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Abstract
Here we report the derivation and characteriza-
tion of new human embryonic stem cell (hESC) lines, 
SNUhES1, SNUhES2, and SNUhES3. These cells, 
established from the inner cell mass using an STO 
feeder layer, satisfy the criteria that characterize plu-
ripotent hESCs: The cell lines express high levels of 
alkaline phosphatase, cell surface markers (such as 
SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81), tran-
scription factor Oct-4, and telomerase. When grafted 
into severe combined immunodeficient mice after 
prolonged proliferation, these cells maintained the 
developmental potentials to form derivatives of all 
three embryonic germ layers. The cell lines have nor-
mal karyotypes and distinct identities, revealed from 
DNA fingerprinting. Interestingly, analysis by elec-
tron microscopy clearly shows the morphological dif-

ference between undifferentiated and differentiated 
hESCs. Undifferentiated hESCs have a high ratio of 
nucleus to cytoplasm, prominent nucleoli, indistinct 
cell membranes, free ribosomes, and small mitochon-
dria with a few crista, whereas differentiated cells 
retain irregular nuclear morphology, desmosomes, 
extensive cytoplasmic membranes, tonofilaments, and 
highly developed cellular organelles such as Golgi com-
plex with secretory vesicles, endoplasmic reticulum 
studded with ribosomes, and large mitochondria. Exis-
tence of desmosomes and tonofilaments indicates that 
these cells differentiated into epithelial cells. When in 
vitro differentiation potentials of these cell lines into 
cardiomyocytes were examined, SNUhES3 was found 
to differentiate into cardiomyocytes most effectively. 
Stem Cells 2005;23:211–219

Introduction
Since mouse embryonic stem cells (mESCs) were isolated 

and cultured in vitro two decades ago [1, 2], the research of 

ESCs has made outstanding contributions to our understand-

ing of developmental biology. ESCs, derived from the inner 

cell mass (ICM) in preimplantation embryos, can proliferate 

extensively in vitro while maintaining an undifferentiated 

state and differentiate into most cell types under certain con-

ditions [3–8]. This ability of ESCs makes them a good source 

for cell replacement therapy [9]. In addition, ESCs can be used 
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as a source for study of basic developmental biology, iden-

tification of factors that are involved in regulation of devel-

opmental processes and differentiation into certain cells or 

tissue, and screening for drugs or toxins [4].

Human ESC (hESC) lines have been successfully 

derived from human blastocysts [10–13]. Derivation and 

characterization of hESCs is very important in terms of 

the direct application to human diseases. Like mESCs, the 

essential characteristics of hESCs include (a) derivation 

from the preimplantation embryos, (b) prolonged prolif-

eration in vitro, and (c) stable developmental potentials to 

form derivatives of all three embryonic germ layers even 

after prolonged culture. However, hESCs are different 

from mESCs in the expression of markers. Stage-specific 

embryonic antigen-1 (SSEA-1), a cell surface marker, is 

expressed in mESCs but not in hESCs [10–13]. In contrast, 

SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81 are markers 

that are expressed only in hESCs [10–13].

Recently, several studies have shown that neuronal 

cells [14–16], cardiomyocytes [3], and pancreatic β cells 

[17] can be induced from hESCs. These results give prom-

ise to the clinical application of hESCs for the treatment of 

diseases such as Parkinson’s disease, diabetes, and heart 

disease. However, ESCs can display different differen-

tiation potentials under the same conditions [18–21]. Thus, 

testing the differentiation potentials of existing ESC lines 

is critical in the selection of the appropriate cell line for 

each experimental purpose. For cell replacement therapy 

in the field of neurological disorders, the cell lines that 

most effectively give rise to neuronal populations will be 

useful. Accordingly, establishment and characterization of 

many hESC lines are important in this respect.

Here we report the establishment of new hESC lines, 

SNUhES1, 2, and 3. We observed that these cells have the 

same characteristics as the existing hESC lines in the undif-

ferentiated state and can differentiate into cardiomyocyte lin-

eage in vitro. In addition, our analysis by electron microscopy 

(EM) shows that the undifferentiated hESCs and differenti-

ated cells are clearly different in their cellular structure.

Materials and Methods

Culture from Pronuclear Stage 
Human Embryo to Blastocyst
For derivation of hESC lines, cryopreserved pronuclear 

stage embryos were donated for research purposes, follow-

ing institutional review board approval of Seoul National 

University Hospital and the informed consent of people 

undergoing in vitro fertilization (IVF) treatment. Seventy-

three frozen-thawed pronuclear stage embryos produced 

by IVF were cultured to blastocyst stage in G1.2 and G2.2 

media (Vitrolife AB, Göteborg, Sweden, http://www.vitro-

life.com). Among them, 10 healthy blastocysts that showed 

clear ICM and trophectoderm under the microscope were 

selected for ICM isolation.

Isolation of ICM
ICM was isolated from the blastocysts by either immuno-

surgery [22] or the whole-embryo culture [1] method, as 

described previously. In the isolation of ICM by immuno-

surgery, nine blastocysts containing relatively large ICM 

were first treated with pronase (Sigma Chemical Corp., 

St. Louis, MO, http://www.sigma-aldrich.com) for about 

4–5 minutes to dissolve the zona pellucida. Next, the outer 

trophectoderm layer was removed by the treatment of anti-

human polyvalent immunoglobulins (Sigma) and guinea 

pig complement (Invitrogen, Carlsbad, CA, http://www.

invitrogen.com). Isolated ICM was then plated onto mito-

mycin-C (Sigma)–treated STO (American Type Culture 

Collection [ATCC], Manassas, VA, http://www.atcc.org) 

feeder layers on gelatin-coated tissue culture plates in a 

37°C incubator containing 5% CO2. After 48 hours of plat-

ing, the culture medium was exchanged daily for half of 

the volume. Within 7–8 days of plating, clumps of the cells 

were isolated mechanically and replated on fresh feeder 

layers to derive SNUhES1 and 2.

To isolate ICM without risking cell loss, the whole-

embryo culture method was used for a blastocyst containing 

small ICM, and the blastocyst was cultured on a mitomycin-

C–treated STO feeder layer after digestion of zona pellucida 

with pronase. Within 7–8 days of plating, the central part of the 

cell clump (except the trophoblast) was isolated mechanically 

and subcultured on a fresh feeder layer to derive SNUhES3.

hESC Culture 
hESCs were maintained on STO feeder layers in knock-

out Dulbecco’s modified Eagle’s medium (KO-DMEM) or 

DMEM/F12 (Invitrogen) supplemented with 20% knock-

out serum replacement (Invitrogen), 0.4 ng/ml basic fibro-

blast growth factor (bFGF; Invitrogen), 2 mM L-glutamine 

(Invitrogen), 1% nonessential amino acid (Invitrogen), 

0.1 mM β-mercaptoethanol (Sigma), 50 U/ml penicillin, 

and 50 μg/ml streptomycin (PEST; Invitrogen). The cul-

ture medium was preincubated in a 37°C incubator 1 day 

before usage. The STO (mouse fibroblast) cell line was 

used as a feeder layer for the culture of undifferentiated 

hESCs [12]. The culture medium for expansion of the STO 

cells consisted of DMEM (high glucose with L-glutamine) 

(Invitrogen) supplemented with 10% fetal bovine serum 

(FBS; HyClone, Logan, UT, http://www.hyclone.com), 1 

mM sodium pyruvate (Sigma), 1.5 g/L sodium bicarbonate 
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(Sigma), and PEST (Invitrogen). The expanded STO cells 

were treated with mitomycin-C and frozen. After thawing, 

these cells were seeded on 0.1% gelatin-coated culture dishes 

a day before the hESCs were plated.

Marker Analyses of hESCs
Marker analyses were performed at passages 8 to 10 for 

SNUhES1, passages 6 to 8 for SNUhES2, and passages 12 to 

14 for SNUhES3. Markers were checked every 10 passages 

after that. An alkaline phosphatase (AP) diagnosis kit (Sigma) 

was used to detect AP activity. Briefly, the cells were washed 

with phosphate-buffered solution (PBS) twice, fixed with a 

citrate-acetone-formaldehyde solution for 1 minute, and then 

stained with AP staining solution for 15 minutes in the dark. 

Primary antibodies (Chemicon International, Temecula, CA, 

http://www.chemicon.com) were used at a dilution of 1:100 

for detection of SSEA-1, SSEA-3, and SSEA-4. The primary 

antibodies were localized using biotinylated goat anti-mouse 

immunoglobulin G (IgG) as the secondary antibody, followed 

by treatment of a complex of avidin and horseradish peroxi-

dase (Vectastain ABC system; Vector Laboratories, Burlin-

game, CA, http://www.vectorlabs.com). Finally, a peroxidase 

substrate kit DAB (Vector Laboratories) was used to localize 

the complex. hESC lines were karyotyped at passages 12 to 15 

using the G-band method.

DNA Fingerprinting 
DNA fingerprinting was performed as described previously 

[23]. Briefly, genomic DNA was extracted using the DNeasy 

tissue kit (Qiagen, Valencia, CA, http://www1.qiagen.com). 

DNA fingerprinting was performed on the three cell lines 

using the nine short tandem repeat (STR) loci—FGA, VWA, 

D3S1358, D18S51, D21S11, D8S1179, D7S820, D13S317, 

and D5S818—present in the AmpF/STR Profiler Plus PCR 

amplification kit (Applied Biosystems, Foster, CA, http://

www.appliedbiosystems.com). For polymerase chain reac-

tion (PCR), 2 ng of genomic DNA was amplified for 11 min-

utes at 95°C, followed by 28 cycles of 1 minute at 94°C, 1 

minute at 59°C, 1 minute at 72°C, and a final extension for 

45 minutes at 60°C. Aliquots of 1 μ1 of PCR product were 

mixed with 0.5 μ1 of GeneScan-500 ROX (Applied Bio-

systems) size standard and 2.5 μ1 of deionized formamide. 

The samples were then denatured at 95°C for 2–3 minutes 

and cooled in ice. Electrophoresis was carried out on a 4% 

polyacrylamide sequencing gel on an ABI 377 Genetic Ana-

lyzer (Applied Biosystems) for 2 hours. Fragment sizes were 

determined automatically using Genescan software version 

2.1 and compared with the allelic ladder by Genotyper soft-

ware version 2.1 (both from Applied Biosystems).

Expression Analyses of Oct-4, Cardiomyocyte 
Markers, and Telomerase
To monitor the expression levels of Oct-4 from undifferentiated 

cells and of cardiomyocyte markers from differentiated cells, 

total RNA from the cells was prepared using the RNeasy mini kit 

(Qiagen). cDNA was obtained using 1 μg of RNA with random 

hexamers and avian myeloblastosis virus (AMV) reverse tran-

scriptase (RT; Invitrogen). PCR reactions were carried out with 

5 μ1 of cDNA template, 10 pM of each primer, 8 μ1 of 2.5 mM 

dNTP mix, and 0.1 units of rTaq DNA polymerase (Takara Bio, 

Otsu, Shiga, Japan, http://www.takara-bio.co.jp/english/index.

htm) in a volume of 50 μ1. The following primer sets were used: 

β-actin (forward: 5'-CGCACCCACTGGCATTGTCAT-3')

reverse: 5'-TTCTCCTTGATGTCACGCAC-3')

Oct-4 (forward: 5'-GGCGTTCTCTTTGGAAAGGTGTTC-3') 

reverse: 5'-CTCGAACCACATCCTTCTCT-3')

GAPDH (forward: 5'-AGCCACATCGCTCAGACACC-3') 

reverse: 5'-GTACTCAGCGGCCAGCATCG-3')

GATA4 (forward: 5'-AGACATCGCACTGACTGAGAA-3' )

reverse: 5'-GACGGGTCACTATCTGTGCAAC-3')

Cardiac actin (forward: 5'-TCTATGAGGGCTACGCTTTG-3')

reverse: 5'-CCTGACTGGAAGGTTAGATGG-3')

ANF (forward: 5'-TAGGGACACACTGCAAGAGG-3') 

reverse: 5'-CGAGGAAGTCACCATCAAACCAC-3')

Samples were amplified in a thermocycler under the fol-

lowing conditions for 32 cycles: first, the denaturing step at 

95°C for 40 seconds, then the annealing step at 53°C–60°C for 

40 seconds, and finally the amplification step at 72°C for 40 sec-

onds. PCR products of Oct-4 and cardiomyocyte markers were 

normalized based on the β-actin or GAPDH signals. For detec-

tion of the cardiomyocyte marker cTnI by immunostaining, 

mouse anti-cTnI antibody (1:100; Chemicon) and Alexa Fluor 

488 (green)–labeled donkey anti-mouse IgG (1:200; Molecu-

lar Probes, Eugene, OR, http://www.probes.com) were used as 

primary and secondary antibodies, respectively. Detection of 

telomerase activity was performed using the TRAPEZE Telo-

merase Detection Kit (Chemicon) according to manufacturer’s 

instruction. hESC lines were analyzed at passages 15 to 20. Heat 

inactivation of samples was done at 85°C for 10 minutes. PCR 

products were analyzed on a 12.5% nondenaturing polyacryl-

amide gel and stained with SYBR green I (Sigma).

Teratoma Formation in Severe Combined 
Immunodeficient (SCID) Mice
Approximately 500 hESC colonies at approximately 20 pas-

sages were injected into the rear leg muscles of 4-week-old male 

SCID-beige mice (two mice per cell line). Eight weeks later, the 

resulting teratomas were examined histologically. All three cell 

lines produced teratomas.
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Transmission Electron Microscopy
hESCs and embryoid bodies (EBs) were collected at different 

stages and fixed with 2.5% glutaraldehyde in 0.1 M phosphate 

buffer (pH 7.4) for 20 minutes at room temperature. After 

being rinsed for 10 minutes in the same buffer, the cells were 

post-fixed with 1% OsO4 in 0.04 M phosphate buffer contain-

ing 0.14 M sucrose for 10 minutes at 4°C. Following dehydra-

tion with ethanol series and infiltration with epoxy resin, cells 

were transferred to beam capsules for polymerization in the 

oven. The capsules were separated from the polymerized resin 

with a razor blade, and embedded cells in hardened blocks 

were viewed with an optical microscope so that the appropri-

ate area was chosen for ultrathin sectioning. Subsequently, 

ultrathin sections were obtained using an ultramicrotome 

(Sorvall MT-6000; DuPont, Wilmington, DE, http://www.

dupont.com) with a diamond knife. Heavy metal staining was 

done with 4% uranyl acetate and lead citrate, and the samples 

were examined through the electron microscope (H-600; Hit-

achi, Tokyo, http://www.hitachi.com) at 50 kv.

In Vitro Differentiation into Cardiomyocytes
Differentiation into cardiomyocytes from hESCs was 

based on the method of Kehat et al. [3] with modifications. 

Briefly, undifferentiated hESC colonies were detached 

by treatment with collagenase IV (Invitrogen) for about 1 

hour at 37°C. EBs were formed from suspension culture 

of hESC colonies in bacterial culture dishes and induced 

into mesodermal fate using DMEM/F12 medium (Invitro-

gen) supplemented with 20% knockout serum replacement 

(Invitrogen) for 1 month. The EBs were next attached onto 

1% gelatin-coated culture dishes and differentiated into 

cardiomyocytes in KO-DMEM (Invitrogen) supplemented 

with 20% FBS (HyClone) for 20 days.

Results

Derivation of Three hESC Lines: SNUhES1, 
SNUhES2, and SNUhES3 
Blastocysts cultured from cryopreserved pronuclear stage 

embryos were used for establishment of hESC lines. Ten 

healthy blastocysts that showed both clear ICM and troph-

ectoderm under the microscope were obtained from 73 

embryos. The ICM was immunosurgically isolated from 

nine blastocysts containing a large ICM [22]. The remaining 

blastocyst had a relatively small ICM, and thus the ICM was 

separated by the whole-embryo culture method [1] to reduce 

the risk of cell loss. ICM isolated by both methods was plated 

onto fresh mouse STO feeder layers. After 5–7 days of culture, 

clumps of small, tightly packed cells proliferated from three 

(two of nine ICM isolated by immunosurgery and one isolated 

by whole-embryo culture) of the 10 ICM. These clumps were 

mechanically dissociated and replated onto fresh feeder lay-

ers. The replated cell clumps after several passages gave rise 

to flat colonies of cells with defined borders that morphologi-

cally resembled human or primate ESCs (Fig. 1A, C, and E). 

Under high magnification (×200), these cells showed a high 

ratio of nucleus to cytoplasm and prominent nucleoli (Fig. 1B, 

D, and F; Fig. 2A), as described previously. Each of SNUhES1, 

2, and 3 cell lines was passaged for more than 90, 120, and 100 

passages, respectively, while maintaining an undifferentiated 

state in the presence of the STO feeder layer. During routine 

passage of the cells, spontaneous differentiation was observed 

in some colonies even in the presence of the STO feeder layer. 

Differentiation usually happened in the central part of the 

colony or in its periphery, and the differentiated portions were 

manually removed before passaging undifferentiated cells.

Marker Expression, Karyotyping and 
DNA Fingerprinting of hESC Lines
Pluripotent hESCs have unique characteristics. In general, 

they show high expression levels of AP, SSEA-3, SSEA-4, 

TRA-1-60, TRA-1-81, Oct-4, and telomerase [10–13]. We 

began to investigate whether our hESC lines fit these criteria. 

As shown in Figure 3A, our cell lines showed a high level of 

AP activity. Elevated expression of this enzyme is associated 

with undifferentiated pluripotent stem cells [10, 11]. Immu-

nophenotyping of the hESCs was performed using a series 

Figure 1. Derivation of human embryonic stem cell lines. Rep-
resentative photographs of (A, B) SNUhES1, (C, D) SNUhES2, 
and (E, F) SNUhES3, respectively, are shown. SNUhES1 and 
2 were derived from nine blastocysts using an immunosurgical 
method, while SNUhES3 was derived from a blastocyst using 
the whole-embryo culture method. Photographs were taken at 
low (×40; A, C, E) or high (×200; B, D, F) magnification.
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Figure 2. Fine structures of undifferentiated and differentiated hESCs. Morphological comparison between (A) undifferentiated and 
(B, C) differentiated hESCs analyzed by electron microscopy. The two types of cells clearly showed a big morphological difference. 
Undifferentiated hESCs have large nuclei with prominent nucleoli, whereas differentiated hESCs exhibit mature cellular organelles. 
Magnification: A, ×3.5K; B, ×8.0K; C, ×12K. Abbreviations: hESC, human embryonic stem cell; RER, rough endoplasmic reticulum.

of antibodies that detect cell surface markers. Our hESCs 

stained positively for SSEA-3, SSEA-4, TRA-1-60, and 

TRA-1-81 (Fig. 3C–F) but not SSEA-1 (Fig. 3B), a marker 

for mESCs. Staining intensity for SSEA-4 was consistently 

strong, but the intensity for SSEA-3 was relatively weak and 

variable among colonies, as reported previously [10]. SSEA-3 

and SSEA-4 are glycoproteins specifically expressed in early 

embryonic development and by undifferentiated hESCs [10, 

11]. TRA-1-60 and -81 are tumor-related antigens that are nor-

mally synthesized by undifferentiated hESCs [10, 11]. In addi-

tion, Oct-4 expression was observed only in undifferentiated 

hESCs, and its expression disappeared when hESCs differen-

tiated (Fig. 4A). Oct-4 is a transcription factor that is essential 

for establishment and maintenance of undifferentiated hESCs 

and mESCs [11, 12, 24]. 

High levels of telomerase activity, a useful marker 

for identifying undifferentiated hESCs [10], were also 

observed in the three cell lines (Fig. 4B). Undifferentiated 

SNUhES1 (lane 4), 2 (lane 6), and 3 (lane 8) showed the 

same high activity as the positive control (lane 1) provided 

by the kit, but heat-inactivated samples (lanes 2, 5, 7, 9, and 

11) and the STO feeder layer (lane 10) did not retain any 

telomerase activity. The high level of telomerase activity in 

these cell lines indicates that they have a potential to infi-

nitely proliferate [10]. Thus, from this pattern of marker 

expression, these cell lines satisfy the criteria that charac-

terize existing, pluripotent hESCs. Karyotyping was per-

formed at passages 12 to 15, and all three cell lines retained 

Figure 3. Marker analyses of hESCs. Staining of ESC mark-
ers such as (A) alkaline phosphatase, (B) SSEA-1, (C) SSEA-
3, (D) SSEA-4, (E) TRA-1-60, and (F) TRA-1-81 are shown 
in SNUhES3 cells (×150 magnification). Similar results were 
obtained for the cell lines SNUhES1 and 2. Abbreviation: 
hESCs, human embryonic stem cells.
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normal karyotypes (Fig. 5). In this assay, SNUhES1 and 

SNUhES3 had 46,XY karyotypes (Fig. 5A and C), whereas 

SNUhES2 showed a 46,XX karyotype (Fig. 5B). DNA fin-

gerprinting was performed for these cell lines (Table 1). 

From the study of the nine STR loci [25], it is clear that these 

three cell lines were derived from different embryos. These 

fingerprinting results also provide useful information for 

identification of each cell line after cell distribution.

Differentiation Potentials of hESCs in SCID Mice 
An important property of ESCs is their ability to differenti-

ate into all kinds of somatic cell types. To test this potential 

in vivo, the hESCs were injected into SCID mice [10–13]. 

As shown in Figure 6, these cells produced teratomas in 

each injected SCID mouse. Teratomas were found to con-

tain tissues of the three embryonic germ layers: endoderm 

(gut-like structure [Fig. 6A] and gut epithelium [Fig. 6B]), 

mesoderm (cartilage [Fig. 6C]), and ectoderm (neural 

rosettes [Fig. 6D]). When these cell lines were cultured in 

a feeder-free condition, differentiation occurred rapidly in 

vitro (data not shown). When cultured on bacterial Petri 

dishes, these cell lines also showed a potential to make 

EBs, intermediates during the process of differentiation. 

Thus, these results suggest that the established cell lines 

are pluripotent even after prolonged proliferation.

Structural Differences between Undifferentiated 
and Differentiated hESCs
It was reported that undifferentiated hESCs have a high ratio 

of nucleus to cytoplasm [10]. This fact prompted us to investi-

gate the structural differences between undifferentiated and 

differentiated hESCs in more detail using EM. Expanded 

undifferentiated colonies and EBs (8 weeks old) were used for 

analyses by transmission EM (TEM). As expected [10], the 

nucleus to cytoplasm ratio was high in undifferentiated hESCs 

(Fig. 2A). In addition, several other features were observed 

in these cells: They had indistinct cell membranes, free ribo-

somes, and ovoid nuclei with one to three reticulated nucleoli. 

Among the cellular organelles, small mitochondria with a few 

crista, a characteristic of premature cells, were occasionally 

found, but others such as rough endoplasmic reticulum (RER), 

Golgi complex, and lipid droplet were not observed. In con-

trast, differentiated cells showed highly developed cellular 

organelles such as extensive Golgi complexes associated with 

small secretory vesicles and ER studded with ribosomes (Fig. 

2B, C), indicating that cells are actively synthesizing secretory 

Figure 5. Karyotypes of SNUhES cell lines. When analyzed by G-staining method, karyotypes of after 12–15 passages were found to 
be normal: (A) SNUhES1, 46,XY, (B) SNUhES2, 46,XX, and (C) SNUhES3, 46,XY.

Figure 4. Expression of Oct-4 and telomerase in hESC lines. 
(A): Oct-4 expression in hESC lines: lane 1, undifferentiated 
SNUhES1; lane 2, differentiated SNUhES1; lane 3, undiffer-
entiated SNUhES2; lane 4, differentiated SNUhES2; lane 5, 
undifferentiated SNUhES3; lane 6, differentiated SNUhES3; 
lane 7, STO feeder layer. (B): SNUhES cell lines express high 
levels of telomerase activity. A 36-bp internal control was used 
for amplification efficiency and quantification, as indicated by 
the arrow. A ladder of telomerase products amplified by PCR 
is shown with six base increments starting at 50 nucleotides at 
the portion indicated by the asterisk. Lane 1, positive control 
provided by kit; lane 2, heat-inactivated positive control; lane 
3, PCR control without addition of template; lane 4, undiffer-
entiated SNUhES1; lane 5, heat-inactivated SNUhES1; lane 6, 
undifferentiated SNUhES2; lane 7, heat-inactivated SNUhES2; 
lane 8, undifferentiated SNUhES3; lane 9, heat-inactivated 
SNUhES3; lane 10, STO feeder layer; lane 11, heat-inactivated 
STO feeder layer. Abbreviations: hESC, human embryonic 
stem cell; PCR, polymerase chain reaction.
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proteins as in somatic tissues. Organelles like lipid droplet and 

large mitochondria were also evident. Cytoplasmic mem-

branes were irregular and extensively developed to enlarge 

the interface between cells. The existence of desmosomes 

and tonofilaments suggests that these cells differentiated into 

epithelial cells. Microvilli (shown in Fig. 2C) are similar (e.g., 

columnar and dense) to those of gastric epithelial cells. Cyto-

skeleton components such as actin and tonofilaments were 

also shown. Taken together, these results clearly show that 

undifferentiated hESCs have a relatively simple structure dur-

ing proliferation, whereas the differentiated cells resemble 

epithelial cells and display all kinds of cellular organelles 

for intracellular and intercellular activities such as protein 

transport, as shown in adult somatic cells.

In Vitro Differentiation into Cardiomyocytes
To examine the differentiation potentials of three cell lines 

into cardiomyocytes, EBs formed from hESC colonies 

were first induced into mesodermal fate in a suspension 

culture and then differentiated into cardiomyocytes after 

attachment onto culture dishes. In general, mesodermal 

markers (e.g., enolase, cartilage matrix protein) began to be 

expressed approximately 18 days after suspension culture 

of EBs in all three cell lines. Thus, based on the expression 

of mesodermal markers, we attached 20-, 25-, and 30-day-

old EBs onto gelatin-coated culture dishes after suspension 

culture. After further differentiation (~20 days) of attached 

EBs, contracting clusters were found from 30-day-old EBs 

but not from 20- or 25-day-old EBs. Contracting EBs were 

made from SNUhES3 most efficiently (~20% of total clus-

ters), but they were seldom found in SNUhES1 and 2. These 

contractions continued for up to 4 weeks. 

Using immunocytochemistry, the presence of cTnI, a 

cardiac-specific protein that is involved in the regulation 

of cardiac muscle contraction [26], was studied in differ-

entiated EBs. As shown in Figure 7A–C, all three SNUhES 

cell lines expressed cTnI. However, among three cell lines, 

SNUhES1 and 3 showed a relatively strong expression of 

cTnI in comparison with SNUhES2, which revealed a weak 

expression of cTnI. SNUhES1, 2, and 3 cells gave rise to 

about 40%, 19%, and 60%, respectively, in the number of 

cTnI-positive cells among 4,6-diamidino-2-phenylindole–

positive total cells (data not shown). These results indicate 

that of the three cell lines, SNUhES3 differentiates into car-

diomyocytes most effectively. 

Several other cardiac markers were analyzed from the 

SNUhES3 by RT-PCR. Figure 7D shows that GATA4, ANF, and 

cardiac actin (cACT) were also more highly expressed 

in cells differentiated from SNUhES3 (lane 2) than in 

undifferentiated cells (lane 1). GATA4 is known to be 

expressed in precardiac mesoderm of the developing 

heart [27], and ANF is a hormone that is expressed in 

ventricular cardiomyocytes [28].

Discussion
To establish hESC lines, we used 73 cryopreserved 

embryos produced by IVF. These embryos were cultured 

to blastocyst stage for 5–7 days. A blastocyst showing clear 

ICM and trophectoderm under the microscope was judged 

as a healthy blastocyst. In total, 10 healthy blastocysts were 

Figure 6. Teratoma formation after injection of human embry-
onic stem cells into severe combined immunodeficient mice. 
The tissues were stained with hematoxylin and eosin. (A): 
Gut-like structure (endoderm) from SNUhES1. (B): Gut epi-
thelium-like tissue (endoderm) from SNUhES2. (C): Car-
tilage-like tissue (mesoderm) from SNUhES3. (D): Neural 
rosettes-like structure (ectoderm) from SNUhES1.

Table 1. DNA fingerprinting for SNUhES cell lines: distribu-
tion of alleles for the nine short tandem repeat loci in the three 
human embryonic stem cell lines

Allele                         SNUhES1           SNUhES2           SNUhES3

  
D3S1358 17–16 17–16 16–16

  D5S818 11–10 12–11 10–09

  D7S820 11–11 10–08 12–11

  D8S1179 14–10 16–12 15–14

  D13S317 12–10 11–10 10–09

  D18S51 16–14 17–13 13–12

  D21S11 33.3–31 31–30 31.3–31.3

  VWA 18–17 17–17 19–16

  FGA 22–21 23–21 25–23

  Gender XY XX XY

Numbers indicate the genotype of alleles.
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developed from 73 embryos. Among them, nine blastocysts 

showed a relatively large ICM and one contained a small ICM. 

We separated the ICM from nine blastocysts using immuno-

surgery, resulting in the derivation of SNUhES1 and 2 cell 

lines. In contrast, we used whole-embryo culture method for 

the small ICM–containing blastocyst to reduce the risk of 

cell loss. The latter procedure resulted in the establishment of 

SNUhES3 from the blastocyst. Thus, the derivation method 

depended on the size of the ICM in the healthy blastocysts. We 

also obtained seven unhealthy blastocysts from the same 73 

embryos that contained indistinguishable ICM and trophec-

toderm. To isolate ICM from the unhealthy blastocysts, the 

whole-embryo culture method was used, but it was impos-

sible to establish hESC lines after 7-day culture because only 

the trophectoderm was expanded. Therefore, for successful 

establishment of hESC lines, it is important to first get healthy 

blastocysts from embryos, and then a method between immu-

nosurgery and whole-embryo culture should be selected, 

depending on the size of the ICM.

The hESC lines that we derived here are similar in 

properties to those described by several groups [10–13]. 

They showed a similar morphology to already established 

hESCs (Fig. 1) and expressed surface markers of hESCs, 

including SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81 but 

not an mESC marker, SSEA-1 (Fig. 3B–F). These cells also 

expressed high levels of AP activity (Fig. 3A) and Oct-4 

(Fig. 4A) that are markers for both hESCs and mESCs. Oct-

4 is a transcription factor that is limited to pluripotential 

cell populations, and its expression is downregulated dur-

ing differentiation. As shown in Figure 4A, Oct-4 expres-

sion was extinct in a differentiated state. In addition, these 

cell lines showed high levels of telomerase activity (Fig. 

4B), indicating that they can infinitely proliferate. Terato-

mas formed in SCID mice after injection of these hESCs 

included various cell types of the three embryonic germ 

layers (Fig. 6). Also, our hESC lines formed EBs in sus-

pension culture on the bacterial culture dishes and retained 

a potential to differentiate into cardiomyocytes (Fig. 7). 

Taken together, our results suggest that our established 

hESC lines have the same properties as those reported in 

the existing hESC lines and a pluripotency to differentiate 

into all kinds of cells.

Our investigation using EM provides useful informa-

tion regarding structural differences between undifferen-

tiated and differentiated ESCs (Fig. 2). There have been 

reports that ESCs have a high ratio of nucleus to cytoplasm 

[10, 12]. Our EM analysis clearly shows unique character-

istics in the undifferentiated hESCs compared with dif-

ferentiated cells. Undifferentiated hESCs had large nuclei 

containing reticulated nucleoli, indistinct cell mem-

branes, free ribosomes, and small mitochondria with a few 

crista, but not any other cellular organelles (Fig. 2A). In 

contrast, differentiated cells displayed highly developed 

cellular organelles such as Golgi complex, ER with ribo-

somes, lipid droplets, and large mitochondria (Fig. 2B, C). 

Observation of desmosomes and tonofilaments indicates 

that these cells differentiated into epithelial cells. The 

microvilli shown in Figure 2C are columnar and dense, 

suggesting that these cells differentiated into gastric epi-

thelial cells. From these results, we can clearly see that 

undifferentiated ESCs have a unique, premature structure, 

whereas differentiated cells developed cellular machinery 

for various cellular activities, including protein secretion. 

The DNA fingerprinting for each cell line performed in 

this research provides information for cell line identity 

that could prove to be crucial in determining if contamina-

tion between cell lines occurred (Table 1).

From our observations and the reports from other groups 

[18–21], it is clear that all ESCs are different from each other 

in terms of differentiation potentials although they share 

characteristics in the undifferentiated state. For instance, 

Figure 7. Analyses of embryonic stem cell–derived cardio-
myocytes by immunostaining and reverse transcription poly-
merase chain reaction. (A–C): Immunostaining of differen-
tiated EBs with mouse anti-cTnI antibody and Alexa Fluor 
488 (green)–labeled donkey anti-mouse immunoglobulin G 
on SNUhES1, 2, and 3, respectively. (D): Expression of car-
diac-specific markers in EBs (lane 2) differentiated from 
SNUhES3 compared with undifferentiated SNUhES3 (lane 
1). Abbreviation: EB, embryoid body.
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certain ESCs have a better ability than others in specific 

differentiation into neuronal phenotypes. Accordingly, the 

derivation of many hESCs and studies on them will provide 

more insights into the clinical application of hESCs. Further 

analysis of our cell lines in differentiation into other pheno-

types will provide valuable information for application to 

cell replacement therapy.
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