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ABSTRACT

Cell and gene therapy via human neural stem/progenitor cells in the 

lithium-pilocarpine model of rat temporal lobe epilepsy

Haejin Lee

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Kook In Park)

Temporal lobe epilepsy (TLE), the most common and intractable type of 

adult focal epilepsy, is typically associated with pathological alterations in the 

hippocampus and parahippocampal regions. TLE is an attractive target for cell 

therapy due to its focal nature and associated cellular defects. Neural 

stem/progenitor cells (NSPCs) can continuously self-renew and give rise to 

intermediate and mature cells of both neuronal and glial lineages. Following 

transplantation in the diseased brain, NSPCs exhibit the potential to migrate 

toward the lesion and replace degenerated or ablated cells, as well as deliver 

therapeutic substances. 

In this study, we transplanted human NSPCs (hNSPCs), derived from an 

aborted fetal telencephalon at 13 weeks of gestation and expanded in culture 

as neurospheres over a long time period, into the lateral ventricles of lithium-

pilocarpine induced epileptic rats. Implanted hNSPCs migrated and integrated 

into the recipient brain. The majority of hNSPCs remained undifferentiated,

although subsets of donor-derived cells differentiated into all three neural cell 

types of the central nervous system and expressed inhibitory neurotransmitter 

gamma-aminobutyric acid (GABA). We found that hNSPC transplantation 
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significantly reduced the frequency and duration of spontaneous recurrent 

motor seizures (SRMS) at 2 and 3 months post-transplants. In addition, 

hNSPC-transplanted epileptic rats showed neuroprotection, restoration of 

astrocytic glial cell-derived neurotrophic factor (GDNF) expression, and up-

regulation of anti-inflammatory cytokines in the hippocampus. Finally, we 

demonstrated that conditioned medium from hNSPCs has neuroprotective 

action in an in vitro model of glutamate excitotoxicity. These results suggest

that hNSPC transplantation possesses a therapeutic potential for treating TLE.

Next, we assessed the therapeutic efficacy of combined hNSPC and gene 

therapy in TLE. hNSPCs were engineered to secrete anticonvulsant 

neuropeptide galanin (GAL-hNSPCs) via adenoviral transduction. GAL-

hNSPCs and green fluorescent protein (GFP)-expressing hNSPCs (GFP-

hNSPCs) were transplanted into the hippocampus of lithium-pilocarpine 

induced epileptic rats. Transplanted both cell types migrated and dispersed 

throughout the hippocampus, and differentiated into TUJ1-, GFAP-, OLIG2-, 

and GABA-expressing cells. GFP-hNSPC transplantation significantly

reduced the frequency and duration of SRMS at 3 months post-transplants, 

while GAL-hNSPC transplantation significantly reduced SRMS through all 

the time periods for 3 months following implantation. Moreover, GAL-

hNSPC transplantation reversed the decreased anxiety seen in epileptic rats. 

GFP-hNSPC or GAL-hNSPC transplantation ameliorated neuronal loss,

suppressed mossy fiber sprouting, and restored astrocytic GDNF expression in 

the hippocampus. GAL-hNSPC transplantation enhanced neuroprotection and 

reversed the declined neurogenesis. These results suggest that GAL-hNSPC

transplantation represents a novel combined stem cell and gene therapy for 

suppressing seizures and rescuing emotional deficit in severely epileptic rats.

-------------------------------------------------------------------------------------------------------

Key words: temporal lobe epilepsy, human neural stem/progenitor cells, 

lithium-pilocarpine, transplantation, cell therapy, gene therapy, galanin
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Cell and gene therapy via human neural stem/progenitor cells in the 

lithium-pilocarpine model of rat temporal lobe epilepsy

Haejin Lee

Department of Medical Science

The Graduate School, Yonsei University

(Directed by Professor Kook In Park)

I. INTRODUCTION

Epilepsy is a chronic neurological disorder affecting tens of millions of

people worldwide, and more than 30% of patients with epilepsy still have 

uncontrolled seizures despite conventional antiepileptic drugs (AEDs).1

Temporal lobe epilepsy (TLE) is the most frequent and pharmaco-resistant 

type of adult focal epilepsy that presents with complex partial seizures, 

originating mainly from the mesial temporal structures such as the 

hippocampus or amygdala.2,3 The rat lithium-pilocarpine model of epilepsy 

reproduces most clinical and neuropathologic features of human TLE.4-6 In 

adult rats, the systemic injection of lithium and pilocarpine induces to status 

epilepticus (SE) followed by a latent period corresponding to epileptogenesis, 

and the occurrence of spontaneous recurrent seizures (SRS) which is 

accompanied by neuronal loss, mossy fiber sprouting (MFS), gliosis, 

abnormal neurogenesis, and inflammatory processes in the hippocampus.6-11

Although surgical removal of epileptic foci is a recommended treatment for 

patients with TLE, this therapeutic option can lead to undesirable 

complications, such as significant cognitive impairment and lasting 
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dependence on AEDs.12 For this reason, a continuing need exists for novel 

approaches that effectively control seizures in chronic TLE.

Stem cell-based cell transplantation has been investigated intensively for 

epilepsy treatment in various animal studies, although none of these 

approaches has yet been tested clinically in patients with epilepsy.13-15 Over 

the past few years, embryonic stem cell (ES)-, neural stem cell (NSC)-, 

mononuclear bone marrow cell (BMC)-, or neural precursor-based approaches 

have been examined in animal models of epilepsy: mouse ES-derived neural 

precursors in pilocarpine- or kainic acid (KA)-induced status epilepticus (SE) 

or kindling-based TLE models,16-19 rat fetal ganglionic eminence (GE)-derived 

neural precursors or NSC in the KA-induced TLE model,10,20 mouse BMC in 

lithium-pilocarpine- or pilocarpine-alone-treated adult TLE model,21,22 mouse 

fetal neural precursors from the medial ganglionic eminence (MGE) in 

congenital general epilepsy or pilocarpine-induced adult TLE models,23,24 and 

immortalized human fetal brain-derived NSC in the pilocarpine-induced SE 

model.25 These studies have demonstrated that neural stem/progenitor cell 

(NSPC)-based therapies in acute and chronic models of epilepsy exert

anticonvulsant and antiepileptogenic effects, and replace degenerated or 

ablated neurons, repair damaged neural circuitry, and modulate neurotrophic 

expression. However, prior to the clinical application of NSPCs for epilepsy 

treatment, many challenges still must be addressed. It is essential to study 

human NSPCs (hNSPCs) derived from various cell sources, such as 

developing and adult brain tissues, ES, and induced pluripotent stem cells 

(iPSCs), for their abilities in terms of engraftment, migration, differentiation 

into specific neuronal or glial cells, seizure control, and functional recovery 

following transplantation into the brains of TLE models.26

A study demonstrated that substantial reductions in spontaneous recurrent 

motor seizures (SRMS) were observed for a short-term period after 

immortalized human fetal NSPCs were infused into the tail vein of the 
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animals a day following pilocarpine-induced SE.25 However, that study was 

not pertinent for treating patients with TLE.

Because patients with epilepsy refractory to AED treatment are much in 

need of novel seizure-suppressing therapy, it is significant to examine the 

effects of hNSPC transplantation in animals with established epilepsy at the 

time of grafting. Previously, we cultivated and expanded several types of 

hNSPCs that were isolated from different brain regions of an aborted fetus at 

13 weeks of gestation as neurospheres in culture dishes.27 Among them, 

telencephalon-derived hNSPCs gave rise to not only neuronal and glial cells, 

but also differentiated into GABA-expressing cells in vitro. Additionally, other 

studies have demonstrated that intraventricular injection of NSPCs have 

several advantages, including wide distribution of grafted cells, less invasive 

delivery, injection of more cells, and easy application compared to 

intercerebral approach in the injured and degenerating CNS.28-32 Lesions 

induced by pilocarpine represent multifocal brain damage,5,33 which could 

require widespread distribution of grafted cells beyond the scope of 

conventional surgical procedures.

Given this background, we first investigated whether epileptic phenotypes 

could be improved in lithium-pilocarpine-induced TLE models by human 

fetal brain-derived NSPC transplantation into the lateral ventricles (LV) after 

epileptic seizures emerged, and characterized the distribution, engraftment, 

and the differentiation patterns of implanted cells in adult rat recipients.

Next, we assessed the therapeutic efficacy of combined hNSPC and gene 

therapy in TLE. Recently, neuropeptides, often termed endogenous 

anticonvulsant, have become a novel gene therapy target to treat focal 

epilepsy.34 Galanin, a neuropeptide which acts as an inhibitory 

neuromodulator, is known to attenuate seizure activity in the hippocampus.35-

39 G-protein–coupled galanin receptor 1 (GALR1) and 2 (GALR2) are

expressed in the hippocampus, play a role in the inhibition of epileptic 
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activity.40 Mechanism of seizure suppression by galanin is thought to mediate 

through the closing of voltage-gated Ca2+ channels and/or the opening of ATP-

sensitive K+ channels and ultimately pre-synaptic inhibition of gluamate 

transmission.41-43

Galanin injection into the hilus of hippocampus can attenuate seizure 

activity in vivo.39 Adeno-associated virus (AAV)–mediated gene therapy with 

galanin has been described in animal models of TLE and acute seizures.35,44,45

Infusion of a recombinant AAV to constitutively overexpress galanin into the 

rat dorsal hippocampus alleviated the number of seizure episodes and total 

time spent in seizure activity against intrahippocampal KA administration.45

AAV vector carrying the fibronectin secretory signal sequence (FIB) 

preceding the coding sequence for the active galanin peptide (AAV-FIB-GAL) 

significantly attenuated in vivo focal seizure sensitivity and prevented KA-

induced hilar cell death.35 Another study demonstrated that encapsulation of 

galanin-producing cells was no need for direct genetic modification of the 

host cells via viral vector and immunosuppressant drugs, and the encapsulated 

galanin-producing cells showed a moderate anti-convulsant effect on focal 

seizures in kindling model of epilepsy.36

In contrast to encapsulated cells, which exert their therapeutic effect 

exclusively by paracrine action, stem cell-derived implants may survive long 

term, migrate, and integrate into the hippocampus18 and may therefore directly 

influence the seizure activity. In the present study, we developed galanin-

releasing hNSPC (GAL-hNSPC) using adenoviral vector carrying the Igκ

leader secretory signal sequence preceding the coding sequence for the active 

galanin peptide under the control of the CAG promoter and green fluorescent 

protein (GFP) as a reporter, placed under IRES promoter control. To address 

the question whether GAL-hNSPCs combine hNSPCs and hNSPC-mediated 

galanin gene therapy, we investigated therapeutic effects on epileptic 

phenotypes in lithium-pilocarpine induced epileptic rats that received vehicle-
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injection, GFP-expressing hNSPC (GFP-hNSPC) grafts, and GAL-hNSPC 

grafts into the hippocampus after epileptic seizures emerged.
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II. MATERIALS AND METHODS

1. Cell culture

Human fetal brain tissue from a cadaver at 13 weeks of gestation was 

obtained with full parental written consent and approval of the Research 

Ethics Committee of Yonsei University College of Medicine, Seoul, Korea

(Permit Number: 4-2003-0078).46 In this study, hNSPCs for transplantation 

were derived from such a single donated fetal tissue. The culture of NSPCs 

was previously described in detail.27 Briefly, after dissociation of 

telencephalic tissue in trypsin (0.1% for 30 min; Sigma, St. Louis, MO), cells 

were plated at 4 x 105 cells/mL in serum-free culture medium (DMEM/F12; 

Gibco, Grand Island, NY), N2 formulation (1% v/v; Gibco), and 8 μg/mL 

heparin (Sigma) supplemented with 20 ng/mL fibroblast growth factor-2 

(FGF-2; R&D Systems, Minneapolis, MN) and 10 ng/mL leukemia inhibitory 

factor (LIF; Sigma). All cultures were maintained in a humidified incubator at 

37°C and 5% CO2 in air, and half of the growth medium was changed every 

3–4 days. Proliferating single cells in culture generated free-floating 

neurospheres during the first 2–5 days of growth. They were passaged every 

7–8 days by dissociation of bulk neurospheres with 0.05% trypsin/EDTA (T/E; 

Gibco).

For proliferation conditions, 8 × 105 cells/well were maintained with 

mitogens in 6-well plates for RT-PCR and Western blot. For differentiation 

conditions, neurospheres were trypsinized and dissociated into single cells, 

and cells were then placed on poly-L-lysine (PLL; 10 μg/mL; Sigma)-coated 

8-well chamber slides (Nunc, Roskilde, Denmark) at 8 × 104 cells/well for 

immunocytochemical analysis or on PLL-coated 6-well plates (Sigma) at 1 × 

106 cells/well for RT-PCR and Western blot in the growth medium without 

mitogens. The medium was replaced every 2 days, and cells were analyzed at 
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day 7 of differentiation.

2. Adenoviral vector construction and infection

We constructed recombinant adenoviral vectors carrying the Igκ leader 

secretory signal sequence preceding the coding sequence for the active 

galanin peptide under the control of the CAG promoter and GFP as a reporter, 

placed under IRES promoter control (Ad-Igκ-GAL-GFP). The Igκ leader 

secretory signal sequence was derived from pSecTag2 A (Invitrogen, Grand 

Island, NY). The coding sequence for the active human galanin was amplified 

by RT-PCR from 293A cell line RNA. The adenoviral vector that carried only 

IRES-GFP gene was used as a control (Ad-GFP). Adenoviral vectors were 

produced in conformity with the AdEasyTM Adenoviral Vector System 

(Stratagene, La Jolla, CA, USA) manual. The infectious recombinant virus 

was purified by CsCl-gradient centrifugation and titrated on 293A cells by 

Tissue Culture Infecting Dose 50 (QBiogene, Carlsbad, CA, USA). Human 

NSPCs were infected by Ad-Igκ-GAL-GFP or Ad-GFP at a MOI of 0, 10, 20, 

40, 80, 160, and 320 plaque-forming units per cell. The optimal MOI was 

determined from the transduction efficiency and cell viability. Flow cytometry 

confirmed that 95% of infected cells expressed GFP at the optimal MOI. The 

medium was replaced with fresh growth medium 10–12 hr after infection. 

GAL-hNSPCs and GFP-hNSPCs were incubated for 48 hr, and thereafter used 

for in vivo transplantation or in vitro studies. For proliferation conditions, 8 × 

105 cells/well were maintained with mitogens in 6-well plates for RT-PCR.

For differentiation conditions, neurospheres were trypsinized and dissociated 

into single cells, and cells were then placed on poly-L-lysine (PLL; 10 μg/mL; 

Sigma)-coated 8-well chamber slides (Nunc, Roskilde, Denmark) at 8 × 104

cells/well for immunocytochemical analysis or on PLL-coated 6-well plates 

(Sigma) at 1 × 106 cells/well for conventional RT-PCR or quantitative RT-



10

PCR in the growth medium without mitogens. The medium was replaced 

every 2 days, and cells were analyzed at day 7 of differentiation.

3. Characterization of galanin-releasing hNSPCs in vitro

Galanin secretion from GAL-hNSPCs and GFP-hNSPCs into culture 

medium was measured by a galanin ELISA kit according to the 

manufacturer’s instructions (Peninsular Lab, LLC, San Carlos, CA, USA). 

For CCK8 assay, 3 × 106 cells/well were maintained without mitogens in 6-

well plate for 48hr, after which 50μl of CCK8 solution (Dojindo Laboratories 

Co., Kumamoto, Japan) was added to each well and the plate was incubated 

for 1–4 hrs. Cell viability was assessed by measuring absorbance at 450 nm 

using a microplate reader (Molecular devices, Menlo, CA, USA). Uninfected 

hNSPCs at the same passage served as controls.

To assess the proliferation rates of GAL-hNSPCs or GFP-hNSPCs, cells 

were plated onto 6-well plate at 8× 105 cells/well and cultured without 

mitogen for 48hr and thereafter treated with EdU (5-ethynyl-2’-deoxyuridine; 

Invitrogen) at a final concentration of 200μM for 24 hr. Cells were fixed in 4% 

paraformaldehyde (PFA) in PBS, permeabilized with Perm/WashTM buffer 

(BD Biosciences, San Diego, CA, USA) and stained with Alexa Fluor® 647 

azide (Invitrogen). EdU-positive cells were quantified by flow cytometry. 

For cell cycle analysis, cells were trypsinized and fixed in 75% ethanol 

overnight. Cells were washed with PBS and incubated with propidium iodide 

in FACS buffer (2% FBS in PBS) for at least 30min before flow cytometric 

analysis. Approximately 10,000 events were collected per sample and cell 

cycle data were modeled using FlowJo software (Miltenyi Biotec GmbH, 

Bergisch Gladbach, Germany).

Terminal dUTP nick end labeling (TUNEL) assay was performed using In 

Situ Cell Death Detection kit according to manufacturer’s instruction (Roche 
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Applied Science, Indianapolis, IN, USA). Cells were fixed with 4% PFA in 

PBS for 1 hr at room temperature. The samples were washed with PBS and 

permeabilized by 0.1% Triton X-100 in 0.1% sodium citrate buffer for 15 min 

at 4 °C. After 3 times washing, cells were resuspended in TUNEL reaction 

mixture, and incubated for 60 min at 37 °C. TUNEL-positive cells were 

quantified by flow cytometry.

4. Reverse transcription-polymerase chain reaction (RT-PCR)

Total RNA was isolated from cell cultures or hippocampal tissue samples

using the TRI reagent (MRC, Inc., Cincinnati, OH) according to 

manufacturer’s instructions, and 1 μg of RNA was reverse-transcribed into 

cDNA using an oligo(dT)18 primer and Superscript ІІІ reverse transcriptase 

(Invitrogen). Then, 1 μL of cDNA was amplified using Go-Taq polymerase 

(Promega, Madison, WI) in a thermal cycler (Eppendorf, Happauge, NY) 

according to the manufacturer’s instructions. Primers sequences for human 

growth factors were listed in Table 1. To detect transcript expression for 

human galanin, GALR1, GALR2, and GALR3 in cell culture, the following 

primer sequences were used: human galanin, sense 5’-

AAGCTTGGCTGGACCCTGAACAG-3’ and antisense 

5’-ACGCGTTTAGCTGGTGAGGC-3’; GALR1, sense 5’-

ATCTGCTTCTGCTATGCCAAG-3’ and antisense 5’-

CAGTGGGCGGTGATTCTGA-3’; GALR2, sense 

5’-GTCAACCCCATCGTTTACGC-3’ and antisense 5’-

CTCGCTCATGTGCAACAGGT-3’; GALR3, sense 5’-

TCTGATGGGGAGATGGCTGAT-3’ and antisense 5’-

AGGATGAACAGGTCCGTGGT-3’, and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH), sense 5’-ACCACAGTCCATGCCATCAC-3’ and 

antisense 5’-TCCACCACCCTGTTGCTGTA-3’. The expression of PCR 
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products was normalized relative to the expression of GAPDH. To confirm in 

vivo expression of galanin, we performed RT-PCR using primers specific for 

the Igκ (5’-CATATGGAGACAGACACACT-3’) and GAL (5’-

ACGCGTTTAGCTGGTGAGGC-3’) sequences in hippocampus in all groups 

at 3 months after transplantation. PCR products were separated on a 1.5% 

agarose gel and stained with ethidium bromide. As no template control, the 

extracted RNA was amplified with PCR without prior reverse transcription.
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Table 1. Sequences of primers used for RT-PCR

Gene Forward sequence (5’ → 3’) Reverse sequence (5’ → 3’)

BDNF AACAATAAGGACGCAGACTT TGCAGTCTTTTTGTCTGCCG

NTF3 TACGCGGAGCATAAGAGTCAC GGCACACACACAGGACGTGTC

NTF4 CCTCCCCATCCTCCTCCTTTT ACTCGCTGGTGCAGTTTCGCT

NGF ATGTCCATGTTGTTCTACACT AAGTCCAGATCCTGAGTGTCT

VEGF CCATGGCAGAAGGAGGAGG ATTGGATGGCAGTAGCTGCG

FGF2 GTGTGCTAACCGTACCTGGC CTGGTGATTTCCTTGACCGG

GDNF CTGACTTGGGTCTGGGCTATG TTGTCACTCACCAGCCTTTCTATT
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5. Immunocytochemistry

Cultured cells were fixed with 4% paraformaldehyde (PF) in PIPES buffer 

(Sigma), rinsed with phosphate-buffered saline (PBS) solution, blocked with 3% 

bovine serum albumin (Sigma), 10% normal horse serum, and 0.3% Triton X-

100 (Sigma) in PBS. Cultures were incubated with following primary 

antibodies: anti-human specific nestin (anti-hNestin; 1:200; Chemicon), anti-

glial fibrillary acidic protein (GFAP; 1:1,000; Dako, Glostrup, Denmark), 

anti-neuronal class β-tubulin III (TUJ1; 1:1,000, Covance, Princeton, NJ), 

anti-vimentin (1:80; Sigma), anti-NF M (neurofilament M, 1:1000; Millipore), 

anti-NF H (1:1000; Millipore), anti-NF L (1:1000; Millipore), anti-Pax6 (1:40; 

Developmental Studies Hybridoma Bank), anti-GLAST (1:100; Santa Cruz 

Biotechnology, Santa Cruz, CA), anti-GABA (1:500; Sigma), anti-platelet-

derived growth factor receptor alpha (PDGFR-α; 1:100; Santa Cruz 

Biotechnology), anti-Olig2 (1:500; Millipore, Billerica, MA), anti-S100β 

(1:1000; Sigma), and anti-GFP (1:200; Invitrogen). Species-specific 

secondary antibodies, conjugated with fluorescein (FITC; 1:180; Vector, 

Burlingame, CA) or Texas Red (TR; 1:180; Vector) were used to detect the 

binding of primary antibodies. Specimens were mounted using Vectashield 

mounting medium with 4,6-diamino-2-phenylindole (DAPI; Vector), and were 

analyzed by an immunofluorescence microscopy (BX51; Olympus, Center 

Valley, PA). For in vitro quantification, percentages of hNestin+-, TUJ1+-, 

GABA+-, GFAP+-, S100β+-, and OLIG2+ cells among total GFP+ cells were 

calculated in three to five randomly selected fields. This sampling was 

replicated three times. 

6. Induction of status epilepticus by lithium-pilocarpine

Adult male Sprague–Dawley (SD) rats (200–220 g) were kept on a 12/12-h 
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light/dark cycle (lights on at 07:00 h) with free access to food and water. This 

study was performed in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institute of 

Health. The protocol was approved by the Committee on the Ethics of Animal 

Experiments of Yonsei University College of Medicine (Permit Number: 

2013-0423). 

Rats were infused with lithium chloride (127 mg/kg, i.p.; Sigma) 24 h prior 

to the administration of pilocarpine. On the next day, the rats were injected 

with methylscopolamine bromide (1 mg/kg, i.p.; Sigma) to limit the 

peripheral effects of pilocarpine, and 30 min later were injected with 

pilocarpine hydrochloride (45 mg/kg, i.p.; Sigma) to induce SE. Seizure 

events in pilocarpine-treated rats were scored according to the Racine47: Stage 

1, facial movements only; Stage 2, facial movements and head nodding; Stage 

3, facial movements, head nodding, and forelimb clonus; Stage 4, facial 

movements, head nodding, forelimb clonus, and rearing; Stage 5, facial 

movements, head nodding, forelimb clonus, rearing, and falling. Rats that did 

not develop stage 5 seizure were excluded from this study. Diazepam (Samjin, 

10 mg/kg, i.p.) was injected 1 h after SE onset to cease seizure activity. The 

rats that went into SE were injected with 2.5 mL of 5% dextrose 

intraperitoneally twice a day and were given a moistened rat diet during the 

following 2–3 days. For 14–20 d after SE, pilocarpine-treated rats were 

monitored to confirm the emergence of SRMS by video recording. The 

frequency of SRMS (stages 3–5 seizure) was scored for 12 h/day. 

7. Cell preparation and transplantation 

Human NSPCs were maintained by passaging through the dissociation of 

bulk neurospheres and cryopreserved at each passage in the Good 

Manufacturing Practice facility. For transplantation, NSPCs taken at between 
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passage number 10 (P10) and P20 were selected and prepared. Cells were 

labeled with bromodeoxyuridine (BrdU; 3 μM; Sigma) for 5 days before 

grafts. At the time of grafting, cells were harvested by trypsinization after 

which the enzymatic activity was halted by soybean trypsin inhibitor (Sigma). 

The cells were centrifuged (900 × g, 3 min), the cell pellet was washed three 

times with H-H buffer, and the entire cell pellet was then resuspended in H-H 

buffer at a density of 1.0 × 105 cells/μL. The concentrated cells in a sterile 

freezing tube (Nunc) were then delivered to the animal operation room. For 

intracerebroventricular injection groups (vehicle and hNSPC groups), at 

3 weeks after SE, epileptic rats were anesthetized and injected bilaterally into 

the lateral ventricle (ML ±2.1 mm, AP −1.2 mm, and DV −4.5 mm from

bregma) with 7 μL/side of vehicle (H-H buffer only) or hNSPC suspension.

For intrahippocampal injection groups (vehicle, GFP-hNSPCs, and GAL-

hNSPC groups), at 3 weeks after SE, epileptic rats were anesthetized and 

injected into the CA3 regions of the bilateral hippocampi (ML ±4.2 mm, AP 

−4.52 mm, and DV −5.0 mm from bregma) with 4 μL/side of vehicle or cell

suspension. Vehicle or cell suspension was infused at a flow rate of 1 μL/min 

using a 10-μL Hamilton syringe placed on an infusion pump (KD Scientific, 

Holliston, MA) controlled by a microprocessor. All animals in this study

received daily injections of cyclosporine (10 mg/kg, i.p.) from a day before 

transplantation to the end of the experiment.

8. Monitoring of SRMS

The behavior of epileptic rats was observed at 1–3 months following 

transplantation to analyze the frequency, severity and duration of SRMS in 

both the vehicle-injected and NSPC-transplanted groups. Starting at 2 weeks 

following transplantation, the rats were video-monitored for 60 h per week 

(12 h/day, 5 days/week, 2 weeks/month, and 360 h in total). Rats were given 
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free access to water and food in individual cages and video-monitored during 

the daylight period. The video recordings were analyzed by observers blinded 

to group allocation. The frequency and severity of seizure, and the total time 

spent in seizure were assessed in each rat. 

9. Morris water maze

The Morris water maze test was performed to assess learning and memory

function in epileptic rats. The detailed method has been previously 

described.48 Briefly, a circular polypropylene pool (200 cm in diameter and 

40 cm in height) was filled with water (22 ± 1°C) made opaque with a food 

coloring agent, rendering it impossible for rats to see through it. On the pool 

rim, four points were designated (north, east, south, west), dividing the pool 

into four quadrants (NE, NW, SW, SE). A circular platform (15 cm in 

diameter and 30 cm in height) was positioned at the center of the SE quadrant 

and hidden 1 cm below the water surface, and the position of the platform was 

kept unchanged throughout the training days. A trial started when the rat was 

positioned in the water from a quasirandom start points and ended when the 

rat reached and escaped onto the hidden platform. The swim paths of rats 

were recorded by a video tracking system (SMART; Panlab, Barcelona, Spain) 

and analyzed thereafter. Rats were trained for 4 days, and the training day 

consisted of six trials with an interval of 5–15 min. If the rat was not able to 

find the platform in 120 s, the rat was guided to it by the investigator. Mean 

escape latency was calculated for each day during the training days. At the 

probe trial, on day 5, the rats were positioned in the opposite quadrant where 

the platform was previously located and allowed to swim in the pool without 

the platform for 60 s. All parameters of memory retention were measured. At 

the end of experiments, all rats were sacrificed by CO2 inhalation as described

above. 
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10. Injection scores

During each daily injection of the immunosuppressant cyclosporine the 

behavioral response of each rat to the injection was documented using a scale 

designed for assessment of the aggressiveness.49 One point was given for each 

of the following reactions: (a) attempting to run away while being picked up 

from the cage, (b) urinating, (c) trying to escape while being held before the 

injection, (d) squirming, vocalizing, (e) attempting to push the syringe away 

or scratch the examiner, and (f) attempting to bite the examiner. Animals were 

tested twice a day, between 8 and 10 am and between 8 and 10 pm. Daily 

scores for each rat were obtained and the mean score for each rat was 

calculated monthly. The handler was same during the entire study, he was 

alone in the room during the injection time using the same handling technique; 

the environment for injections was maintained unchanged while the room kept 

quiet in order to minimize environmental sources of stress.50

11. Elevated plus maze

Anxiety-related behavior was evaluated using the elevated plus maze (EPM)

as previously described.5 The EPM apparatus was comprised of two open 

arms (50 × 12 cm) and two enclosed arms (50 × 12 × 40 cm), elevated 50cm 

above the floor level. Grip on the open arms is facilitated by inclusion of a 

small edge (0.5 cm high) around their perimeter. For testing, rats were 

brought to the room 1hr before the test and were tested individually. Before 

each trial, the maze was cleaned thoroughly with a 30% ethanol solution. At 

the beginning of the test, rats were placed in the central platform always 

facing the same open arm. The test lasted 5 min, and the behavior of each rat 

was recorded by a video tracking system (SMART; Panlab) and analyzed 

thereafter. Entries into an arm were defined when all four paws were in the 
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corresponding arm.33 The time spent in the open arms was measured, with 

larger time in the open arms indicating lower levels of anxiety.

12. Immunohistochemistry

At the end of experiments, animals were deeply anesthetized with ketamine 

(75 mg/kg, i.p.) and xylazine (30 mg/kg, i.p.) and perfused with 4% PFA in 

0.1M PIPES buffer. Brains were then removed, post-fixed, transferred in 30% 

sucrose in PBS for cryoprotection, and frozen in O.C.T compound (Sakura 

Finetek, Torrance, CA, USA). The brains were coronally sliced into 16-μm 

sections using a cryostat. Sections were washed in PBS and blocked with 3% 

bovine serum albumin (Sigma), 10% normal horse serum, and 0.3% Triton X-

100 (Sigma) in PBS. Sections were incubated with following primary 

antibodies: anti-human specific nestin (anti-hNestin; 1:200; Chemicon), anti-

human specific cytoplasm SC121 (1:500; Stem Cells, Inc., Cambridge, UK), 

anti-human specific GFAP SC123 (1:500; Stem Cells, Inc.), anti-glial 

fibrillary acidic protein (GFAP; 1:1,000; Dako), anti-neuronal class β-tubulin 

III (TUJ1; 1:500, Covance), anti-MAP2 (1:50; Cell signaling, MA, USA), 

anti-GABA (1:500; Sigma), anti-Olig2 (1:500; Millipore), anti-glial cell-

derived neurotrophic factor (GDNF; 1:50; Santa Cruz Biotechnology), anti-

S100β (1:1000; Sigma), anti-GFP (1:200; Invitrogen), anti-human specific 

nuclei (hNuc; 1:100; Chemicon), anti-NeuN (1:250; Chemicon), anti-

parvalbumin (PV; 1:5000; Swant, Bellinzona, Switzerland), anti-zinc 

transporter 3 (ZnT3; 1:500; Synaptic Systems, Göttingen, Germany), anti-

CD11b (1:100; Serotec, Oxford, UK), and anti-DCX (1:300; Santa Cruz 

Biotechnology) antibodies. Species-specific secondary antibodies, conjugated 

with fluorescein (FITC; 1:180; Vector, Burlingame, CA) or Texas Red (TR; 

1:180; Vector) were used to detect the binding of primary antibodies. 

Specimens were mounted using Vectashield mounting medium with 4,6-
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diamino-2-phenylindole (DAPI; Vector), and were analyzed by an 

immunofluorescence microscopy (BX51; Olympus, Center Valley, PA) or a 

confocal laser scanning microscopy (LSM 700; Carl Zeiss, Oberkochen, 

Germany). To determine differentiation patterns of grafted cells, sets of 50–

100 hNuc+ cells or GFP+ cells from every fifth section were used to calculate 

the percentages of hNestin+, TUJ1+, GFAP+, S100 β, OLIG2+, or GABA+ cells.

At least 1000 cells per marker were analyzed. 

13. Histological quantification

For quantification of neuronal damage, the density of NeuN+ and PV+

neurons was assessed manually at 400 × magnifications by an investigator 

unaware of the treatment group. Based on the data concerning neuronal 

damage induced by lithium-pilocarpine SE reported previously,33,51,52 the 

examination of neuronal damage focused on pyramidal layer of the 

hippocampal CA3 (CA3ab and CA3c for assessment of NeuN+ neuronal 

density) and CA1, and the hilus of the dentate gyrus. For each animal, every 

tenth brain sections containing the dorsal hippocampus were selected from 

bregma −3.1 to −3.6 mm. Neuronal densities were determined using the 

unbiased optical dissector technique as previously described.53 Briefly, 3 

counting frames (120 × 60 μm) were positioned in the CA1 and CA3 (3 for 

CA3ab and 2 for CA3c) of hippocampus and the entire hilus was used as the 

counting frame. The hilus was defined as the area bounded by the lower edge 

of the granule cell layer.54 CA3c was defined as the CA3 pyramidal cell layer 

located between the blades of the dentate granule cell layer and CA3ab was 

defined as the CA3 pyramidal cell layer excluding the CA3 region.55 CA1 was 

defined as the pyramidal cell layer that extended from the CA2 region to an 

imaginary line drawn perpendicular to the crest of the DG.56 Neurons were 

identified as NeuN+ and PV+ cells that contained a relatively large (>8 μm) 
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soma to avoid counting glial cells. Neurons touching the inferior and right 

edge of the frame were not counted.

Mossy fiber sprouting was scored according to previously described.57 A 1-

in-15 series of brain sections sampled from the entire hippocampus was 

evaluated. Confocal optical sections of ZnT3 immunoreactivity in the dentate 

inner molecular layer were selected from the midpoint of the upper blade of 

the dentate at 630× magnifications (2024x2024 format). Optical sections were 

captured 2-3 μm below the tissue surface for all sections. For each section, 

mossy fiber sprouting was scored by first determining the area of the inner 

molecular layer present in the image, and then determining the percentage of 

the total area occupied by ZnT3 immnoreactive puncta using ImageJ software 

(NIH, Bethesda, MD, USA). Sensitivity was set to capture all puncta with an 

intensity >2X background and an area > 0.5μm.

For quantification of astrogliosis and microgliosis, confocal images of 

brain sections were collected at 400× magnifications in every fifteenth section 

through the dorsal hippocampus, and analyzed as previously described.6

Briefly, images were transformed to 8-bit gray scale, and area fraction 

occupied by GFAP- or CD11b-immunoreactivity above threshold was 

obtained with the ImageJ software. The same threshold range was used in all 

images.

To investigate the level of GDNF expression in host hippocampal 

astrocytes, double immunofluorescence for GDNF and the astrocytic marker, 

S100β was performed, and S100β+ astrocytes were visualized by Texas Red 

and GDNF expression was identified by fluorescein. The ratio of double-

labeled GDNF- and S100β-positive cells among total S100β-positive cells in 

the DG, CA3, and CA1 of hippocampus was determined by a confocal laser 

scanning microscopy in every 10th section throughout the dorsal hippocampus. 

At least 80 S100β-positive cells per animal were analyzed at 400×

magnification.
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To estimate the hippocampal neurogenesis, DCX+ cells were counted in 

every fifteenth section through the entire hippocampus (from bregma –2.8 to –

6.72 mm).58 DCX+ cells were counted at 40X magnification using a confocal 

microscopy. All DCX+ cells in the granular cell layer (GCL), the subgranular 

cell layer (SGZ), and the hilus of dentate gyrus were counted per section by 

an observer blinded to group allocation. For cell counting, z stacks of 1-μm-

thick single-plane images were captured through the entire thickness of the 

section. After images were collected per section, samples were stacked and 

analyzed using ImageJ software. Cell numbers were summed from all sections 

and multiplied by ten to obtain the total estimated number of cells per the 

GCL and the SGZ as previously published.59

14. Quantitative real-time reverse transcription-polymerase chain reaction 

(qRT-PCR)

Total RNA was isolated from cell cultures or hippocampal tissue samples

using the TRI reagent (MRC, Inc., Cincinnati, OH), and 2 μg of RNA was 

reverse-transcribed into cDNA using random hexamer primers (Bioneer, 

Daejeon, Korea) and Superscript ІІІ reverse transcriptase (Invitrogen, Grand 

Island, NY) in a thermal cycler (Eppendorf, Happauge, NY) according to the 

manufacturer’s instructions. Quantitative RT-PCR was carried out in a total 

volume of 10 μL containing 5 μL of LightCycler® 480 SYBR Green I Master

(Roche Diagnostics Ltd., Rotkreuz, Switzerland), 0.5 μM of each primer and 

2.5 μL of 1:10 diluted cDNA using LightCycler® 480 instrument (Roche 

Diagnostics Ltd). The cycling conditions were: 95° C for 5 min, followed by 

45 cycles of 95°C for 10 s, 60°C for 10 s, and 72°C for 10 s. All the samples 

were carried out in triplicates. The expression levels of each mRNA 

expression were normalized to the housekeeping gene GAPDH using

LightCycler® 480 Software, Version 1.5 (Roche Diagnostics Ltd). Primer 
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sequences for NEUROG1 and GAPDH were retrieved from PrimerBank 

Database http://pga.mgh.harvard.edu/primerbank/.60 Primers sequences for rat 

cytokines and chemokines were listed in Table 2.
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Table 2. Sequences of primers used for qRT-PCR

Gene Forward sequence (5’ → 3’) Reverse sequence (5’ → 3’)

Il1b AAGCCAAACAAGTGGTATTCTC GATCCACACTCTCCAGCTGCA

Tnfa TGTGCCTCAGCCTCTTCTCATTC CATTTGGGAACTTCTCCTCCTTG

Il6 CCAGCCAGTTGCCTTCTTGGGA TGGTCTGTTGTGGGTGGTATCCT

Il10 TAAGGGTTACTTGGGTTGCC CTGTATCCAGAGGGTCTTCA

Il1rn GCGCTTTACCTTCATCCGC CTGGACAGGCAAGTGATTCGA

Il4 CAGGGTGCTTCGCAAATTTTAC ACCGAGAACCCCAGACTTGTT

Ifng AGTCTGAAGAACTATTTTAACT CTGGCTCTCAAGTATTTTCGTGT

Cxcl8 CCCCCATGGTTCAGAAGATTG TTGTCAGAAGCCAGCGTTCAC

Ccl5 GTCGTCTTTGTCACTCGAAGGA GATGTATTCTTGAACCCACTTCT

Gapdh TTGATTAAGTCCCTGCCCTTT CGATCCGAGGGCCTAACTA
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15. Multiplex immunoassay

Hippocampal tissue samples were weighed and homogenized in solution 

containing 50mM Tris-HCL (pH 7.6), 0.01% NP-40, 150mM NaCl, 2mM 

EDTA, 0.1% SDS, 1mM phenylmethylsulfonyl fluoride, and protease 

inhibitor cocktail (Sigma) at a ratio of 100μl solution to 10mg tissue. Samples 

were centrifuged at 4500 × g for 15min at 4°C, and then supernatants were 

collected and stored at −80°C. The concentrations of IL-1β, TNFα, IL-6, IL-

10, IL-4, IFNγ, CXCL8, and CCL5 were determined using a Procarta 

Immunoassay kit (Affymetrix, Santa Clara, CA, USA) according to the 

manufacturer’s protocol. 

16. Hippocampal neuronal cell culture and experimental treatments

  

  Dissociated cell culture were prepared from E18 SD rats based on 

previously described protocols.61 At day 5 in vitro (DIV5), non-neuronal cell 

division was halted by addition of arabinose-C at a final concentration of 8μM 

and neurons containing <9% astrocytes, as determined by double 

immunostaining with MAP2 and GFAP, were used for experiments after 

DIV9. Cell conditioned medium was prepared by culturing hNSPCs (1 ×

105/cm2) (hNSPC-CM) or human fibroblast IMR90 (3 × 104/cm2) (IMR90-

CM) in Neurobasal medium with B27 supplement (NbB27; Gibco) for 3 days

and used to replace 50% of the neuronal culture medium. Excitotoxicity was 

induced in DIV9 hippocampal neurons by exposure to 125μM glutamate 

(Sigma) for 15 min and measured using CCK8 assay (Dojindo). 

17. Western blots

  To assess differences in secreted growth factors between hNSPC-CM and 
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IMR90-CM, CM was concentrated 10-fold using Amicon Ultra-0.5 

centrifugal filter devices (Millipore) in accordance with the manufacturer’s 

guidelines. These concentrated CM were resolved by sodium dodecyl sulfate–

polyacrylamide gel electrophoresis. Samples (20 μL) were loaded onto 10% 

Tris–glycine gels, and the proteins were transferred from the gel onto a 

0.45-μm nitrocellulose membrane (Thermo Scientific, Suwanee, GA) over 4 h 

at 4°C. The protein blots were blocked with 5% skimmed milk in TBST and 

then incubated with 0.25% bovine serum albumin in TBST overnight at 4°C 

with the following primary antibodies: anti-BDNF (Santa Cruz 

Biotechnology), anti-NTF3 (Santa Cruz Biotechnology), anti-NTF4 (Santa 

Cruz Biotechnology), anti-NGF (Santa Cruz Biotechnology), and anti-VEGF

(Santa Cruz Biotechnology). Immunoblots were rinsed with TBST, incubated 

with a horseradish peroxidase-conjugated secondary antibody (1:20,000; 

Jackson Immunoresearch, West Grove, PA) for 1 h at room temperature, and 

developed using SuperSignal West Pico Chemiluminescent substrate 

(1:20,000; Thermo Scientific). The images were scanned with a Fujifilm 

LAS-4000 mini imager and analyzed with the MultiGauge software (Fujifilm, 

Tokyo, Japan).

18. Statistical analysis

All data are shown as means ± standard error of the mean (SEM). Data 

were compared by Student’s t-test, Mann–Whitney U-test, one-way analysis 

of variance (ANOVA) for multiple comparisons, nonparametric one-way 

ANOVA or repeated-measures ANOVA. All analyses were performed with 

SPSS 12.0 (SPSS Inc., Chicago, IL, USA). Differences were considered 

statistically significant for P<0.05. 
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III. RESULTS

1. Characterization of human NSPCs in vitro

Proliferating single cells isolated from the telencephalon of a human fetus 

at 13 weeks gestation (termed hNSPCs) gave rise to neurospheres that could 

be identified by their phase-bright appearance (Fig. 1A).27 To identify the 

cellular composition of neurospheres, we assessed the expression of NSCs

and the radial glial marker nestin,62 and radial glial protein recognized by 

vimentin, GFAP, Pax6, and the glutamate astrocyte-specific transporter 

(GLAST or EAAT1).63-68 Additionally, we analyzed expression levels of 

GFAP, a protein expressed by immature cells or astrocytes, neuron-specific β-

tubulin III (TUJ1), and neuronal markers NF and NeuN. Most cells (95–99%) 

expressed vimentin, nestin, GFAP, TUJ1, and Pax6 (Fig. 1B, D, E, H, or J, 

respectively), while those labeled by the GLAST antibody were distributed 

exclusively in the outer regions of the spheres (Fig. 1M–O). More than 90% 

of GFAP-labeled cells co-expressed nestin, vimentin or Pax6, suggesting that 

these cells represent radial glia cells, which are recognized as multipotent 

NSPCs67,69,70 (Fig. 1B, D–F, or J–L). In addition, more than 90% of GFAP+

cells expressed the early neuronal marker TUJ1 at relatively low to moderate 

levels (Fig. 1G–I), suggesting that cells are double-labeled with glial and 

neuronal markers are multipotent progenitors.68,71 Interestingly, some cells 

that strongly expressed TUJ1 were found predominantly in the sphere core 

and were not co-labeled with GFAP (Fig. 1H and I), indicating that even 

under proliferative conditions, some early neurons are generated in the 

spheres. However, these cells did not express mature neuronal markers, such 

as NF (Fig. 1C) or NeuN (data not shown). These data demonstrate that 

mutipotent NSCs, progenitors, and radial glial cells may co-exist with some 

restricted neuronal or glial progenitors in human neurospheres derived from 



28

the fetal telencephalon.

Next, we performed immunostaining to explore the hNSPCs’ ability to 

differentiate into three neural cell types in vitro: neurons, oligodendrocytes, 

and astrocytes (Fig. 2). Seven days after plating neurosphere-derived single 

cells under differentiation conditions, the hNSPCs had differentiated into 

TUJ1+ neurons, OLIG2+ oligodendrocyte progenitors, and GFAP+ astrocytes 

(Fig. 2A–C), and approximately 17% of the hNSPCs co-expressed TUJ1 and 

GABA (Fig. 2D). Thus, the hNSPCs exhibited characteristics consistent with 

NSCs,72-75 such as neurosphere formation, expression of neural 

stem/progenitor cell markers, and multipotent differentiation.   
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Figure 1. Neurosphere formation by fetal human CNS tissue and cellular 

composition of the neurosphere. Phase microscopy (A) and 

immunofluorescence labeling (B–O) of representative neurospheres grown in 

FGF-2 and LIF. The sectioned neurospheres were stained for vimentin (B), 

NF HML (C), nestin (D and F; green), GFAP (E, G and I; red), TUJ1 (H and I; 

green), Pax6 (J and L; green), GLAST (M and O; green), and DAPI (K, L, N, 

and O; blue). Note that the majority of the cells in the neurospheres express 

vimentin, nestin, GFAP, TUJ1, and Pax6 (B, D, E, H, and J, respectively), 

while GLAST staining appears in the outer portions of the spheres (arrows in 
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M and O). (D–F) More than 90% of the GFAP-expressing cells (E; red) co-

express nestin (D; green), as observed under the dual-filter microscope (F; 

yellow or orange). A few cells within the neurospheres are labeled with the 

anti-nestin antibody and not with the anti-GFAP antibody (arrows in D and F; 

green). (G–I) More than 90% of the GFAP-expressing cells (G; red) co-

express TUJ1 in relatively low to moderate levels (H; green), as observed 

under the dual-filter microscope (I; yellow or orange). Some cells that express 

TUJ1 at high levels, but that are not labeled with the anti-GFAP antibody, are 

located predominantly in the neurosphere core (arrows in H and I; green). 

Scale bar = 100μm.
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Figure 2. Multipotent hNSPCs and differentiation into GABAergic neurons in 

culture. (A–C) Under differentiation conditions, differentiation of fractions of 

hNSPCs into TUJ1+ neurons visualized by Texas Red (A), GFAP+ astrocytes 

imaged using Texas Red (B), and OLIG2+ oligodendrocyte progenitors 

identified by Texas Red (C) could be observed. Nuclei were counterstained 

with DAPI. (D) Some hNSPC-derived differentiated neurons were co-labeled 

with TUJ1 (red) and GABA (green). Scale bar = 50 μm. 
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2. Engraftment and distribution of hNSPCs following transplantation

To evaluate the migration and engraftment patterns of hNSPCs in epileptic 

brain lesions, we injected hNSPCs into the LV of epileptic rats at 21 days after 

SE. Animals were sacrificed 3 months post-transplants, and brain tissues were 

processed for immunohistochemistry using hNuc or SC121 antibodies to 

detect human cells. The distribution of grafted hNSPCs is illustrated in Fig. 

3A. Donor-derived cells were present in the LV (Fig. 3B), the subventricular 

zone (SVZ) (Fig. 3B and 4E), fimbria of the hippocampus (Fig. 3D), the 

corpus callosum (Fig. 3C), the neocortex (Fig. 3E), and the external capsule 

(Fig. 3F), indicating the robust engraftment, long-term survival, and extensive 

migration of grafted cells. 

3. Differentiation of hNSPCs in epileptic rats following transplantation 

We investigated differentiation patterns of donor-derived cells in the brains 

of epileptic rats at 3 months following transplantation (Fig. 4A–U). The 

majority of hNuc+ cells expressed nestin (87.7% ± 9.4%), indicating that 

hNSPC-derived cells remained largely undifferentiated (Fig. 4A–D). Donor-

derived cells also expressed the early neuronal marker TUJ1 (11.5% ± 2.4%; 

Fig. 4E–H), the immature cell and astrocyte marker GFAP (64.4% ± 11.0%; 

Fig. 4I–L), the oligodendrocyte progenitor marker OLIG2 (3.7% ± 1.9%; Fig. 

4M–P), or GABA (7.2% ± 0.8%; Fig. 4Q–T). Because many GFAP+ donor-

derived cells expressed nestin, we identified these cells as immature cells, not 

mature astrocytes (data not shown). In addition, very few hNuc+ cells co-

expressed for the astrocyte marker S100β (<1%). These findings suggest the 

majority of hNSPCs grafted into LV of epileptic rats remain undifferentiated,

although subsets of donor-derived cells express neuronal or glial lineage 

markers. 
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Figure 3. Engraftment and distribution of hNSPCs that grafted into the LV of 

epileptic rats. (A) A schematic figure illustrates the distributions of grafted 

cells in rats 3 months after transplantation. (B and C) SC121+ grafted cells 

(green) were located in the LV, the SVZ, and fimbria of the hippocampus (B), 

and the corpus callosum (C). (D) Immunofluorscence staining with hNuc (red) 

showed that transplanted cells integrated into fimbria of the hippocampus. 

Double-immunostaining with hNuc (red) and hNestin (green) revealed the 

migration of grafted hNSPCs into the neocortex (E) and along external 

capsule (F). Scale bar=500 μm (B and C) and 100 μm (D–F).
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Figure 4. Differentiation of hNSPCs following transplantation into the LV of 

epileptic rats. (A–T) hNuc+ grafted cells (red) were co-stained with nestin 

(green; A–D), TUJ1 (green, arrow in E–H), GFAP (green; I–L), OLIG2 (green, 

arrowhead in M–P), and GABA (Q–T). (D, H, L, P and T) Orthogonal view 
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from confocal z-series showed that hNuc (red) in nuclei and cell type-specific

marker (green) in cytoplasm were expressed in the same cell. Scale bar=20 

μm (S), 20 μm (T). Quantification of the data presented in (U).
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4. Effect of hNSPC transplantation on SRMS and behavioral abnormalities

We examined whether hNSPC grafting could control spontaneous seizures

in pilocarpine-treated rats over a long-term follow-up period. From 2 weeks to

3 months following transplantation, seizure activity was evaluated by video 

monitoring (12 h/day, 5 days/week, and 2 weeks/month for 360 h total). In 

hNSPC-grafted epileptic rats, SRMS frequencies were significantly reduced at 

2 and 3 months after grafting (0.02 ± 0.01 and 0.07 ± 0.02 seizures/day, 

respectively), compared with vehicle-injected epileptic rats (0.14 ± 0.05 and 

0.28 ± 0.07 seizures/day, respectively; Fig. 5A). The total time spent in SRMS

was also reduced in hNSPC-grafted epileptic rats at 2 and 3 months after 

transplantation (4.23 ± 1.71 sec and 12 ± 3.63 sec, respectively) compared to

that in vehicle-injected epileptic rats (23.38 ± 8.72 sec and 56.11 ± 18.79 sec, 

respectively; Fig. 5B). Seizure severity was usually stage 4 or 5 and did not 

differ significantly between vehicle-injected and hNSPC-transplanted rats 

(Fig. 5C).

Lithium-pilocarpine treated rats also exhibit behavioral deficits in spatial 

learning or aggressive response to injection,25,76 thus we next examined 

whether hNSPC transplantation could reduce aggressive behavior via

injection score test. The epileptic rats showed significantly higher injection 

scores, and therefore aggressiveness, compared to non-epileptic control rats

(Fig. 5D) as found in previous studies.25,77 Injection scores did not change 

significantly after hNSPC grafting (P > 0.05; Fig. 5D), indicating that hNSPC 

transplantation did not improve aggressiveness in the epileptic rats. 

To evaluate the effect of hNSPC grafting on learning and memory function 

in the pilocarpine model, we conducted water maze testing at 3 months post-

transplantation. In the hidden platform test, epileptic rats that received vehicle 

exhibited significantly longer escape latencies compared to non-epileptic 

control rats (Fig. 5E), indicating that these rats had a learning impairment. 
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This deficit was confirmed in the probe test (Fig. 5F–I), during which the

epileptic rats in the vehicle group spent less time in the target quadrant and 

platform area (Fig. 5F, G), took longer to reach the platform area (Fig. 5H), 

and crossed the platform area in less time (Fig. 5I) when the platform was 

removed. The hNSPC-grafted rats did not show improvement in overall 

spatial learning or memory function, and were indistinguishable from the 

vehicle-injected group.
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Figure 5. Effects of hNSPC grafting on SRMS, aggressiveness, spatial 

learning and memory function in epileptic rats. (A–C) Seizure activity was 

evaluated. The mean seizure frequencies (A), total time spent in seizures (B)

and seizure stages (C) were calculated during 1, 2, and 3 months following 

transplantation in vehicle-injected and hNSPC-transplanted groups.

* Significantly different from vehicle group at P < 0.05. (D) The behavioral 

response to the injection was documented to assess the aggressiveness during 

1, 2, and 3 months following transplantation in control, vehicle-injected, and 

hNSPC-transplanted groups. * Significantly different from control at P < 0.05.

(E–I) In a Morris water maze test, Escape latency decreased gradually and 

significantly over the 4 days of testing in control rats, but not in vehicle- and 

hNSPC-injected epileptic rats (E). During probe testing on day 5, dwell time 
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in the target quadrant (F), dwell time in the platform area (G), latency to the 

platform (H), and platform area crossings (I) were measured in the three 

groups. Both of vehicle- and hNSPC-injected epileptic rats exhibited 

significant deficits in memory retention in terms of all parameters. 

* Significantly different from control at P < 0.05; error bars indicate ± SEM.
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5. Effect of hNSPC transplantation on histopathological changes in the 

hippocampus

To explain how hNSPC grafting suppress seizures in the rats, we analyzed 

the effects of cells treatment 3 months post-transplantation on 

histopathological alterations that resemble findings in human TLE patients, 

including neuronal damage, mossy fiber sprouting (MFS), astrogliosis, and 

microgliosis in the hippocampus. Immunohistochemical staining with anti-

NeuN antibody showed that neuronal density in the pyramidal cell layers of 

CA3c, CA3ab, CA1 and in the hilus of the dentate gyrus (DG) were

significantly reduced in vehicle-injected epileptic rats (Fig. 6Ab and Ae, P < 

0.01), compared to non-epileptic control rats (Fig. 6Aa and Ad). Human 

NSPC grafting significantly ameliorated neuronal loss in CA3c (Fig. 6Ac and 

Af) but did not improve neuronal loss in the hilus, CA3ab, or CA1 regions 

(Fig. 6C). Loss of parvalbumin (PV)+ neurons in the hippocampus has been 

observed in epileptic rats4,51,78, thus we also investigated whether hNSPC 

grafting affected the number of PV+ neurons in hippocampal subfields, 

including the hilus, CA3, and CA1 regions. Compared to non-epileptic control

rats, a significant loss of PV+ neurons was detected in the hilus (42% cell loss), 

CA3 (33%), and CA1 (41%) regions in vehicle-injected epileptic rats (Fig. 6B 

and D, P < 0.05). In hNSPC-transplanted rats, the hilus showed a significant 

reduction of PV+ neurons (P < 0.05), but CA3 and CA1 exhibited the 

significantly higher number of PV+ neurons than those in vehicle-injected 

epileptic rats (P = 0.09 and P = 0.001, respectively). Taken together, the above 

data indicate hNSPC grafting leads to a substantial preservation of pyramidal 

neurons in CA3c and of PV+ neurons in CA1. As a previous study 

demonstrated that a loss of PV+ neurons is directly related to seizure severity7, 

survival of PV+ neurons in CA1 could play an important role in seizure 

suppression that is mediated by hNSPC transplantation. 



41

Aberrant sprouting of granule cell axons (mossy fibers) into the inner 

molecular layer (IML) of the DG of the hippocampus is one of the best-

known structural changes that occur in TLE models. 2,3,79,80 To visualize mossy 

fibers, we performed zinc transporter 3 (ZnT3)-specific immunostaining that 

selectively label mossy fiber terminals, and MFS was scored by measuring the 

total areas containing ZnT3 immunoreactive puncta in the DG IML, as 

previously described 57. Robust MFS were observed in vehicle- and hNSPC-

injected epileptic rats (% IML MFS = 10.8 ± 2.0 and 8.6 ± 2.0, respectively; 

Fig. 7B and C), but not in control rats (% IML MFS = 0.8 ± 0.0; Fig. 7A). The 

extent of MFS was not significantly different between vehicle- and hNSPC-

injected rats (P > 0.05; Fig. 7D), indicating that the significant decrease in 

seizure frequency seen with hNSPC transplantation did not the result from a 

reversal of aberrant MFS in the DG.

We also analyzed astrogliosis and microgliosis in the hippocampal subfields 

such as the hilus of DG, CA3, and CA1 (Fig. 8). To assess astrogliosis, we 

conducted immunohistochemcal staining for GFAP and measured the area 

occupied by GFAP as previously described.81,82 GFAP+ astrocytes in both of 

vehicle- and hNSPC-injected epileptic rats showed a large cell body with

thick cellular processes (Fig. 8B and C), while astrocytes of non-epileptic 

control rats exhibited normal morphologies (Fig. 8A). In the hilus, CA3, and 

CA1 regions, the average GFAP immunoreactive area had significantly 

increased in vehicle- and hNSPC-injected epileptic groups compared to the 

control rats, indicating reactive astrogliosis.6 No significant difference was 

observed in reactive astrogliosis between vehicle- and hNSPC-injected 

epileptic rats (Fig. 8G). Immunohistochemical staining with anti-CD11b 

antibody revealed that activated microglia were present in the hippocampal 

subfields of vehicle-injected epileptic rats (Fig. 8E), but not in non-epileptic 

control rats (Fig. 8D). Similar to astrogliosis, the mean area occupied by 

CD11b+ cells was significantly increased in vehicle-injected epileptic rats 
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compared to non-epileptic control rats (Fig. 8H). We observed more extensive 

microgliosis in especially CA1 region than in the hilus or CA3 region (Fig. 

8H). There was no significant difference in microgliosis between vehicle- and 

hNSPC-injected rats (Fig. 8F). These results suggest that hNSPC grafting did 

not influence astrogliosis and microgliosis in the hippocampal subfields in 

epileptic rats.

6. Effect of hNSPC grafting on the expression of GDNF in host hippocampal 

astrocytes

Increased GDNF levels in hippocampal astrocytes of the epileptic brain 

suppress seizures.83,84 According to Waldau et al., rat NSC grafting that added

new donor-derived GDNF+ cells and restored GDNF expression in host 

hippocampal astrocytes restrained SRMS in a TLE model.10 However, we did 

not observe hNSPC-derived GDNF-expressing astrocytes in the hippocampus

following transplantation, but hNSPC transplantation induced GDNF 

expression in the majority (74% for hilus, 68% for CA3, and 84% for CA1) of 

host hippocampal astrocytes in the epileptic rats (Fig. 9I–L). Levels of GDNF 

expression were mostly restored to level of the intact controls (Fig. 9A–D and

F). In contrast, levels of GDNF expression of host astrocytes was 49% in hilus, 

53% in CA3, and 63% in CA1 of vehicle-injected epileptic rats (Fig. 9E–H). 

Levels of GDNF expression were not restored to level of the intact controls by 

vehicle-injection(Fig. 9M). Thus, hNSPC transplantation induced GDNF 

expression in host hippocampal astrocytes which may be involved in 

suppressing seizures.



43

Figure 6. Effect of hNSPC transplantation on neuronal damage in the epileptic 

hippocampus. (A and C) hNSPC grafting significantly relieved NeuN+

neuronal loss in the pyramidal cell layer of CA3c region. Representative 

NeuN stained sections of CA3c region of control rat (Aa and Ad), and 

epileptic rat that received vehicle injection (Ab and Ae) or hNSPC grafting 

(Ac and Af). Boxed region in Aa, Ab and Ac is magnified in Ad, Ae and Af, 

respectively. Scale bar=500 μm (Ac), 100 μm (Af). (B and D) Human NSPC

grafting led to a substantial preservation of PV+ neurons in CA1. 

Representative staining for PV of CA1 region in control (Ba), vehicle-injected

(Bb), and hNSPC-grafted (Bc) groups. Scale bar=100 μm (Bc). Bar graphs 

illustrated the percentage of remaining NeuN+ neurons (C) and PV+ neurons 

(D) in the hippocampal subfields. * Significantly different from control at P < 
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0.05; † significantly different from vehicle-injected group at P < 0.05; error 

bars indicate ± SEM.

Figure 7. Effect of hNSPC transplantation on MFS in the epileptic 

hippocampus. Robust MFS were observed in vehicle-injected (B) and 

hNSPC-grafted epileptic rats (C) but not in control rats (A). Abbreviations: 

IML, inner molecular layer; GCL, granular cell layer; H, hilus. Scale bar=50 

μm. (D) Quantification showed the extent of MFS was not significantly 

different between vehicle- and hNSPC-injected rats. * Significantly different 

from control at P < 0.05; error bars indicate ± SEM.
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Figure 8. Effect of hNSPC transplantation on astrogliosis and microgliosis in 

the epileptic hippocampus. GFAP immunostaining showed that the GFAP 

immunoreactive area significantly increased in vehicle- (B) and hNSPC-

injected groups (C) compared to the control rats (A), indicating reactive 

astrogliosis. (G) No significant difference was observed in reactive 

astrogliosis between vehicle- and hNSPC-injected epileptic rats. 

* Significantly different from the control at P < 0.05; error bars indicate ±

SEM. (E–F) Immunostaining with CD11b revealed that activated microglia 

were present in the CA1 region of vehicle- (E) and hNSPC-injected (F)

epileptic rats, but not in non-epileptic control rats (D). (H) Bar graphs 

illustrate the percentage of area occupied by CD11b+ cells in the hippocampal 

subfields in the three groups. * Significantly different from the control at P < 

0.05; error bars indicate ± SEM. Scale bar=100 μm.
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Figure 9. Effect of hNSPC grafting on the expression of GDNF in host 

hippocampal astrocytes. GDNF expression in S100β+ hippocampal astrocyte 

was observed in an age-matched intact control rats (A–D), vehicle- (E–H), 

and hNSPC-injected epileptic rats (I–L). Nuclei were counterstained with 

DAPI (C, G, and K). Arrowheads in A-L indicated S100β/GDNF double-

labeled cells. Arrows in E, G and H denoted S100β+ host hippocampal 

astrocytes that were devoid of GDNF immunoreactivity in vehicle-injected 

epileptic rats. Scale bar=50 μm. (M) The bar chart represents percentages of 

S100β+ astrocytes expressing GDNF in the hippocampal subfields in the three 

groups. * Significantly different from the age-matched intact control group at 

P < 0.05; † significantly different from vehicle-injected group at P < 0.05; 

error bars indicate ± SEM. 
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7. Neuroprotective effect of hNSPCs against glutamate-induced excitotoxicity 

in vitro

As discussed above, hNSPC grafting promotes neuroprotection in 

hippocampal neurons while a few grafted cells differentiated into neurons in 

the hippocampus of recipient rat brain. Therefore, we wondered if soluble 

factors secreted by hNSPCs protected hippocampal neurons against 

glutamate-induced excitotoxicity. To study this paracrine hypothesis,85

primary hippocampal neurons were treated with hNSPC-CM 24 h before 

application of glutamate (125μM) and CCK8 assay was performed to analyze 

cell viability (Fig. 10A and B). After exposure to glutamate, an obvious 

neurotoxicity was observed in primary hippocampal neurons treated with 

unconditioned culture medium (vehicle vs. glutamate [125μM]; P < 0.01; Fig. 

10B). The hNSPC-CM protected primary hippocampal neurons against 

neurotoxicity, but IMR90-CM did not (Fig. 10B), highlighting the potential 

neuroprotective effect of hNSPC-CM.

Previous studies have shown that neural stem cells constitutively produce 

and secrete neurotrophic/growth factors with neuroprotective effects against 

excitotoxic insults.86-90 We determined the expression patterns of 

neurotrophic/growth factors secreted by hNSPCs using RT-PCR and Western 

blot under both proliferation and differentiation conditions (Fig. 10C and D), 

which revealed that hNSPCs expressed BDNF, NTF3, NTF4, NGF, VEGF, 

FGF2, and GDNF (Fig. 10C). Moreover, BDNF, NTF3, NTF4, NGF, and 

VEGF protein were detected in hNSPC-CM, but not in IMR90-CM (Fig. 

10D), suggesting that these factors could promote neuroprotection observed in 

hNSPC-grafted epileptic rats.  
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Figure 10. Neuroprotective effect of hNSPCs against glutamate-induced 

excitotoxicity in vitro. (A) Rat primary hippocampal neurons (DIV9) were 

immunostained with MAP2 antibody. Nuclei were counterstained with DAPI. 

Scale bar=50 μm. (B) Hippocampal neurons treated with hNSPC-CM, but not 

IMR90-CM or unconditioned culture medium (control, Ctl), for 24hr were 

protected against subsequent glutamate excitotoxicity as measured by the 

CCK8 assay. ** Significantly different from the vehicle-treated Ctl group at P 

< 0.01; † significantly different from glutamate-treated Ctl group at P < 0.05; 

error bars indicate ± SEM. (C) Human NSPCs under proliferation and 

differentiation conditions in vitro expressed neurotrophic/growth factors: 

BDNF, NTF3, NTF4, NGF, VEGF, FGF2, and GDNF in RT-PCR analysis. (D) 

BDNF, NTF3, NTF4, NGF, and VEGF proteins were detected in hNSPC-CM,

but not in IMR90-CM.
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8. Effect of hNSPC grafting on inflammation

Because recent studies have demonstrated that inflammation affects the

generation and exacerbation of epilepsy,91-96 we investigated whether hNSPC 

grafting could modulate inflammation by controlling its mediators, such as 

cytokines and chemokines. First, we quantified the expression of hippocampal 

pro-inflammatory and anti-inflammatory cytokines and chemokines at 21 d 

after SE, the time of grafting, in lithium-pilocarpine treated and age-matched 

control rats (Fig. 11A and B). Nine genes encoding cytokines and chemokines 

were analyzed, and their corresponding protein expression levels (except for 

IL-1Ra) were determined. Real-time PCR showed the level of il1b mRNA

was significantly increased, while the levels of il1rn, ifng, and ccl5 mRNA 

were significantly decreased in lithium-pilocarpine treated rats compared to

control rats (P < 0.05). We observed no significant changes in IL-1β, TNF-α, 

IL-6, IL-10, IL-4, INF-γ, CXCL8, or CCL5 protein expression levels between 

lithium-pilocarpine treated and control rats (Fig. 11B).

Next, to elucidate the effects of hNSPC transplantation on inflammation, 

levels of cytokines and chemokines were measured at 6 and 10 weeks 

following transplantation in hNSPC- and vehicle-injected rats as described 

above (Fig. 12). The il1b mRNA and protein levels increased at 6 and 10 

weeks after injection in the vehicle-injected epileptic group but not in the 

control (non-epileptic) group (Fig. 12A and D). In contrast, tnfa mRNA and 

protein were expressed similarly in all groups (Fig. 12B and E). Although il6

mRNA expression was reduced at 6 weeks post-injection in the epileptic 

group compared to the control group, we did not observe the same difference

at 10 weeks after injection (Fig. 12C and F). hNSPC grafting did not affect the 

expression of pro-inflammatory cytokines, such as IL-1β, TNFα, and IL-6.

The level of IL-10 protein in hNSPC-transplanted epileptic rats was 

significantly increased compared to the vehicle-injected epileptic group and 
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control group at 6 weeks post-transplants, although il10 mRNA expression 

was comparable in all group at both time points (Fig. 12G and J). We noted 

significantly increased IL-10 protein expression in vehicle- and hNSPC-

injected epileptic rats in comparison to control rats at 10 weeks post-

transplantation. Levels of il4 mRNA and protein were higher in both vehicle-

and hNSPC-injected epileptic rats than in the control rats at 6 and 10 weeks 

post-transplants (Fig. 12H and K). Furthermore, il1rn mRNA levels were 

higher at 10 weeks post-transplants in the hNSPC-injected epileptic rats than

in the vehicle-injected epileptic rats (Fig. 12I). These results verify hNSPC 

grafting increased IL-10 protein expression at 6 weeks post-transplants and 

il1rn mRNA expression at 10 weeks post-transplants. Levels of ifng mRNA

were similar in all groups at 6 weeks post-transplants, and its expression was 

not detected at 10 weeks following transplantation (Fig. 12L and O). Similarly, 

its protein expression levels did not significantly differ among the three 

groups at any time point (Fig. 12O). In contrast, CXCL8 protein expression 

was markedly increased in epileptic rats at 10 weeks, but not 6 weeks, post-

injection compared to control rats (Fig. 12P), while cxcl8 mRNA levels did 

not differ among the three groups (Fig. 12M). Compared to the control group, 

significant increases in ccl5 mRNA expression were observed in both 

epileptic groups at 10 weeks, but not 6 weeks, post-transplants (Fig. 12N), 

although its protein levels significantly increased in both epileptic groups at 6 

and 10 weeks post-transplants (Fig. 12Q). These data revealed constant,

significant increases of IL-1β, IL-4, and CCL5 levels at 6 and 10 weeks after 

vehicle and hNSPC injection, and significant increases of IL-10 and CXCL8

levels at 10 weeks after vehicle- and hNSPC-injection in epileptic 

hippocampus compared to control hippocampus. hNSPC transplantation

significantly increased the expression of anti-inflammatory cytokines IL-10 

and IL-1Ra at 6 and 10 weeks post-transplants, respectively, in epileptic rats 

compared to vehicle-injected epileptic rats, however, did not alter the 
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expression of pro-inflammatory cytokines and chemokines in epileptic 

hippocampus.

Figure 11. The expression of hippocampal pro-inflammatory and anti-

inflammatory cytokines and chemokines (mRNA [A] and protein [B]) at 21 

days after SE (the time of vehicle or hNSPC injection) in lithium-pilocarpine-

treated epileptic and age-matched control rats. * Significantly different from 

the control group at P < 0.05; error bars indicate ± SEM.
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Figure 12. Levels of cytokines and chemokines (mRNA and protein) were 

measured at 6 and 10 weeks after hNSPC- and vehicle-injection in epileptic 

rats, and age-matched intact control rats. Note that hNSPC transplantation

increased IL-10 protein expression at 6 weeks post-grafting and il1rn mRNA

expression at 10 weeks following transplantation. * Significantly different 

from the control group at P < 0.05; ** significantly different from the control 

group at P < 0.01; † significantly different from vehicle-injected group at P < 

0.05; error bars indicate ± SEM.
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9. Generation and Characterization of galanin-releasing hNSPCs in vitro

GAL-hNSPCs were generated by exposing hNSPCs to Ad-Igκ-GAL-GFP

(Fig. 13A). Previous studies have demonstrated that galanin attenuates seizure 

activity in the hippocampus.35-38 Thus, we expected that transplantation of 

GAL-hNSPCs into epileptic hippocampus could exert synergistic effects of 

hNSPCs and hNSPC-mediated galanin gene therapy on efficiently 

suppressing seizures in the rat TLE model. We first characterized the GAL-

hNSPCs in vitro and found that they gave rise to neurospheres (Fig. 13B) and 

expressed GFP (Fig. 13C). Flow cytometry confirmed that 95% of infected

cells expressed GFP. We then analyzed mRNA transcripts expression for 

human galanin, GALR1, GALR2, and GALR3 in GAL-hNSPCs and GFP-

hNSPCs under proliferation and differentiation conditions using RT-PCR (Fig. 

13C). Results showed that human galanin mRNA was strongly expressed in 

only GAL-hNSPCs under both types of conditions. Expression of GALR2 

mRNA was observed in GAL-hNSPCs and GFP-hNSPCs, but neither GALR1 

nor GALR3 expression was detected. Galanin from the supernatants of GAL-

hNSPCs and GFP-hNSPCs was quantified by ELISA (Fig. 13D). The GAL-

hNSPCs secreted galanin (4.4 ng/5× 105 cells/48 h), whereas no galanin 

secreted from GFP-hNSPCs was detected.

We determined the effects of galanin secretion on the survival, proliferation, 

or apoptosis of hNSPCs. The CCK8 assay showed that neither adenoviral 

infection nor galanin transduction negatively affected hNSPC viability (Fig. 

13E). To compare the proliferation rates, we performed EdU labeling 

experiments on GAL-hNSPCs, GFP-hNSPCs, and non-transfected hNSPCs, 

which revealed no significant effects of galanin secretion on hNSPC 

proliferation (Fig. 13F). Further analysis confirmed that galanin transduction

did not affect the cell cycle of hNSPCs (Fig. 13G). We also performed 

TUNEL staining to detect the apoptotic cells and found that very few
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TUNEL+ cells (apoptotic cells) were present in GAL-hNSPCs, GFP-hNSPCs, 

and control cells (Fig. 13H). These data indicate that neither secretion of 

galanin nor GFP expression alter the viability, proliferation, or apoptosis of 

hNSPCs.

To examine the differentiation patterns of GAL-hNSPCs in vitro, 

immunocytochemical staining with various cell markers were performed at 7 

days after cell plating in the culture dishes under differentiation conditions. 

The percentage of TUJ1+ neurons (48.0% ± 0.9% vs. 37.8% ± 3.1%; Fig. 14B 

and E) and OLIG2+ oligodendrocyte progenitors (13.3% ± 1.5% vs. 8.6% ±

0.4%; Fig. 14I and L) significantly increased in GAL-hNSPCs versus GFP-

hNSPCs (Fig. 13M). The percentages of GABA+ neurons (13.7% ± 2.5% vs. 

10.1% ± 2.5%; Fig. 14C and F), GFAP+ immature cells or astrocytes (60.0% ±

5.1% vs. 60.3% ± 5.1%; Fig. 14G and J), and S100β+ astrocytes (4.2% ± 1.7% 

vs. 5.3% ± 1.5%; Fig. 14H and K) were similar in GFP-hNSPCs versus GAL-

hNSPCs (Fig. 13M). A previous study has reported that galanin promotes 

neuronal differentiation by increasing in Neurog1 transcript expression.97

Thus, we evaluated the expression of NEUROG1 mRNA in GAL-hNSPCs 

under differentiation conditions using real-time PCR. We found that 

NEUROG1 mRNA levels were significantly elevated in GAL-hNSPCs 

compared to GFP-hNSPCs, suggesting that galanin could promote neuronal 

differentiation of hNSPCs through the up-regulation of NEUROG1 

transcription (Fig. 13N). 
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Figure 13. Characterization of galanin-releasing hNSPCs in vitro. (A)

Structure of adenoviral vector carrying the Igκ leader secretory signal 

sequence preceding the coding sequence for the active galanin peptide under 

the control of the CAG promoter and GFP as a reporter, placed under IRES 

promoter control. (B) Phase and immunofluorescence microscopy of 

representative neurospheres of GAL-NSPC. Scale bar=100μm. (C) RT-PCR

analysis for the expression of human galanin, GALR1, GALR2, and GALR3
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in GAL-hNSPCs (GAL) and GFP-hNSPCs (GFP) under proliferation (Prol) 

and differentiation conditions (Diff). (D) ELISA assay performed using the 

supernatants of cultured GAL-hNSPCs and GFP-hNSPCs. (E–H) We 

performed CCK8 assay, EdU labeling experiments, cell cycle analysis, and 

TUNEL staining with uninfected hNSPCs (control), GFP-hNSPCs and GAL-

hNSPCs. Note that neither secretion of galanin nor GFP expression altered the 

viability, proliferation, or apoptosis of hNSPCs. Error bars indicate ± SEM.
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Figure 14. The differentiation patterns of GAL-hNSPCs in vitro. (A–M) 

Percentages of hNestin+-, TUJ1+-, GABA+-, GFAP+-, S100β+-, and OLIG2+

cells among total GFP+ cells on the immunocytochemical staining with 

various cell markers were calculated in GFP-hNSPCs (GFP) and GAL-

hNSPCs (GAL) under differentiation conditions. (N) Bar graph depicted the 

relative fold change of mRNA expression for NEUROG1 proneurogenic gene, 

measured by qRT-PCR analysis under differentiation conditions. 

* Significantly different from the GFP group at P < 0.05; error bars indicate ±

SEM.
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10. Engraftment and distribution of GAL-hNSPCs following transplantation

Three groups of epileptic rats were injected with vehicle only, GFP-

hNSPCs, or GAL-hNSPCs into the CA3 regions of the bilateral hippocampi at 

21 days after SE. Immunohistochemical staining with GFP marker revealed 

that grafted GAL-hNSPCs migrated away from the injection site and 

dispersed throughout the hippocampus at 3 months post-injection (Fig. 15A). 

Transplanted GAL-hNSPCs were predominantly located in the radiatum layer 

of the CA3 region, molecular and granular layers of the DG, and the hilus of 

the hippocampus (Fig. 15A). To confirm in vivo expression of galanin, we 

performed RT-PCR for Igκ-GAL mRNA in the hippocampus from all groups 

at 1 month post-injection. As shown in Fig. 15B, hippocampus of epileptic

rats with grafted GAL-hNSPCs contained Igκ-GAL mRNA, but those of 

vehicle-injected or GFP-hNSPC transplanted epileptic rats did not. 

11. Differentiation of GAL-hNSPCs in epileptic rats following transplantation  

We examined the differentiation patterns of GAL-hNSPCs following 

transplantation into the hippocampus in epileptic rats. In whole hippocampal 

areas of epileptic rats that received GAL-hNSPCs, GFP+ grafted cells 

expressed nestin (66.4% ± 13.9%; Fig. 16A–D), TUJ1 (27.4% ± 4.7%; Fig.

16E–H), GFAP (60.9% ± 9.8%; Fig. 16 I–L), OLIG2 (9.3% ± 3.2%; Fig. 16

M–P), and GABA (22.0 ± 2.7%; Fig.16 Q–T) in the hippocampus. Compared 

to the GFP-hNSPC-transplanted epileptic rats, significantly higher number of 

grafted cells differentiated into TUJ1+ neurons and OLIG2+ oligodendrocyte 

progenitors by 15.7% and 8.4%, respectively, and lower number of grafted 

cells expressed nestin by 18.6% in the GAL-hNSPCs-transplanted group (Fig. 

16U). In both groups, few GFP+ cells (about 1%) expressed astrocyte marker 

S100β. 
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Figure 15. Engraftment and distribution of GAL-hNSPCs after transplantation 

into the epileptic hippocampus, and in vivo expression of Igκ-GAL mRNA. 

(A–G) Serial sections (320μm) through the hippocampus showed the location 

of GFP+ grafted cells at 3 months post-transplants. Nuclei were counterstained 

with DAPI. The arrowhead indicates the injection site. Scale bar=500μm. (H) 

The in vivo presence of Igκ-GAL mRNA at 1 month post-transplants into the 

hippocampus in RT-PCR. Igκ-GAL mRNA expression was detected in GAL-

hNSPC-grafted hippocampus (lane 4), but not age-matched intact control 

(lane 1), vehicle- (lane 2) and GFP-hNSPC- (lane 3) injected hippocampus. 

Plasmid DNA containing the Igκ-GAL sequence was used as positive control 

for Igκ-GAL-specific RT-PCR (lane 5). Omission of the RT step (RT(-)) 

indicated the absence of contaminating viral DNA. No template control (NTC)

was used as negative control.
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Figure 16. Differentiation of GAL-hNSPCs in epileptic rats following 

transplantation. (A–T) GFP+ cells (green) co-expressed hNestin, TUJ1, GFAP, 

OLIG2, and GABA (all in red). Orthogonal view from confocal z-series 
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showed that GFP and cell type-specific markers were expressed in the same 

cell. Scale bar=50 μm (A), 20 μm (D). (U) Comparison of differentiation 

patterns between GAL-hNSPC (GAL) and GFP-hNSPC (GFP) transplantation 

groups. * Significantly different from the GFP-hNSPC transplantation group 

at P < 0.05; error bars indicate ± SEM.
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12. Effect of GAL-hNSPC transplantation on SRMS and behavioral 

abnormalities

We conducted video monitoring to document the frequency and duration of 

SRMS in the epileptic rats for 3 months following transplantation. In vehicle-

injected rats (n = 30), mean SRMS frequencies evaluated at 1, 2, and 3 

months after injection were 0.90 ± 0.30, 0.92 ± 0.30, and 1.12 ± 0.35 seizures 

per day, respectively (Fig. 17A). In GAL-hNSPC- and GFP-hNSPC-injected 

rats (n = 12 and 17, respectively), mean SRMS frequencies evaluated at 1, 2, 

and 3 months after injection were 0.08 ± 0.04 and 0.42 ± 0.13, 0.03 ± 0.01 

and 0.31 ± 0.07, and 0.15 ± 0.08 and 0.21 ± 0.09 seizures per day, respectively 

(Fig. 17A). Thus, the epileptic rats that received GAL-hNSPC grafting

exhibited remarkable reductions in SRMS frequency in comparison to

epileptic rats that received vehicle or GFP-NSPC injection at 1 and 2 months

following transplantation (P < 0.05). These observations indicated a 

significant attenuation of SRMS frequency via galanin-secreting hNSPC 

transplantation. Additionally, mean SRMS frequencies in both GAL-hNSPC 

and GFP-hNSPC transplantation groups were significantly lower compared to 

those of vehicle-injected group at 3 months post-transplants (P < 0.05).

However, the mean SRMS frequencies at this time point were not 

significantly different between GAL-hNSPC and GFP-hNSPC transplantation 

groups. We observed similar results with respect to total time spent in SRMS 

(Fig. 17B). Seizure severity was usually stage 4 or 5 in all three groups which 

consequently showed no significant difference among three groups (Fig. 17C). 

We also investigated whether GAL-NSPC transplantation affected the rats’

performance in a Morris water maze test, which assesses hippocampal-

dependent learning and memory function, at 3 months following

transplantation (Fig. 17D–H). As discussed above, vehicle-injected epileptic 

rats exhibited significantly impaired learning ability in the hidden platform 
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test (Fig. 17D), and epileptic rats that received GAL-hNSPC or GFP-hNSPC 

grafting did not show improvement in the learning deficits. This learning 

impairment was confirmed in the probe test (Fig. 17E–H), in which the 

vehicle-injected epileptic rats spent less time in the target quadrant and 

platform area (Fig. 17E and F), took longer to reach the platform area (Fig. 

17G), and crossed the platform area in less time (Fig. 17H) when the platform 

was removed. Epileptic rats in the GAL-NSPC and GFP-NSPC 

transplantation groups also showed significantly poor performance in the 

probe test. Thus, GAL-NSPC or GFP-NSPC grafting did not ameliorate 

learning and memory impairment as observed in the vehicle-injected epileptic

rats.

Additionally, we performed the elevated plus maze test to evaluate anxiety 

related-behavior in epileptic rats at 3 months following transplantation. A

vehicle-injected rat and two GFP-hNSPC-injected rats were excluded from

the analysis because they jumped off the maze. Vehicle-injected rats spent 

more time in the open arms (Fig. 17I), indicating reduced anxiety level. 

Consistent with our data, previous studies reported that pilocarpine-induced 

epileptic rats exhibited the lower level of anxiety in the elevated plus maze 

compared to non-epileptic control rats.5,33,98 Time spent in the open arms was 

not significantly different between GFP-hNSPC- and vehicle-injected 

epileptic rats. In contrast, the time spent in the open arms was significantly 

lower in GAL-hNSPC-injected epileptic group compared to vehicle- and 

GFP-hNSPC-injected epileptic groups (P < 0.05). Thus, GAL-NSPC 

transplantation reversed the decreased anxiety levels of the epileptic rats. 
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Figure 17. Effects of GAL-hNSPC transplantation into the hippocampus on 

SRMS, anxiety-like behavior, spatial learning and memory function in the 

epileptic rats. (A–C) The mean seizure frequencies (A), total time spent in 

seizures (B) and seizure stages (C) were calculated during 1, 2, and 3 months 

following injection in vehicle (Veh)-, GFP-hNSPC (GFP)-, and GAL-hNSPC

(GAL)-injected epileptic rats. (D) In a Morris water maze test, hidden 

platform test showed significantly impaired learning ability in vehicle-, GFP-

hNSPC, and GAL-hNSPC-injected epileptic rats compared to non-epileptic

controls (Ctl). (E–H) During probe testing on day 5, dwell time in the target 

quadrant (E) and platform area (F), latency to the platform (G), and platform 

area crossings (H) were measured in the four groups. All three epileptic 

groups (Veh, GFP and GAL) exhibited significant deficits in memory 

retention. (I) In the elevated plus maze test, vehicle-injected epileptic rats 

exhibited a lower level of anxiety compared to non-epileptic control rats. This 
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was reversed by GAL-hNSPC transplantation, but not by GFP-hNSPC

transplantation. * Significantly different from Ctl at P < 0.05; † significantly 

different from Veh at P < 0.05; § significantly different from GFP at P < 0.05;

error bars indicate ± SEM.
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13. Effect of GAL-hNSPC transplantation on histopathological changes in the 

hippocampus 

To determine whether GFP-hNSPC or GAL-hNSPC transplantation

influences neuropathological alterations, we analyzed the neuronal damage, 

MFS, and neurogenesis in the hippocampus of the epileptic rats in the vehicle-

(n = 8), GFP-hNSPC- (n = 10), and GAL-hNSPC- (n = 8) injected groups at 3

months following injection. Immunohistochemical staining with anti-NeuN 

antibody and quantitative analysis revealed significantly reduced neuronal 

density in the pyramidal cell layer of CA3c, CA3ab, and CA1 regions, and in 

the hilus of the DG in vehicle-injected epileptic rats compared to age-matched 

intact control rats (n = 4; Fig. 18A, B, E, F and I). In the GFP-hNSPC-injected

group, neuronal loss in CA3c region was significantly decreased compared to 

the vehicle-injected group (P < 0.05; Fig. 18C and G), however, GAL-hNSPC 

transplantation significantly decreased neuronal loss in both CA3c and CA3ab

regions of the hippocampus compared to the vehicle-injected group (P < 0.05;

Fig. 18D and H), leading to a more pronounced neuroprotective effect of 

GAL-hNSPC-injected group than GFP-hNSPC-injected group. Additionally 

histological quantification revealed that the number of PV+ neurons in the 

hilus, CA3, and CA1 regions of the hippocampus was not significantly 

different among all three epileptic groups, however, all three epileptic groups 

showed fewer PV+ neurons in the subfields of the hippocampus than those in 

the intact control group (data not shown; P < 0.05).

Immunohistochemical staining with ZnT3 showed that robust MFS was 

present in the IML of the DG in all epileptic rats, however, not in non-

epileptic control rats (Fig. 19A–H). The quantification of the data showed that 

the degree of MFS was significantly lower in the GFP-hNSPC- and GAL-

hNSPC-grafted groups than the vehicle-injected group (P < 0.05 and P < 0.01, 

respectively; Fig. 19I). However, no significant difference was found in the 
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degree of the MFS between GFP-hNSPC- and GAL-hNSPC-grafted rats. 

Collectively, these results show that transplantation of hNSPCs into the 

epileptic hippocampus can suppress the degree of the aberrant MFS.

14. Effect of GAL-hNSPC transplantation on neurogenesis in the 

hippocampus 

A previous study demonstrated that galanin enhanced neurogenesis in 

cultured hippocampal NSPCs,99 thus we then tested whether GAL-hNSPC 

transplantation into the hippocampus affects hippocampal neurogenesis at 3 

months following transplantation. Immunohistochemical staining with anti-

DCX antibody identifies the newly born neurons, and DCX+GFP– newly born 

host cells were distinguished from grafted hNSPC-derived DCX+ cells. 

Histological quantification showed that the number of DCX+ neurons in the 

SGZ-GCL of the DG significantly declined by 62% in vehicle-injected (n = 8, 

P < 0.001; Fig. 20B), by 66% in GFP-hNSPC-injected (n = 10, P < 0.001; Fig. 

20C), and by 33% in GAL-hNSPC-injected rats (n = 8, P < 0.05; Fig. 20D) 

when compared with non-epileptic control rats (Fig. 20A). We observed no 

significant difference in DCX+GFP– newly born neurons in the SGZ-GCL of 

the DG between vehicle- and GFP-hNSPC-injected groups (Fig. 20I). In 

contrast, the GAL-hNSPC-injected group had approximately twice as many 

DCX+GFP– neurons compared to vehicle and GFP-hNSPC-injected groups (P

< 0.001 and P < 0.05, respectively; Fig. 20E), suggesting that GAL-hNSPC 

transplantation can partially reverse impaired neurogenesis levels in the DG of 

chronic epileptic hippocampus.
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Figure 18. Effect of GAL-hNSPC transplantation on neuronal damage in the 

hippocampus of the epileptic rats. (A–H) Representative sections of NeuN 

immunostaining in the CA3c and CA3ab regions of the intact control (A and 

E, respectively), vehicle-injected epileptic (B and F, respectively), GFP-

hNSPC-injected epileptic (C and G, respectively), and GAL-hNSPC-injected 

epileptic rats (D and H, respectively). (A–D and I) GFP-hNSPC (GFP) and 

GAL-hNSPC (GAL) transplantation significantly relieved NeuN+ neuronal 

loss in the pyramidal cell layer of CA3c region compared to vehicle-injected

group (Veh). (E–H and I) GAL-hNSPC transplantation significantly relieved 

NeuN+ neuronal loss in the pyramidal cell layer of CA3ab region compared 

to vehicle-injected group. * Significantly different from control at P < 0.05; † 

significantly different from vehicle-injected group at P < 0.05; error bars 

indicate ± SEM. Scale bar=200 μm (D), 100 μm (H).
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Figure 19. Effect of GAL-hNSPC and GFP-hNSPC transplantation on MFS in 

the epileptic hippocampus. (A–H) Representative sections of ZnT3 

immunostaining in the IML of the DG in intact control (A and E), vehicle-

injected epileptic (B and F), GFP-hNSPC-injected epileptic (C and G), and 

GAL-hNSPC-injected epileptic rats (D and H). (I) Bar graphs illustrate the 

quantification of MFS in the IML of the DG in the control and experimental 

groups. The degree of MFS was significantly lower in the GFP-hNSPC (GFP) 

and GAL-hNSPC (GAL) transplantation groups than the vehicle-injected 

group (Veh). No robust MFS was present in the IML of the DG in control rats 

(Control). * Significantly different from control at P < 0.05; † significantly 

different from vehicle-injected group at P < 0.05; error bars indicate ± SEM.

Abbreviations: IML, inner molecular layer; GCL, granular cell layer; H, hilus.

Scale bar=100 μm (D), 20 μm (H).
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Figure 20. Effect of GAL-hNSPC transplantation on neurogenesis in the

epileptic hippocampus. The number of DCX+ newly neurons in the SGZ-GCL 

of the DG significantly declined in vehicle- (B), GFP-hNSPC- (C), and GAL-

hNSPC- (D) injected epileptic rats compared to non-epileptic control rats (A).

(E) Bar graphs illustrate the quantification of DCX+ newly neurons in the 

SGZ-GCL of the DG in the control and experimental groups. * Significantly 

different from control at P < 0.05; † significantly different from vehicle-

injected group at P < 0.05; § significantly different from GFP-hNSPC-injected 

group at P < 0.05; error bars indicate ± SEM. Abbreviations: ML, molecular 

layer; GCL, granular cell layer; H, hilus. Scale bar=20 μm.
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15. Effect of GAL-hNSPC transplantation on the expression of GDNF in host 

hippocampal astrocytes

As described above, transplantation of hNSPCs into LV restored GDNF 

expression in the majority of hippocampal astrocytes in the epileptic rats. 

Thus, we also examined whether transplantation of GFP-hNSPCs or GAL-

hNSPCs into the hippocampus would induce GDNF expression in host 

hippocampal astrocytes. Immunohistochemical staining with anti-S100β and 

anti-GDNF antibodies was performed at 3 months following transplantation. 

Histological quantification revealed that the number of GDNF+S100β+

astrocytes among total S100β+ astrocytes significantly decreased in vehicle-

injected rats (n = 8; Fig. 21E-H) compared to non-epileptic control rats (n = 6; 

Fig. 21A-D) in the DG (48% vs. 75%, P < 0.05), CA3 (44% vs. 72%, P <

0.05), and CA1 (65% vs. 79%, P < 0.05) regions of the hippocampus (Fig. 

21Q). When compared to the vehicle-injected group, percentages of 

GDNF+S100β+ astrocytes were significantly higher in the DG (71%) and CA3 

(76%) regions of the GFP-hNSPC-injected group (n = 8, P < 0.05; Fig. 21I–

L), as well as in the CA1 (83%) region of GAL-hNSPC-injected rats (n = 6, P

< 0.05; Fig. 21M–P). These results showed that transplantation of GFP-

hNSPCs or GAL-hNSPCs into the CA3 region of the hippocampus can 

restore GDNF expression in host hippocampal astrocyte which may be 

contributed to suppress seizures.
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Figure 21. Effect of GFP-hNSPC and GAL-hNSPC transplantation into the 

epileptic hippocampus on the expression of GDNF in host hippocampal 

astrocytes. GDNF expression in S100β+ hippocampal astrocytes was observed 

in age-matched intact control (A–D), vehicle- (E–H), GFP-hNSPC- (I–L), and 

GAL-hNSPC- (M–P) injected-epileptic rats. Nuclei were counterstained with 
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DAPI (C, G, K and O). Arrowheads in A-L indicated S100β/GDNF double-

labeled cells. Arrows in E, G and H denoted S100β+ host hippocampal 

astrocytes that were devoid of GDNF immunoreactivity in vehicle-injected 

rats. Scale bar=50 μm. (Q) The bar chart represents percentages of S100β+

astrocytes expressing GDNF in the hippocampal subfields in the three 

experimental groups. * Significantly different from the age-matched intact 

control group at P < 0.05; † significantly different from vehicle-injected group 

at P < 0.05; error bars indicate ± SEM. 
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IV. DISCUSSION

hNSPCs grafted into the LV of epileptic brains exerted a therapeutic effect 

by suppressing SRMS in the rat lithium-pilocarpine model of TLE. This effect

might be related to substantial preservation of the pyramidal neurons and PV+

interneurons, restoration of GDNF expression in hippocampal astrocytes, and 

up-regulation of anti-inflammatory cytokines, such as IL-10 and IL-1Ra. We 

also observed that intrahippocampal injection of either GFP-hNSPCs or GAL-

hNSPCs reduced the frequency and duration of SRMS with an addition of 

GABA-expressing cells into the hippocampus, a considerable preservation of 

the pyramidal neurons, and a significant reduction of MFS, which highlights

the beneficial effects of these cells in this model. We also found that galanin 

secreted by hNSPCs enhanced their therapeutic effectiveness, as the GAL-

hNSPC-injected group experienced more prompt seizure control, extensive 

neuroprotection, recovery of emotional deficit, and reversal of decreased 

neurogenesis that were not observed in GFP-hNSPC-injected group.

Several studies demonstrated that loss of inhibitory interneurons is seen 

commonly in the hippocampus of TLE animal models and patients with 

epilepsy.80,100-102 PV+ cells, a subset of GABAergic interneurons, are lost

during chronic epilepsy103 that directly correlates to the severity of seizures.7

In our study, vehicle-injected epileptic rats experienced severe loss of PV+

cells in the hilus, CA3, and CA1 regions of the hippocampus compared to 

control rats while no loss of PV+ cells was observed in the CA3 and CA1 

regions in hNSPC-injected epileptic rats. Thus, substantial preservation of 

PV+ cells in the hippocampus mediated by hNSPC grafting could play a role 

in the seizure-restraining effects in this group.

A prior study reported that rat fetal MGE-derived NSCs grafting into rats 

with chronic epilepsy restrained SRS by suppling new donor-derived GDNF+

cells with recovery of GDNF expression in host hippocampal astrocytes.10 We 
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observed a few hNSPC-derived cells differentiated into GDNF+ astrocytes 

when hNSPCs were injected into the LV. However, hNSPC transplantation

induced GDNF expression in the hilus, CA3, and CA1 regions of the host 

hippocampus in epileptic rats. hNSPCs express FGF-2 at a high level, which 

induces GDNF expression in astrocytes.104,105 Increased GDNF levels in the 

hippocampal astrocytes restrain seizures,83,84 which indicates that induced 

GDNF expression in host hippocampal astrocytes by hNSPC grafting may be 

involved in seizure suppression.

Because other studies have shown that inflammation plays a role in 

generation and exacerbation of epilepsy,91-96 we tested whether hNSPC 

grafting modulates the inflammation by controlling inflammatory mediators, 

such as cytokines and chemokines. At the time of grafting (21 days post-SE)

the level of il1b mRNA, but not protein, was significantly increased in the 

epileptic rats. This discrepancy between the mRNA and protein expression 

levels could be attributed to post-translational regulatory mechanisms 

involved in the release of IL-1β.106 Before hNSPC transplantation, there were 

no significant changes in protein levels of IL-1β, TNF-α, IL-6, IL-10, IL-4, 

INF-γ, CXCL8, or CCL5 between epileptic and control rats. In contrast, at 6 

and 10 weeks after injection, we observed significantly increased mRNA and 

protein levels of IL-1β, but not other pro-inflammatory cytokines, TNF-α and

IL-6, in vehicle-injected epileptic rats as reported in a previous study.91

Expression of pro-inflammatory chemokines CXCL8 and CCL5 were also up-

regulated in vehicle-injected epileptic rats. hNSPC grafting significantly 

increased expression of the anti-inflammatory cytokines IL-10 and IL-1Ra at 

6 and 10 weeks post-transplantation, respectively. Previous studies reported 

that intracerebral injections of IL-1Ra or transgenic overexpression of 

astrocytic IL-1Ra exerts anticonvulsant effects.91,107 Thus, up-regulation of IL-

1Ra in the hippocampus of hNSPC-grafted epileptic rats may be related to the

seizure suppression effect we observed in this study.
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When transplanted into the LV, hNSPC-derived cells robustly integrated 

into the epileptic brain, and distributed in the SVZ, the corpus callosum, 

fimbria of the hippocampus, the neocortex, and the external capsule. The 

majority of hNSPCs remained undifferentiated, although subsets of the donor-

derived cells expressed neuronal and glial lineage markers. Thus, we 

hypothesized that the therapeutic effects of hNSPC transplantation are most 

likely due to paracrine mechanisms, rather than cell replacement. Several 

studies have demonstrated that neurotrophic growth factors secreted by neural 

stem/progenitor cells can protect against neuronal cell death and promote 

functional recovery in animal models of neurodegenerative disorders.108-111 In 

this study, we found that hNSPCs expressed neurotrophic/growth factor such 

as BDNF, NTF3, NTF4, NGF, VEGF, FGF2, and GDNF, suggesting that 

paracrine factors secreted by hNSPCs might preserve pyramidal neurons and 

PV+ interneurons, and in part, aid in the maintenance of a functional neural 

network. The proposed paracrine mechanism in hNSPC-transplanted rats is 

supported by the observed neuroprotective effect of hNSPC-CM against 

excitotoxic insult in vitro. In addition, FGF2 released from hNSPCs could 

indirectly suppress seizures by inducing GDNF expression in hippocampal 

astrocytes in epileptic rats. Furthermore, neural stem/progenitor cells produce

endogenous cannabinoids (CBs),112,113 which provide neuroprotection against 

excitotoxicity by inducing IL-1Ra release from neurons or glial cells.114 These 

studies suggest that the up-regulation of IL-1Ra in epileptic hippocampus of 

hNSPC-grafted epileptic rats could be related to secretion of CBs by hNSPCs. 

Galanin, a neuropeptide that acts as an inhibitory neuromodulator, 

attenuates seizure activity in the hippocampus.35-38 Moreover, GALR1 and 

GALR2 are expressed in the hippocampus and contribute to inhibit epileptic 

activity.40 AAV–mediated gene therapy utilizing galanin has been used to treat 

animal models with TLE and acute seizures.35,44,45 For example, an AAV 

vector carrying the fibronectin secretory signal sequence (FIB) preceding the 
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coding sequence for the active galanin peptide (AAV-FIB-GAL) significantly 

reduced in vivo focal seizure sensitivity and prevented KA-induced hilar cell 

death.35 Recently, a report demonstrated that developing encapsulated galanin-

producing cells was advantageous because of no direct genetic modification 

of the host cells by viral vector-based delivery and no need for 

immunosuppressant drugs.36 In contrast to encapsulated cell grafts, which 

provide a moderate anti-convulsant effect exclusively by paracrine action, 

neural stem cell grafts may survive long term, migrate, and integrate into the 

hippocampus and directly influence seizure activity. Therefore, to combine 

hNSPC and galanin-mediated gene therapy, we developed GAL-hNSPCs 

using adenoviral vector. GAL-hNSPCs retained the characteristics of hNSPC,

exhibiting self-renewal and multipotency. Under differentiation conditions in 

vitro, GAL-hNSPCs experienced galanin-enhanced neuronal and 

oligodendroglial differentiation compared to GFP-hNSPCs, consistent with a

previous study showing that galanin promoted neuronal differentiation of 

SVZ neural stem cells. 

To avoid systemic side effects and optimize anticonvulsant effects, focal 

administration of GAL-hNSPCs into the hippocampus was needed. Thus, we 

transplanted GAL-hNSPCs and GFP-hNSPCs into the CA3 region of the 

bilateral hippocampus. Labeling with GFP revealed that grafted GAL-

hNSPCs migrated away from the injection site and dispersed throughout the 

hippocampus at 3 months post-injection. In vivo expression of Igκ-GAL 

mRNA was confirmed in hippocampal tissue by RT-PCR because in vivo

expression and secretion of galanin did not prove amenable to 

immunohistochemical localization detection.35,44 The hippocampus of 

epileptic rats that received GAL-hNSPCs contained Igκ-GAL mRNA, but 

those of vehicle-injected or GFP-hNSPC transplanted epileptic rats did not. 

Either GFP-hNSPCs or GAL-hNSPCs differentiated into TUJ1+, GFAP+, 

OLIG2+, and GABA+ cells. Interestingly, among the donor-derived cells, the 



79

fraction of TUJ1+ or OLIG2+ cells were increased in GAL-hNSPC 

transplanted group compared to GFP-hNSPC transplanted group. It might be 

associated with up-regulation of NEUROG1 in GAL-hNSPCs. Importantly, 

GFP-hNSPCs and GAL-hNSPCs expressed GABA (20.8% and 22.0%, 

respectively). This is substantial because GABAergic function decreases in 

TLE,115-117 and grafted cells that release GABA could facilitate anti-seizure 

effects.

GFP-hNSPC transplantation attenuated the frequency and duration of 

SRMS from 1 month post-transplant and showed significance at 3 months, 

while GAL-hNSPC transplantation significantly reduced SRMS through all 

the time period. Moreover, GAL-NPSC transplantation reversed the decreased 

anxiety level in epileptic rats. These results suggest that GAL-hNSPCs are an 

improved hNSPC and gene therapy strategy for TLE.

Histopathological analysis revealed that more extensive neuroprotection in 

CA3 occurred in GAL-hNSPC rats than GFP-hNSPC rats, indicating that 

galanin enhances neuroprotection in vivo. This finding is consistent with a 

previous study describing the neuroprotective activity of galanin in the 

hippocampus.118 MFS, which is linked to increased seizure susceptibility 

during TLE,119 was suppressed by both GFP-hNSPC and GAL-hNSPC

grafting. In the pilocarpine model, MFS began to appear early after SE and 

reached a plateau by 100 days.8 Previous studies demonstrated that fetal 

hippocampal cells grafted into the hippocampus resulted in neuronal 

differentiation in CA3 and partial reversal of aberrant MFS, possibly by 

providing an appropriate target.120,121 We observed that transplanted GFP-

hNSPCs and GAL-hNSPCs differentiated into TUJ1+ neurons in the CA3

region, which may linked to suppress MFS seen in the GFP-hNSPC and

GAL-hNSPC group. Chronic TLE is associated with dramatically decreased 

neurogenesis in the DG of the hippocampus, which might contribute to the

increased seizure susceptibility of the DG and hippocampal-dependent 
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learning and memory deficits.9,10 Our study also supports these findings as the 

number of newly generated neurons significantly declined in vehicle-injected 

epileptic rats compared to control rats, indicating decreased neurogenesis due 

to epilepsy. The GAL-hNSPC group experienced a partial reversal of 

decreased neurogenesis, but the GFP-hNSPC group did not, suggesting that 

galanin induces hippocampal neurogenesis. This result is corroborated by a 

previous study describing galanin-enhanced neurogenesis in cultured 

hippocampal NSPCs.99 In contrast, Morris water maze testing revealed that 

learning and memory impairment was present in all epileptic rats, although 

GAL-hNSPC rats showed slightly shorter escape latencies than the vehicle 

group in the hidden platform test. Learning and memory deficits were not 

significantly improved in these rats compared to non-epileptic controls. This

lack of improvement may be attributed to the partial, but not complete,

restoration of decreased neurogenesis.

Grafting of hNSPCs into the LV restored GDNF expression in a 

substantial majority of hippocampal astrocytes in the hilus, CA3, and CA1 

regions of the epileptic hippocampus. In contrast, the fraction of GDNF-

expressing S100β+ astrocytes were significantly increased in the hilus and 

CA3 regions of the GFP-hNSPC rats, and in CA1 region of the GAL-hNSPC

rats, indicating that restoration of GDNF expression was less apparent in 

intrahippocampal grafting of GFP-hNSPCs or GAL-hNSPCs than in 

intracerebroventricular transplantation of hNSPCs. Down-regulation of FGF-2, 

a factor that may induce GDNF expression, in genetically modified hNSPCs

could be responsible for this difference and will be investigated in future 

studies.

Grafting of GAL-hNSPC or hNSPC grafting could not restore spatial 

learning and memory function in rats with TLE. Other studies reported a 

marked reduction in seizures and some reversal of behavioral deficits, 

including spatial learning and memory function, when transplanted mouse 
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fetal MGE precursor cells differentiated into mature inhibitory interneurons 

and integrated functionally into the existing hippocampal neuronal network.23

Thus, new strategies of hNSPC grafting should be developed to provide graft-

derived mature GABAergic interneurons, which functionally integrate into 

epileptic hippocampal circuitry, to induce not only seizure suppression but 

also relieve cognitive deficiencies in epileptic models.

In summary (Table 3), our results provide evidence that hNSPC 

transplantation into the LV has potential therapeutic effects for managing TLE, 

with regard to seizure suppression. These benefits may result from 

neuroprotection, restoration of astrocytic GDNF expression, and anti-

inflammatory action in the epileptic hippocampus mediated by hNSPCs, 

although the majority of the donor-derived cells remained undifferentiated. 

Furthermore, this study provides the first evidence that galanin-secreting 

hNSPC transplantation into adult epileptic rat brain exerts therapeutic effects 

against SRMS and emotional deficit and for increasing neurogenesis and 

neuroprotection in the hippocampus of the lithium-pilocarpine induced TLE 

model, representing a novel combined stem cell and gene therapy in severely 

epileptic rats.
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Table 3. Results of grafting of hNSPCs or GAL-hNSPCs in epileptic rats                                                                                                     

Approach Result Presumed mechanism

hNSPCs into 

LV

1 mo: no effect on sz

2 mo: 86% sz ↓

3 mo: 75% sz ↓ 

New GABA-expressing cells; 

Preservation of  NeuN+ neurons 

in CA3c and of PV+ interneurons 

in CA1; 

Restoration of astrocytic GDNF 

expression;

Up-regulation of IL-10 and IL-

1Ra

hNSPCs into 

HI

1 mo: 53% sz ↓

2 mo: 66% sz ↓

3 mo: 81% sz ↓ 

New GABA-expressing cells; 

Preservation of  NeuN+ neurons 

in CA3c; 

Restoration of astrocytic GDNF 

expression;

Suppression of MFS

GAL-

hNSPCs into 

HI

1 mo: 91% sz ↓

2 mo: 96% sz ↓

3 mo: 87% sz ↓; 

Recovery of emotional 

deficit;

Enhanced neurogenesis

Increase of local galanin levels;

New GABA-expressing cells; 

Preservation of  NeuN+ neurons 

in both of CA3ab and CA3c;

Restoration of astrocytic GDNF 

expression;

Suppression of MFS

Abbreviations: LV, lateral ventricle; HI, hippocampus; sz, seizure; PV, 

parvalbumin; IL-1Ra, IL-1 receptor antagonist; GDNF, glial cell derived 

neurotrophic factor; MFS, mossy fiber sprouting.
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V. CONCLUSION

NSPC-based therapy in animal models of epilepsy shows anticonvulsant 

and antiepileptogenic effects, replacing degenerated neurons, repairing

damaged neural circuitry, and modulating neurotrophic expression. However, 

prior to the clinical application of NSPCs for epilepsy treatment, it is essential 

to study hNSPCs derived from various cell sources for their abilities in terms 

of engraftment, migration, differentiation into specific neuronal or glial cells, 

seizure control, and cognitive or neurobehavioral recovery following 

transplantation into the brains of TLE models.

In the present study, we first transplanted hNSPCs into the LV of the rat 

lithium-pilocarpine model of TLE after SRMS emerged. Grafted cells were 

found in the SVZ, fimbria of the hippocampus, the corpus callosum, the 

neocortex, and the external capsule at 3 months post-transplants, indicating 

robust engraftment, long-term survival, and extensive migration of grafted 

cells. In terms of differentiation, the majority of hNSPCs remained

undifferentiated, although subsets of grafted cells not only expressed neuronal 

or glial lineage markers, but also differentiated into GABA-expressing cells.

hNSPCs transplantation into the LV of epileptic brains significantly reduced 

the frequency and duration of SRMS. hNSPC-transplanted epileptic rats 

showed substantial preservation of NeuN+ neurons and PV+ interneurons, 

restoration of GDNF expression in astrocytes, and up-regulation of anti-

inflammatory cytokines in the hippocampus. In addition, the hNSPCs 

exhibited a neuroprotective effect in vitro against glutamate-induced

excitotoxicity via paracrine mechanisms. Taken together, our results provide

evidence that hNSPC transplantation into the LV has potential therapeutic 

effects for suppressing seizures in a TLE model.

Next, we generated GAL-hNSPCs using adenoviral vector to assess the 

therapeutic effects of combined hNSPC and gene therapy in the rat lithium-
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pilocarpine model of TLE. After SRMS confirmation, epileptic rats were 

injected with vehicle, GFP-hNSPCs, or GAL-hNSPCs into the CA3 regions

of the bilateral hippocampi. Grafted GFP-hNSPCs or GAL-hNSPCs migrated 

from the injection site and dispersed throughout the hippocampus, and 

differentiated into TUJ1-, GFAP-, OLIG2-, and GABA-expressing cells. GFP-

hNSPC transplantation significantly reduced the frequency and duration of 

SRMS at 3 months post-transplants, while GAL-hNSPC transplantation

significantly reduced SRMS through all the time periods for 3 months 

following implantation.

Intrahippocampal transplantation of GFP-hNSPCs or GAL-hNSPCs 

resulted in the addition of donor-derived GABA-expressing cells into the 

hippocampus, considerable preservation of the pyramidal neurons of the 

hippocampus, and a significant reduction of MFS, highlighting the beneficial 

effects of these cells in this model. In addition, GAL-hNSPC-transplanted 

group exhibited the recovery of emotional deficit and reversal of decreased 

neurogenesis of the hippocampus of epileptic rats which were not observed in 

GFP-hNSPC-transplanted group and presented seizure suppression and 

extensive neuroprotection more significantly as compared to GFP-hNSPC-

transplanted group. Thus, this study provides the first evidence that galanin-

secreting hNSPC transplantation into adult epileptic rat brain exerts 

therapeutic effects against SRMS and emotional deficit and for increasing 

neurogenesis and neuroprotection in the hippocampus of the lithium-

pilocarpine induced TLE model, representing a novel combined stem cell and 

gene therapy in severely epileptic rats.
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ABSTRACT (IN KOREAN)

측두엽 간질 동물 모델에서 인간 신경줄기/전구세포를 이용한

세포 및 유전자 치료

<지도교수 박국인>

연세대학교 대학원 의과학과

이혜진

간질(epilepsy)은 전 인구의 약 1%가 이환 되어 높은 유병율을

보이는 만성 신경계질환으로, 간질 환자의 약 40%가 측두엽 간질

(temporal lobe epilepsy) 환자 이다. 측두엽 간질 환자 및

동물모델에서 가장 일반적으로 관찰되는 병리소견은 해마경화

(hippocampal sclerosis)인데, 해마뉴런의 손실과 태상 섬유 발아

(mossy fiber sprouting) 등이 특징 소견이다.

신경줄기/전구세포 (neural stem/progenitor cells; NSPCs)는

신경계 이식을 통하여 치료적으로 유용한 물질을 직접적이고

안정적으로 분비하게 할뿐만 아니라, 기능부전을 보이는 신경세포를

대체하고, 손상된 신경망을 재건하여 중추신경계를 재생케 하는

가능성을 보인다. 

본 연구는 측두엽 간질 모델에서 인간 신경줄기/전구세포 이식의

치료적 유용성을 조사하였는데, 리튬-필로카르핀 유발 측두엽 간질

흰쥐 모델을 사용하였고, 인간 신경줄기/전구세포는 임신 13주에

자연 유산된 태아의 종뇌에서 분리·배양하였다. 자발적 반복 운동성
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발작이 관찰된 측두엽 간질 흰쥐의 측 내실 (lateral ventricles)에

인간 신경줄기/전구세포를 이식하고 3개월 후 분석한 결과, 

공여세포는 모델 쥐 뇌의 다양한 부위에 걸쳐 광범위하게 이주 및

생착함을 보였고, 일부 공여세포는 신경원세포, 희소돌기아교세포

전구세포 및 성상교세포로 분화하였지만 대부분의 공여세포는 주로

미분화 상태로 존재하였다. 인간 신경줄기/전구세포를 이식한

실험군은 식염수를 주사한 대조군과 비교하여 통계적으로 유의하게

자발성 반복 운동성 발작의 빈도와 지속 시간이 감소됨을 보였고, 

실험군의 해마에서 뉴런 손실 감소, 숙주 성상교세포에서 항경련성

신경영양인자인 glial cell-derived neurotrophic factor (GDNF) 

발현 및 항염증 싸이토카인 증가를 유도하였다. 또한, 인간

신경줄기/전구세포 유래 conditioned medium은 시험관 내에서

글루탐산 흥분 독성에 의한 해마 신경원세포 사멸을 억제함을

보였다. 따라서 난치성 만성 신경계 질환인 측두엽 간질 동물

모델에서 인간 신경줄기/전구세포 이식이 유용한 세포치료법으로

사용될 수 있음을 제시하였다.

난치성 간질 모델에서 줄기세포 치료뿐만 아니라 세포유전자

치료의 치료적 유용성을 조사하기 위하여, 먼저 항경련성

신경펩타이드인 galanin 유전자를 클로닝하여 아데노바이러스

(adenovirus) 벡터를 제작하고, 인간 신경줄기/전구세포에 감염시켜

galanin 분비 인간 신경줄기/전구세포 (GAL-hNSPCs)를

확립하였다. GAL-hNSPCs와 녹색형광단백질을 발현하는 인간

신경줄기/전구세포 (green fluorescent protein [GFP]-hNSPC)를

자발성 반복 운동성 발작이 관찰된 측두엽 간질 모델 흰쥐의

해마에 이식하고 3개월 후 분석한 결과, 두 그룹 모두 이식세포가

간질 동물의 해마에서 광범위하게 이주 및 생착함을 보였고, 
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신경원세포, 희소돌기아교세포 전구세포, 성상교세포 및 GABA 

발현 세포로 분화함을 보였다. 식염수를 이식한 대조군에 비해,

GFP-hNSPCs를 이식한 실험군은 SRMS의 빈도와 지속 시간이

이식 후 한 달째부터 감소하여 세 달째에 통계적으로 유의하게

감소함을 보인 반면, GAL-hNSPCs를 이식한 실험군은 이식 한 달

후부터 세 달째까지 모두 통계적으로 유의하게 SRMS가 감소함을

보였다. 또한 GAL-hNSPCs를 이식한 실험군에서는 비정상적으로

낮은 수준의 불안 정서가 정상 수준으로 회복됨을 보였다. 또한

GFP-hNSPCs 또는 GAL-hNSPCs를 이식한 실험군의 해마에서

뉴런 손실의 감소, 태상 섬유 발아 억제 및 숙주 성상교세포에서

GDNF 발현 유도가 관찰되었으나, GFP-hNSPCs를 이식한

실험군과 비교하여 GAL-hNSPCs를 이식한 실험군에서 뉴런 보호

효과가 더욱 향상됨을 보였고, 만성 간질 해마에서 주로 나타나는

신경세포생성 (neurogenesis)의 감소가 회복됨을 관찰하였다. 

따라서 측두엽 간질 동물 모델에서 galanin 분비 인간

신경줄기/전구세포의 이식은 간질 발작을 감소시키고, 불안 정서

장애를 회복시키며, 해마에서 신경보호 및 신경생성을 촉진시키는

새로운 줄기세포 매개 세포유전자치료법 임을 제시하였다.

--------------------------------------------------

핵심되는 말 : 측두엽 간질, 인간 신경줄기/전구세포, 측두엽 간질

모델, 세포이식, 세포 치료, 유전자 치료, 갈라닌


