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Leprosy, a chronic human disease with potentially debilitating neurological
consequences, results from infection with Mycobacterium leprae. This un-
culturable pathogen has undergone extensive reductive evolution, with half of
its genome now occupied by pseudogenes. Using comparative genomics, we
demonstrated that all extant cases of leprosy are attributable to a single
clone whose dissemination worldwide can be retraced from analysis of very
rare single-nucleotide polymorphisms. The disease seems to have originated
in Eastern Africa or the Near East and spread with successive human migra-
tions. Europeans or North Africans introduced leprosy into West Africa and
the Americas within the past 500 years.

Comparative genomics enables us to estab-

lish solid genealogical relationships with great-

er precision than ever before. Leprosy (1) has

plagued human populations for thousands of

years and puzzled scientists since the identifi-

cation of its etiological agent, Mycobacterium

leprae, by Hansen in 1873 (2). The main dif-

ficulties of working with M. leprae are that

it cannot be grown in axenic culture and

that its doubling time in tissue is slow, nearly

13 days (3). It was only when it was dis-

covered that the nine-banded armadillo, Das-

ypus novemcinctus, could be infected (4) that

sufficient quantities of M. leprae were obtain-

ed for biological and immunological anal-

ysis. Comparison of the genome sequence of

the armadillo-passaged strain of M. leprae

from Tamil Nadu, India (TN strain) with that

of the close relative Mycobacterium tubercu-

losis (5), led to a major breakthrough (6). M.

leprae was shown to have embarked upon a

path of reductive evolution in which the ge-

nome underwent downsizing and accumulated

more than 1130 pseudogenes. The concomi-

tant loss of catabolic and respiratory functions

appears to have resulted in severe metabolic

constraints (6, 7).

To establish whether all strains of M. leprae

had undergone similar events and to determine

their level of relatedness, we used technolog-

ical approaches that have successfully detect-

ed polymorphic regions in the M. tuberculosis

complex (8–10). First, genomic DNA, pre-

pared from seven different strains of leprosy

bacilli (Table 1), was hybridized to microar-

rays corresponding to the complete genome

of the TN strain, but no evidence for further

gene loss was uncovered in these isolates

(fig. S1). Second, to establish whether differ-

ences existed in the copy number of insertion-

sequence-like, dispersed repetitive sequences,

quantitative polymerase chain reaction was

performed to target the repetitive sequences

RLEP, REPLEP, LEPREP, and LEPRPT (11).

Again, within the limits of sensitivity of this ap-

proach, no differences were detected between

the TN strain and the other isolates (fig. S2).

A major source of variability in tubercle

bacilli is the mycobacterial interspersed repet-

itive unit (MIRU), which serves as the basis of

a robust typing system that exploits differences

in the variable number of the tandem repeats

Table 1. Strains of armadillo-derived M. leprae and VNTR profile.

Strain Patient’s country of origin Source 3-Hexa 21-TTC 9-GTA 14-AT 15-AT 17-AT 18-AT

Tamil Nadu* India IP 3 21 9 14 15 17 18
Africa Ethiopia IP 3 29 8 14 19 13 13
India 2 India IP 3 15 11 18 14 13 9
Br4923 Brazil NHDP 3 12 12 20 20 15 18
NHDP98 Mexico CSU/NHDP 3 10 9 22 14 11 12
Thai-53 Thailand CSU/NHDP 3 15 9 16 17 10 13
NHDP63 USA CSU/NHDP 3 10 10 18 18 13 16

*Numbers refer to the repeat copy number for the Tamil Nadu strain (11), whereas numbers in the rest of the table are the copy numbers found in the respective isolates. IP, Institut
Pasteur; NHDP, National Hansen’s Disease Program; CSU, Colorado State University.
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Louis, Paris, France. 9Yonsei University College of Medi-
cine, Seoul, Republic of Korea. 10Bactériologie-Hygiène,
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(VNTR) that make up this repetitive element

(12). Unlike M. tuberculosis, none of the 20

MIRU loci in the TN strain contains tandem

repeats of the element (11) and, on examina-

tion of the additional strains, no copy number

differences were detected. Furthermore, the

20 MIRUs were of identical sequence in all

seven strains studied (Table 1). Seven other

VNTR, with two to six base-pair (bp) repeats,

were also targeted, because some of them

have proved useful for tracking strains over

short epidemiological distances (13–16). No

variation was seen in a hexanucleotide re-

peat situated within the coding sequence of

the sigA (rpoT) gene (17), whereas on exam-

ination of two trinucleotide repeats and four

dinucleotide repeats, located in pseudogenes

or noncoding regions of the genome, exten-

sive differences were seen in copy number

(Table 1). However, as expected for such se-

quences, which are highly prone to slipped-

strand mispairing during replication (18), the

level of variability was too great to allow pat-

terns to be detected.

Although these results rule out the exis-

tence of the most likely insertion and deletion

events, they are less informative about genome

topology and global organization. These fea-

tures were surveyed by fingerprinting and end-

sequencing 1466 cosmids from a library of a

second Indian strain of M. leprae, leading to

an integrated genome map that showed per-

fect cocircularity with that of the TN strain

(19, 20). To increase the likelihood of detect-

ing single-nucleotide polymorphisms (SNPs),

selected genes, noncoding regions, and pseudo-

genes were sequenced from a Brazilian strain,

Br4923 (table S1). This strain was chosen for

two reasons: the relative geographic remote-

ness of the country and the severity of the

disease burden in Brazil, which is second

highest worldwide after India (1). By this

means, five SNPs were revealed in 142 kb of

sequenced DNA, one in an apparently non-

coding region and four in pseudogenes. When

all seven strains were analyzed, only three of

the SNPs were found in two or more of the

strains tested (Fig. 1A), whereas the remain-

ing two were restricted to the TN strain of M.

leprae. Overall, the SNP frequency observed

in M. leprae of È1 per 28 kb was significantly

less than that seen in other human pathogens,

such as the tubercle bacilli (8, 9, 21, 22),

Salmonella typhi (23), and Helicobacter pylori

(24) (Table 2). Taken together, these findings

indicate that the M. leprae genome is excep-

tionally well conserved and that the leprosy

bacillus is highly clonal (25).

To gain insight into the worldwide distri-

bution of the M. leprae SNPs, we sought the

three informative SNPs in a total of 175 clini-

cal and laboratory specimens from 21 coun-

tries and all five continents. We discovered

that of a possible 64 permutations only 4 oc-

curred (Table 3 and table S2), referred to as

SNP types 1 to 4. When the VNTR panel was

probed, extensive variability was found for six

VNTRs (table S2), but no particular VNTR

pattern was associated with a given SNP type.

In contrast, a correlation exists between the

geographical origin of the leprosy patient and

the SNP profile, because type 1 occurs predom-

inantly in Asia, the Pacific region, and East

Africa, type 4 in West Africa and the Caribbe-

an region, and type 3 in Europe, North Africa,

and the Americas. SNP type 2 is the rarest and

has only been detected in Ethiopia, Malawi,

Nepal/North India, and New Caledonia.

Ancient texts describe the existence of

leprosy in China, India, and Egypt in about

600 BC, and skeletal remains bearing hall-

marks of the disease have been found in Egypt

(26). Leprosy is believed to have originated

in the Indian subcontinent and to have been

introduced into Europe by Greek soldiers re-

turning from the Indian campaign of Alexan-

Fig. 1. SNP analysis of isolates of different geographical origin and parsi-
mony. (A) Comparison of polymorphic sites in the genomes of the TN
and Br4923 strains by automated DNA sequencing. Coordinates are the
position in the genome of the TN strain, and the vertical bar indicates

the polymorphic base. (B) The most parsimonious route to account for
the four SNP types. Bold arrows indicate the most likely direction, based
on historical and geographic considerations; the faint arrow denotes an
alternative route.

Table 2. Comparison of SNP frequency in other
bacterial pathogens.

Pathogen SNP frequency/bp Reference

M. leprae 1 in 28,400 This work
M. tuberculosis

complex
1 in È3,000 (21, 22)

S. typhi 1 in 1,112 (23)
H. pylori 1 in 3.2 (24)

Table 3. SNP analysis of M. leprae from different
countries.

Country
SNP

type 1
SNP

type 2
SNP

type 3
SNP

type 4

New Caledonia 3 1 3
Philippines 19 2
Korea 3 2
Thailand 1
Nepal/North

India
23 5

South India 4
Madagascar 6
Ethiopia 2
Malawi 4 6
Mali 31
Ivory Coast 6
Guinea 1
Senegal 2
Morocco 2
France 2
Brazil 12 2
French West

Indies
4 2

Venezuela 5
Mexico 1
United States 3
WARM* 4
Total 67 14 38 56

*Wild armadillos from Louisiana, USA.
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der the Great (26). From Greece, the disease

is thought to have spread around the Mediter-

ranean basin, with the Romans introducing

leprosy into the Western part of Europe. Lit-

tle is known about its presence in sub-Saharan

Africa except that the disease was present

prior to the colonial era. From India, leprosy is

thought to have spread to China and then to

Japan, reaching Pacific Islands like New

Caledonia as recently as the 19th century.

Our results provide evidence for a general

evolutionary scheme for M. leprae and, on

the basis of our interpretation of the SNP data,

offer two alternative conclusions for the global

spread of leprosy that differ from classic ex-

planations. Two equally plausible evolution-

ary scenarios are possible (Figs. 1B and 2). In

the first, SNP type 2, from East Africa/Central

Asia, preceded type 1, which migrated east-

ward, and type 3, which disseminated west-

ward in human populations, before giving rise

to type 4. In the second scenario, type 1 was

the progenitor of type 2, with SNP types 3 and

4 following in that order.

Leprosy was most likely introduced into

West Africa by infected explorers, traders, or

colonialists of European or North African de-

scent, rather than by migrants from East Af-

rica, because SNP type 4 is much closer to

type 3 than to type 1 (Fig. 1B). West and south-

ern Africa are thought to have been settled

950,000 years ago by migrants from East Af-

rica before the arrival of humans in Eurasia

(27, 28). It seems unlikely that early humans

brought leprosy into West Africa with them

unless that particular bacterial clone has since

been replaced. From West Africa, leprosy was

then introduced by the slave trade in the 18th

century to the Caribbean islands, Brazil, and

probably other parts of South America, be-

cause isolates of M. leprae with the same SNP

type, 4, are found there as in West Africa.

The strain of M. leprae responsible for

disease in most of the Americas is closest to

the European/North African variety (Fig. 1B),

which indicates that colonialism and emigra-

tion from the old world most probably con-

tributed to the introduction of leprosy into the

new world. For instance, in the 18th and 19th

centuries, when the midwestern states of the

United States were settled by Scandinavian

immigrants, many cases of leprosy were re-

ported and, at that time, a major epidemic

was under way in Norway (26). Further sup-

port for this hypothesis is provided by the

finding that wild armadillos from Louisiana,

which are naturally infected with M. leprae,

harbor the European/North African SNP type 3

strain, indicating that they were contaminated

by human sources. Although most mycobac-

teria occur in the soil, there is no convincing

evidence for an environmental reservoir of M.

leprae and, apart from armadillos, which have

limited geographical distribution and only very

recently became infected, there is no known

animal source of the pathogen. Although an

ancient zoonotic origin cannot be excluded,

insect bites may also have been a possible

route of early human infection, particularly as

recent studies show that M. ulcerans, a related

pathogen with many pseudogenes, appears to

be transmitted by aquatic insects (29).

In conclusion, M. leprae, with its excep-

tionally stable genome, is a helpful marker

for tracking the migration of peoples and

retracing the steps that led to modern human

populations. In this respect, it complements

H. pylori, which is considerably more di-

verse and thus allows finer understanding of

the ethnic origin of humans (30). It is note-

worthy that the greatest variety of SNP types

in the leprosy bacillus is found in islands such

as the French West Indies and New Caledonia

(Fig. 2), reflecting the passage of, and set-

tlement by, different human populations. Fi-

nally, the remarkable clonality seen in isolates

of M. leprae indicates that genome decay oc-

curred prior to the global spread of leprosy and

that it has not accelerated substantially since.
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Fig. 2. Dissemination of leprosy in the world. The circles indicate the country of origin of the
samples examined and their distribution into the four SNP types, which are color coded as in Fig. 1B.
The colored arrows indicate the direction of human migrations predicted by, or inferred from, our
SNP analysis; gray arrows correspond to the migration routes of humans derived from genetic,
archaeological, and anthropological studies, with the estimated time of migration in years (27, 28).
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