC) similar to the Akaike’s Information Criterion (AIC) (Akaike, 1974). AIC

as the good criterion of model selection is
AIC = —2(log likelihood) + 2(number of parameters in the model)

It consists of two terms; one represents the goodness-of-fit and the other functions
as a penalty for a model having too many parameters. The model with the

minimum AIC value is the better model.

Similarly, the CLIC for the Poisson model M is defined as

CLIC(M) = -2 Z LLR(z;) + mlog(p)

=1

where z4,z,, ..., zy, represent the significant clusters (zones) in cluster model M,
m the number of significant clusters in the model and p the total population in
those clusters. The sum of the log likelihood ratio of the significant clusters in the
model represents the goodness-of-fit. mlog(p) is regarded as the penalty term,
reflecting that the number of significant clusters (m) and the total population in

those clusters (p) have an inverse relationship. In other words, p decreases as m
10



increases (more significant clusters) and p increases as m decreases (less

significant clusters). Like AIC, the model with the lowest CLIC is preferred.

2.3 Optimizing maximum window size for ordinal data

Two measures, the Gini coefficient and Cluster Information Criterion (CLIC)
proposed by Han et al. (2011), are evaluated for the Poisson model only. Here we
adapt the two criteria applicable to the spatial scan statistic for ordinal model

proposed by Jung, Kulldorff, and Klassen (2007).

2.3.1 Gini coefficient

In ordinal data, the Lorenz curve represents the distribution of higher order
categories according to cumulative percentages of total cases. Therefore, if a
detected cluster is significant, there are areas with high rates of higher-valued

categories than others.

Here we consider that there is only one significant cluster z* in the model.

The x-coordinate of point P(x,y) in Figure 1 is defined as:

_ Yk Diez Cik

1
2 Ck
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To define the y-coordinate of P(x,y), we need to consider how to weight
on each category k with the pool-adjacent-violators algorithm for the satisfaction
of the order restriction called LRO (Jung, Kulldorff, and Klassen, 2007). We can

write down the y-coordinate of P(x,y) as

. Zk k(ﬁk Zk Ziez* Cik)

! S (kCo)

Here, we assigned ordinal scores for the cases per category to reflect the order of
categories. This idea is from the method of goodness-of-fit in ordinal response
regression models (Lipsitz, Fitzmaurice, and Molenberghs, 1996). Plus, in
numerator, to consider the case of the combined categories using the algorithm,
we give a weighting on the total number of observations in the significant cluster

z* multiplied by MLE of p, under the alternative hypothesis.

If more than two significant clusters exist, we can calculate each coordinates

by cumulatively subtracting from 1.

12



2.3.2 Cluster Information Criterion (CLIC)

Let z;,z,,..., 2z, be significant clusters (zones) in cluster model O, m the
number of significant clusters in the model and c;, the number of observations in

location i and category k, then the CLIC for ordinal data can be expressed as

m m K
CLIC(0) = -2 z LLR(z;) + mlog (Z Cik>
i=1 =1

i=1k

The only difference from the CLIC for Poisson distribution is that p is
replaced by Y™, ¥X_, ¢, as a penalty term. It considers that the number of total
observations in the significant clusters are an element of complexity in the ordinal

model as the total population (p) in z,, z,, ..., z,,, in the Poisson model.

13



3.  Simulation study

3.1 Simulation setting

In order to evaluate the performance of the two criteria in ordinal data, we
conducted simulation studies using several cluster models in 25 districts (gu) of

Seoul, Korea.

In the first cluster model, we set 2,000 cases in the whole study region. A true
cluster with high rates of higher-valued categories comprises three regions
(Seocho-gu, Gangnam-gu, and Songpa-gu) with 200, 400, and 800 cases (see
Figure 2). We assumed Hy:p =q = (0.25,0.25,0.25,0.25) against five

different alternative hypotheses meeting the LRO:

Scenario A: p = (0.10,0.30, 0.30, 0.30)
Scenario B: p = (0.20,0.20, 0.30, 0.30)
Scenario C: p = (0.20,0.20,0.20, 0.40)
Scenario D: p = (0.15,0.25,0.25,0.35)
Scenario E: p = (0.15,0.20,0.25, 0.40)

For the 15 situations, we generated 1,000 random data sets and searched for

the clusters with high rates of high-valued categories using the circular SaTScan.

14



Then, we calculated the value of the two criteria for each candidate of maximum
size (1, 2, 3,4,5, 6,8, 10, 12, 15, 20, 25, 30, 35, 40, 45 and 50% of the total cases)
and reported the frequency of optimal maximum window size chosen by the Gini

(highest value) and CLIC (lowest value) among 1,000 random data sets.

We also estimated sensitivity and positive predicted value (PPV) to evaluate
the accuracy of the proposed criteria for ordinal data. The sensitivity and PPV are
defined in each upper limit. In the case of the significant data sets at the o = 0.05
level, sensitivity is the proportion of districts detected correctly among the
districts in the true cluster, and PPV the proportion of districts detected correctly
among the districts in the detected cluster. Larger values of these measures
indicate that the result with the upper limit is more precise in detecting the true

cluster.

Figure 2. Study region for simulated cluster model 1

15



In addition, we considered three models with H, : p = (0.15,0.20, 0.25,
0.40) and 10,000 cases using both circular and elliptic shapes with default
options for the shape, angle, and non-compactness parameter (medium penalty).

Figure 3 and Table 1 show the details of these cluster models.

(@) Cluster model 2 (b) Cluster model 3

(c) Cluster model 4

Figure 3. Study region for simulated cluster model 2, 3, 4

16



Table 1. Simulated cluster model 2, 3, 4

Cluster Number of Number of Number of cases
model clusters districts in clusters
2 1 5 2000, 3000, 4000
3 2 1/2 1500/ 2000
4 2 2/3 1500/ 2000
3.2 Results

Tables 2—4 show the results of the first simulated cluster model. For each
scenario and criterion, the cells most chosen as the optimal maximum window
size are shaded in gray (the same in Tables 5-8). The most picked upper limits are
the same for both Gini coefficient and CLIC. In most cases, the best upper limit is
achieved in each percentage of cases in true cluster. In addition, the sensitivity and
PPV are high results in the best upper limit category in each except for scenario B
with 10% of the total cases. This is because the ordinal model for H,:p =
(0.20,0.20,0.30,0.30) attains the lower power, sensitivity, and PPV than others
according to Jung, Kulldorff, and Klassen (2007) as well as a small number of
cases in true cluster. The sensitivity trend toward decrease was observed when the
upper limits are lower than the best upper limit. Conversely, PPV tends to

decrease when the upper limits are higher than the best upper limit. Compared to

17



the true cluster, the results imply that the significant clusters detected the small

area with the lower upper limit and large area with the higher upper limit.

The results of the simulated cluster model 2 are listed in Tables 5-6. The
study region of the second model is irregularly shaped as shown in Figure 3a. As a
result, CLIC tends to pick a higher upper limit (close to the percentage of total
cases) than the Gini coefficient. The SaTScan outputs show that the districts in
true clusters are detected separately when using the scanning window size chosen
by the Gini coefficient. With CLIC criteria, we identified only one (exactly the
same as the true cluster) or two (making up the true cluster) significant clusters.
Further, we found that the results of the CLIC using the elliptic shape are closer to

the percentage of the total cases, in comparison to using the circular shape.

In the case of cluster model 3 and 4, the Gini and CLIC generally picked the
upper limit being similar to 15% or 20% of the total cases as shown in Tables 7
and 8. However, when using the elliptic shape, the most chosen upper limit based
on CLIC was off from our estimate. According to the SaTScan output, there were

some districts in-between the true clusters.

18



Table 2. Simulation results of cluster model 1 (10% of the total cases in study region)

Upper limit
1 2 3 4 5 6 8 10 12 15 20 25 30 35 40 45 50
Scenario A
Gini
# of OMWS 0 0 3 0 36 40 109 = 729 5 36 24 15 2 1 0 0 0
Sensitivity - - 0.667 - 0.648 0.642 0.765 0.998 0.800 0.991 0.986 1.000 1.000 1.000 - - -
PPV - - 1.000 - 1.000 0.979 0.980 0.997 0.650 0.748 0.580 0.495 0.429 0.375 - - -
CLIC
# of OMWS 0 0 7 0 6 8 138 | 5 31 21 11 1 1 0 0 0
Sensitivity - - 0.571 - 0.444 0.583 0.676 0.996 0.800 0.978 0.984 1.000 1.000 1.000 - - -
PPV - - 1.000 - 1.000 1.000 0.989 ' 0.996 0.650 0.745 0.582 0.494 0.429 0.375 - - -
Scenario B
Gini
# of OMWS 0 26 120 17 16 15 31 2 19 20 23 16 9 11 8 11 12
Sensitivity - 0.167 0.325 0.098 0.229 0.333 0.645 0.000 0.614 0.700 0.739 0.917 1.000 0.788 0.917 0.879 0.889
PPV - 0.500 0.942 0.294 0.656 1.000 0.946 0.000 0.610 0.567 0.489 0.463 0.417 0.277 0.278 0.245 0.217
CLIC
# of OMWS 0 26 122 17 16 16 32 3 17 19 24 17 9 10 9 10 9
Sensitivity - 0.167 1 0.325 0.098 0.229 0.333 0.646 0.111 0.608 0.702 0.750 0.922 1.000 0.767 0.889 0.900 0.852
PPV - 0.500 0.939 0.294 0.656 1.000 0.948 0.111 0.603 0.570 0.494 0.465 0.417 0.271 0.269 0.252 0.209

19



Scenario C
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario D
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario E
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV

- 0.407
- 1.000

0 26
- 0.436
- 1.000

0 23
- 0.333
- 1.000

0 45
- 0.400
- 0.989

- 0.333
- 1.000

1 5
0.333 0.600
1.000 0.933

3
0.333
0.667

0.333
0.833

0.333
0.667

0.417
0.813

1
0.667
1.000

11
0.515
1.000

0.333
0.929

14
0.429
1.000

14
0.381
1.000

29
0.586
0.954

12
0.472
0.958

14
0.357
0.964

16
0.333
1.000

15
0.378
0.967

21
0.365
0.976

25
0.573
1.000

17
0.529
1.000

180
0.670
0.990

198
0.670
0.987

214
0.667
0.988

252
0.667
0.990

130
0.705
0.996

170
0.671
0.995

598
0.997
0.997

600
0.997
0.998

450
0.993
0.997

426
0.993
0.997

684
0.995
0.997

693
0.995
0.997

13
0.692
0.633

0.704
0.648

26
0.667
0.656

29
0.667
0.657

0.667
0.667

0.667
0.667

60
0.944
0.728

55
0.945
0.727

78
0.932
0.708

72
0.926
0.702

47
0.950
0.734

35
0.962
0.740

60
0.967
0.592

51
0.967
0.592

71
0.953
0.592

60
0.939
0.590

40
1.000
0.601

35
1.000
0.601

28
1.000
0.492

19
1.000
0.489

45
0.993
0.483

34
0.990
0.481

18
1.000
0.492

12
1.000
0.500

11
1.000
0.424

1.000
0.423

24
0.986
0.416

15
0.978
0.408

1.000
0.429

1.000
0.429

5
1.000
0.350

1.000
0.361

13
1.000
0.349

1.000
0.354

1.000
0.367

1.000
0.375

3
1.000
0.300

1.000
0.300

1.000
0.308

1.000
0.305

1.000
0.311

1.000
0.317

2
0.833
0.220

0.958
0.268

1.000
0.278

1.000
0.273

1.000
0.273

3
1.000
0.237

1.000
0.231

0.958
0.237

1.000
0.245
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Table 3. Simulation results of cluster model 1 (20% of the total cases in study region)

Upper limit
1 2 3 4 5 6 10 12 15 20 25 30 35 40 45 50
Scenario A
Gini
# of OMWS 0 0 0 0 0 0 97 76 214 | 549 36 22 5 1 0 0
Sensitivity - - - - - - 0.924 0.904 0.992 ' 0.995 1.000 1.000 1.000 1.000 - -
PPV - - - - - - 0.989 0.964 0.983 1 1.000 0.750 0.595 0.486 0.429 - -
CLIC
# of OMWS 0 0 0 0 0 0 3 0 17 912 37 25 5 1 0 0
Sensitivity - - - - - - 0.556 - 0.706 1 0.991 1.000 1.000 1.000 1.000 - -
PPV - - - - - - 1.000 - 1.000 1 0.997 0.750 0.596 0.486 0.429 - -
Scenario B
Gini
# of OMWS 0 2 4 2 17 21 18 8 88 321 88 76 86 38 23 28
Sensitivity - 0.000 0.000 0.000 0.333 0.333 0.333 0.333 0.659 0.849 0.939 0.996 1.000 0.991 0.971 0.988
PPV - 0.000 0.000 0.000 1.000 0.976 0.894 1.000 0.978 0.940 0.694 0.568 0.477 0.399 0.314 0.280
CLIC
# of OMWS 0 2 4 2 25 23 21 10 100 = 311 93 75 79 33 20 22
Sensitivity - 0.000 0.000 0.000 0.333 0.333 0.333 0.333 0.660 0.842 0.928 0.991 1.000 0.990 0.983 0.985
PPV - 0.000 0.000 0.000 0.960 0.978 0.909 1.000 0.981 0.937 0.686 0.565 0.476 0.400 0.318 0.279
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Scenario C
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario D
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario E
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV

0.333
1.000

0.333
1.000

0.500
0.750

0.667
1.000

0.667
1.000

34
0.657
1.000

0.333
1.000

18
0.611
1.000

0.467
1.000

40
0.858
1.000

0.333
1.000

19
0.667
0.921

14
0.619
0.905

0.500
0.833

19
0.825
1.000

0.667
1.000

118
0.932
0.986

53
0.667
0.978

68
0.824
0.978

56
0.679
0.994

87
0.946
0.981

34
0.706
1.000

705
0.981
0.993

827
0.976
0.993

701
0.977
0.992

757
0.969
0.991

752
0.991
0.998

866
0.985
0.997

57
0.994
0.746

58
0.994
0.746

78
0.991
0.736

70
0.990
0.735

55
0.976
0.732

55
0.970
0.728

31
1.000
0.584

29
1.000
0.586

57
1.000
0.588

57
1.000
0.589

29
1.000
0.593

28
1.000
0.593

29
1.000
0.485

27
1.000
0.484

43
1.000
0.483

32
1.000
0.484

15
1.000
0.486

11
1.000
0.494

4
1.000
0.388

1.000
0.375

1.000
0.417

1.000
0.421

1.000
0.402

1.000
0.402

2
1.000
0.333

1.000
0.333

1.000
0.324

1.000
0.313

1
1.000
0.273

0.933
0.269

1.000
0.273
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Table 4. Simulation results of cluster model 1 (40% of the total cases in study region)

Upper limit
1 10 12 15 20 25 30 35 40 45 50
Scenario A
Gini
# of OMWS 0 0 0 0 134 109 189 3 492 55 18
Sensitivity - - - - 0.983 0.976 1.000 0.889 ' 1.000 1.000 1.000
PPV - - - - 0.994 0.989 0.993 0.622  1.000 0.709 0.524
CLIC
# of OMWS 0 0 0 0 0 0 0 2 900 74 24
Sensitivity - - - - - - - 0.667 1.000 1.000 1.000
PPV - - - - - - - 1.000 1.000 0.709 0.532
Scenario B
Gini
# of OMWS 0 1 5 0 0 4 41 85 442 191 231
Sensitivity - 0.333 0.333 - - 0.333 0.667 0.667 ' 0.992 0.997 0.996
PPV - 1.000 1.000 - - 1.000 1.000 0.857 ' 0.988 0.677 0.513
CLIC
# of OMWS 0 1 8 0 0 4 49 93 452 176 217
Sensitivity - 0.333 0.333 - - 0.333 0.667 0.667 ' 0.994 0.996 0.995
PPV - 1.000 1.000 - - 1.000 1.000 0.851 ' 0.990 0.677 0.514
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Scenario C
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario D
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Scenario E
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV

12 10
0.667 0.700
1.000 0.867

7 8
0.667 0.667
1.000 0.917

36 19
1.000 0.965
1.000 0.970

94
0.972
0.977

0.667
1.000

55
0.915
0.975

24
0.667
1.000

37
0.973
1.000

0.667
1.000

11
0.788
0.894

11
0.667
1.000

16
0.708
0.958

24
0.681
0.944

0.833
0.750

0.667
0.875

717
1.000
0.999

818
1.000
1.000

658
0.999
0.999

690
1.000
0.999

767
1.000
1.000

850
1.000
1.000

111
1.000
0.709

114
1.000
0.712

153
1.000
0.698

160
1.000
0.697

115
1.000
0.710

121
1.000
0.708

45
1.000
0.522

48
1.000
0.521

103
1.000
0.533

102
1.000
0.532

22
1.000
0.515

22
1.000
0.515
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Table 5. Simulation results of cluster model 2 (Circular shape)

Upper limit
6 8 10 12 15 20 25 30 35 40 45 50
4000 cases
Gini
# of OMWS 0 0 29 536 231 101 57 36 0 0 0 0
Sensitivity - - 1.000 ' 1.000 1.000 1.000 1.000 1.000 - - - -
PPV - - 1.000 ' 1.000 1.000 0.986 0.990 1.000 - - - -
CLIC
# of OMWS 0 0 0 0 0 0 125 135 0 0 1 739
Sensitivity - - - - - - 1.000 1.000 - - 0.800 ' 1.000
PPV - - - - - - 1.000 1.000 - - 0.667 | 0.714
3000 cases
Gini
# of OMWS 0 556 27 317 8 92 0 0 0 0 0 0
Sensitivity - 0.999 1.000 0.999 1.000 0.998 - - - - - -
PPV - 1.000 1.000 1.000 0.750 1.000 - - - - - -
CLIC
# of OMWS 0 0 0 0 1 954 0 0 0 45 0 0
Sensitivity - - - - 0.800 ' 0.999 - - - 1.000 - -
PPV - - - - 1.000 ' 1.000 - - - 0.714 - -
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2000 cases

Gini
# of OMWS
Sensitivity
PPV

CLIC
# of OMWS
Sensitivity
PPV

28 554 291
1.000 0.997 0.999
1.000 1.000 1.000

10
0.980
0.771

0.800
1.000

1.000
0.778

14
0.957
1.000

98
1.000
1.000

982
0.999
1.000

10
1.000
0.714

1.000
0.714
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Table 6. Simulation results of cluster model 2 (Elliptic shape)

Upper limit
6 8 10 12 15 20 25 30 35 40 45 50
4000 cases
Gini
# of OMWS 0 0 33 557 217 16 73 32 0 69 3 0
Sensitivity - - 1.000 0.999 1.000 0.988 1.000 - 1.000 1.000 1.000 -
PPV - - 1.000 0.999 0.984 0.850 0.960 - 0.809 1.000 0.833 -
CLIC
# of OMWS 0 0 0 0 0 0 0 0 8 990 2 0
Sensitivity - - - - - - - - 0.800 1 0.999 1.000 -
PPV - - - - - - - - 1.000 1.000 0.833 -
3000 cases
Gini
# of OMWS 0 663 32 105 14 123 11 46 6 0 0 0
Sensitivity - 0.997 1.000 1.000 1.000 0.998 1.000 0.991 1.000 - - -
PPV - 0.998 0.995 0.856 0.782 0.958 0.779 1.000 0.833 - - -
CLIC
# of OMWS 0 0 0 0 0 0 0 999 1 0 0 0
Sensitivity - - - - - - - 0.990 1.000 - - -
PPV - - - - - - - 1.000 0.833 - - -
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2000 cases

Gini
# of OMWS
Sensitivity
PPV

CLIC
# of OMWS
Sensitivity
PPV

37 672 104 35 5
0.989 0.987 0.996 0.977 0.920
1.000 0.998 0.923 0.849 1.000

102
0.994
0.867

1.000
1.000

40
0.995
1.000

999
0.963
1.000

1.000
0.833
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Table 7. Simulation results of cluster model 3

20

25

30

35

40

45

50

Circular shape
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV
Elliptic shape
Gini
# of OMWS
Sensitivity
PPV
CLIC
# of OMWS
Sensitivity
PPV

Upper limit
10 12 15
0 0 942
- - 1.000
- - 1.000
0 0 0
0 0 940
- - 1.000
- - 1.000
0 0 0

57
1.000
1.000

748
1.000
1.000

49
1.000
1.000

1.000
0.375

11
1.000
0.682

998
1.000
0.666

241
1.000
0.500

1.000
0.500

11
1.000
0.429
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Table 8. Simulation results of cluster model 4

Upper limit
1 10 12 15 20 25 30 35 40 45 50
Circular shape
Gini
# of OMWS 0 376 | 407 99 101 6 11 0 0 0 0
Sensitivity - 1.000 | 1.000 1.000 0.998 1.000 1.000 - - - -
PPV - 1.000 1 1.000 1.000 0.833 0.813 0.833 - - - -
CLIC
# of OMWS 0 2 3 25 965 1 0 4 0 0 0
Sensitivity - 1.000 0.933 0.976 0.998 1.000 - 1.000 - - -
PPV - 1.000 1.000 1.000 0.835 0.714 - 0.714 - - -
Elliptic shape
Gini
# of OMWS 0 317 = 556 19 93 3 0 0 12 0 0
Sensitivity - 1.000 1 0.933 0.976 0.998 1.000 - - 1.000 - -
PPV - 1.000 1.000 1.000 0.835 0.714 - - 0.714 - -
CLIC
# of OMWS 0 0 0 0 0 0 2 2 996 0 0
Sensitivity - - - - - - 0.800 0.800 ' 1.000 - -
PPV - - - - - - 1.000 1.000 0.833 - -
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4.  Application

4.1 Data explanation

Two real data examples were used for demonstrating the utility of the two

criteria in the ordinal model. The first data set is the 2013 birth order data based

on birth certificate registrations provided by the Korean Statistical Information

Service (KOSIS). Birth order was recorded as first, second, and third child and

over, and we used the data set of 25 districts (gu) in Seoul only. Table 9 shows the

number of cases and percentage by category of the birth order.

Table 9. Data on birth order in Seoul (2013)

Birth order n %
1 First child 48248 57.5
2  Second child 29656 35.4
3 Third child and over 5944 7.09

The second data set is obtained from the 2013 Korea Community Health

Survey (KCHS) conducted by the Korea Centers for Disease Control and

Prevention. The KCHS is an annual nationwide health survey, which uses

multistage sampling design to obtain a representative sample of adults aged over

19 in 253 communities. We used KCHS data on educational levels in 25 districts

(gu) of Seoul, South Korea. We classified educational level into four categories:
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elementary school and under, middle school, high school, and college and above.

The data set is explained in detail in Table 10.

Table 10. Data on educational levels in Seoul (2013)

Educational level n %
1  Elementary school and under 2996 13.0
2  Middle school 1985 8.6
3 High school 6040 26.1
4 College and above 12067 52.3

For the two data sets, we used the spatial scan statistic for ordinal data to
search the clusters with high rates of higher-valued categories, and determined the
maximum scanning window size based on the Gini coefficient and the CLIC. Both

circle and ellipse are used as the scanning window shape.

4.2 Results

The results of the birth order data are presented in Figure 4. First, when we
applied the circular shape to the data, both Gini and CLIC picked 30% as the
maximum scanning window size. At the same time, the detected clusters were
exactly the same as the clusters chosen the maximum cluster size of 50%. In this

case, the most likely cluster contained the 29.1 percentage of the total cases. The
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elliptic scan statistic, however, provided slightly different results. Gini and CLIC
picked 12% and 35% as the maximum scanning window size, respectively. The
detected clusters based on the CLIC result (35%) were equal to that of using 50%
and 34% of the total cases in the most likely cluster. However, we found that the
result of the Gini included only some parts of the most likely cluster based on
default size. According to Table 11, the most likely cluster and some secondary
clusters based on the Gini result (12%) can reject the null hypothesis on their own
strength. This means that the most likely cluster when using the default upper
limit (50%) contains some districts whose tendency to be high rates in the higher-
valued category is unapparent than others. For example, the observed proportions
of the three categories in the most likely clusters using 50% (default) and 12%
(Gini result) as the upper limit are (0.555, 0.368, 0.077) and (0.546, 0.374, 0.080),
respectively. Compare these with the observed proportions (0.575, 0.354, 0.071)
in the whole study area, and the increasing order trend is more clear in the latter

case, although it has the smaller log likelihood ratio (LLR) than the former.
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Table 11. Some spatial clusters of high rates of later birth order appear in Figure
4(b): Most likely cluster (upper limit at 50%); most likely cluster, 2nd secondary

cluster, and 3rd secondary cluster (upper limit at 12%)

Lfirr)ﬁﬁr Cluster # Districts # Obs in each category LLR p-value
50% Most likely 9 (15806, 10493, 2192) 40.00 0.001
12% Most likely 3 (4894, 3348, 720) 19.23 0.001
2nd Secondary 4 (5554, 3287, 794) 10.52 0.005
3rd Secondary 2 (5565, 3719, 729) 8.95 0.008

Figure 5 summarizes the results for educational level data. In both scanning
window shape, two criteria chose the same optimal maximum window sizes and
CLIC picked the larger maximum window size than Gini (5% for Gini and 12%
for CLIC). Further, the result in Figure 5 indicates that both scanning window
shapes detected similar clusters. A characteristic feature of the results is that the
detected districts in the significant clusters based on the Gini and CLIC results are
more widespread than the results using the default size (50%). This indicates the
possibility that the irregular-shaped clusters (not shaped in circle or ellipse) can be

detected by using small maximum window size.
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| Most likely
B Secondary
@ 2nd Secondary

W Most likely
@ Secondary

O 3rd Secondary

B 2nd Secondary

Gini (30%)

Gini (12%)

B Most likely
B Secondary
@ 2nd Secondary

B Most likely
B Secondary
B 2nd Secondary

CLIC (30%) Default (50%)

(@) Circular shape

B Most likely
B Secondary

| Most likely
B Secondary

CLIC (35%) Default (50%)

(b) Elliptic shape

Figure 4. Results of the birth order data using the maximum scanning window size chosen by Gini, CLIC, and default setting
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B Most likely

m Most likely
E Secondary
@ 2nd Secondary
O 3rd Secondary
O 4th Secondary

B Most likely
B Secondary

Gini (5%) CLIC (12%) Default (50%)
(@) Circular shape

e )
B 2nd Secondary
O 3rd Secondary
O 4th Secondary
.. 0
Gini (5%) CLIC (12%) Default (50%)

(b) Elliptic shape

Figure 5. Results of the education level data using the maximum scanning window size chosen by Gini, CLIC, and default setting
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5. Discussion and Conclusion

The objective of this study was to examine the applicability of the Gini and
CLIC to the ordinal model proposed by Jung, Kulldorff, and Klassen (2007).
Through the simulation study and the real data examples, we conclude that the
two criteria are proven to be useful criteria to optimize maximum window size in

spatial scan statistic for ordinal data as well as for the Poisson model.

There are several findings in the simulation studies and the applications. First,
we found that using the default upper limit for the scanning window size (50% of
the total cases) tends to detect the unnecessarily big cluster. Second, the two
measures pick the same size as the optimal maximum window size in most cases.
However, when the true clusters are irregular-shaped or located slightly apart from
each other, the Gini chooses a smaller window size than the CLIC, which gives
several smaller clusters. Although the results show that they are all in different
clusters, the clusters can be regarded as one cluster if they are contiguous. In other
words, the use of the Gini for optimizing scanning window size makes it possible

to detect even the irregular-shaped clusters.

In conclusion, the results of this study demonstrate the necessity of

optimizing the maximum window size in spatial scan statistic for ordinal data, and
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the Gini coefficient and the CLIC are applicable to the ordinal model for

optimizing the maximum scanning window size.

38



Reference

Akaike, H. 1974. "A new look at the statistical model identification"”. Automatic
Control, IEEE Transactions on, 19(6): 716-723.

Brunk, H., R. Barlow, D. Bartholomew and J. Bremner. 1972. "Statistical
Inference under Order Restrictions.(The Theory and Application of Isotonic
Regression)". DTIC Document.

Community Health Survey. 2013. Korea Centers for Disease Control and
Prevention.

Cook, A. J., D. R. Gold and Y. Li. 2007. "Spatial cluster detection for censored
outcome data". Biometrics, 63(2): 540-549.

Dykstra, R., S. Kochar and T. Robertson. 1995. "Inference for likelihood ratio
ordering in the two-sample problem". Journal of the American Statistical
Association, 90(431): 1034-1040.

Goujon-Bellec, S., C. Demoury, A. Guyot-Goubin, D. Hémon and J. Clavel. 2011.
"Detection of clusters of a rare disease over a large territory: performance of
cluster detection methods". Int J Health Geogr, 10: 53.

Grubesic, T. H., R. Wei and A. T. Murray. 2014. "Spatial Clustering Overview and
Comparison: Accuracy, Sensitivity, and Computational Expense™. Annals of the
Association of American Geographers, 104(6): 1134-1156.

Han J, Feuer R, Stinchcomb D, Tatalovich Z, Lewis D, and L. Zhu. 2011.
“Optimizing maximum window size for scan statistics”. [oral presentation].
Louisville (KY): Annual Meeting of North American Association of Central
Cancer Registries [cited 2015.7.13]. <http://www.naaccr.org/LinkClick.aspx?filet
icket=hR6UMTigRM4%3D&tabid=257&mid=732>.

39


http://www.naaccr.org/LinkClick.aspx?fileticket=hR6UMTigRM4%3D&tabid=257&mid=732
http://www.naaccr.org/LinkClick.aspx?fileticket=hR6UMTigRM4%3D&tabid=257&mid=732

Huang, L., M. Kulldorff and D. Gregorio. 2007. "A spatial scan statistic for
survival data”. Biometrics, 63(1): 109-118.

Huang, L., L. W. Pickle and B. Das. 2008. "Evaluating spatial methods for
investigating global clustering and cluster detection of cancer cases”. Statistics in
Medicine, 27(25): 5111-5142.

Jung, 1., M. Kulldorff and A. C. Klassen. 2007. "A spatial scan statistic for ordinal
data". Statistics in Medicine, 26(7): 1594-1607.

Jung, 1., M. Kulldorff and O. J. Richard. 2010. "A spatial scan statistic for
multinomial data". Statistics in medicine, 29(18): 1910.

Korean Statistical Information Service. 2013. Statistics Korea, Vital Statistics.

Kulldorff, M. 1997. "A spatial scan statistic". Communications in Statistics-
Theory and methods, 26(6): 1481-1496.

Kulldorff, M., L. Huang and K. Konty. 2009. "A scan statistic for continuous data
based on the normal probability model”. International journal of health
geographics, 8(1): 58.

Kulldorff, M., L. Huang, L. Pickle and L. Duczmal. 2006. "An elliptic spatial scan
statistic". Statistics in medicine, 25(22): 3929-3943.

Lipsitz, S. R., G. M. Fitzmaurice and G. Molenberghs. 1996. "Goodness-of-fit
tests for ordinal response regression models"”. Applied Statistics: 175-190.

Ribeiro, S. H. R. and M. A. Costa. 2012. "Optimal selection of the spatial scan
parameters for cluster detection: a simulation study". Spatial and spatio-temporal
epidemiology, 3(2): 107-120.

40



B TF 379 HH3

o
T

o)

=% 2 o

g8}

KR
=

H (spatial cluster)

M

Al o

9]

s ErHow

Ay
fhn Y

SEDE

gow oy RopiA olgHi .

ki3

7]l w2t

ofie Al w3

1?_]__

HH

mop

A (scanning window) <]

o

o]

1

L

HA =

o]

8

A
=

BHE AA A9 50%=

=

=

Hd =H 7]

K
]

IS

o
gl

571

<]

a7

=

=

al

HAd FE T3 F7]

24 9]

(2011)9]

L=

]<£ Han 5

o] A1 <]

AU AS(Gini Coefficient)®t Cluster Information Criterion (CLIC)E A

2983 2 A4 Aol

-3 A=

Fu

el

N

ki3

=X

el

AU AL CLIC 2% 2A|

. A},

49

A A

dejd o

or
o
el
fro!

o

p

B 4%, AYUASIE CLIC Bk A
41

PR

o]

e

1

10}

125
=

o] tha

T
HE

i



HozH A

ERER

oz 7

%
R

_ﬂwo
o
)
K

p—

file)

o
ﬂo
uy
i
el

M

)A
4

L

A A2}

oj ]

‘]—17

o3
%

2 7|

HA 284

S

CLIC 7} +-8

A7), AYAS, CLIC

%j]

42



