Review

Characteristics and Vascular Complications of Familial Hypercholesterolemia in Korea

Sang-Hak Lee

Division of Cardiology, Department of Internal Medicine, Severance Hospital, and Cardiovascular Research Institute, Yonsei University College of Medicine, Seoul, Korea

Familial hypercholesterolemia (FH) is presently an important health issue worldwide. This condition shows phenotypic and genetic variations among affected people, and clinical and genetic data on FH are critical for effective diagnosis and management. Korean FH patients have relatively low levels of cholesterol and prevalence of xanthoma than patients from other countries, as determined by previous studies. The best predictive value of low-density lipoprotein cholesterol (LDL-C) for pathogenic mutations is suggested as 225 mg/dL. Many known and novel mutations on LDLR and some on APOB or PCSK9 have been identified in one-third of clinically diagnosed probands, and their locations on genes varied. Coronary artery disease was reported in 28% Korean FH patients, and traditional cardiovascular risk factors were associated with this complication. Aortic valve changes were also prevalent. However, the achievement rate of LDL-C target using lipid-lowering therapy is not satisfactory and is only 21%–44%. A further expanded registry and additional analysis may provide a more useful clinical tool for the diagnosis and treatment of Korean FH patients.

Key words: Cholesterol, Genetics, Korea, Coronary artery disease, Aortic valve
study\(^6\), the mean LDL-C level was higher than the levels in the abovementioned study\(^5\). Stricter inclusion criteria and enrollment of affected family members could be the reason for the differences in cholesterol levels between the studies. The phenotypical severity of FH such as cholesterol levels or xanthoma can be partly influenced by ethnic background or diet. For instance, elevated cholesterol levels and xanthoma are more obvious in Chinese populations who have migrated to Canada compared to those who live in China\(^7\). The LDL-C levels in pretreatment FH patients was 274–302 mg/dL in Western countries\(^8\)\(^–\)\(^10\) and 248–292 mg/dL in Asian countries\(^11\)\(^–\)\(^13\). In Korea, the LDL-C value that could best predict putative pathogenic mutations is 225 mg/dL\(^5\). The US Make Early Diagnosis to Prevent Early Deaths criteria indicated that an LDL-C cutoff value of 240 mg/dL shows 98% specificity at the age of 30 years\(^14\). In Japan, conversely, a cutoff value of 250 mg/dL shows very high specificity, whereas 180 mg/dL is the recommended cutoff value in patients with xanthoma or a family history\(^15\).

A previous Korean study has shown that Achilles tendon thickness in FH patients was 14.2 mm, which was higher than that in controls (Han et al, data presented at the Korean Society of Lipidology Scientific Session, 1991). However, the incidence of xanthoma in individuals clinically diagnosed with FH was as low as 20% (Table 1). Although the incidence of xanthoma varies with inclusion criteria, the incidence in Korean patients is lower than that in patients from the UK\(^16\), Hong Kong\(^13\), and Japan\(^11\) (47%, 50%, and 87%, respectively).

Genetic Characteristics

It is well known that only some patients with clinically diagnosed FH have pathogenic mutations in \(LDLR\), \(APOB\), or \(PCSK9\)\(^10\)\(^,\)\(^12\)\(^,\)\(^17\). In the KSLA-supported study, the largest Korean FH study to date, putative mutations in these 3 genes were found in 32% of the enrolled patients. In the study, \(LDLR\) point mutations were most frequent on exons 4 and 14 (Fig. 1)\(^5\)\(^,\)\(^18\). Point mutations of \(LDLR\) have been previously reported in a variety of gene locations in Koreans\(^5\)\(^,\)\(^18\). Large deletions\(^20\)\(^–\)\(^23\) and copy number variation\(^18\) in \(LDLR\) associated with FH have also been identified. Although not common, mutations in \(APOB\) and \(PCSK9\) are reported in Korean FH patients\(^5\)\(^,\)\(^18\). On the basis of the data reported thus far, it is difficult to determine whether there are any hot spots of mutations in Koreans. \(LDLR\) mutations reported in Koreans have shown little similarities with those reported in other Asian countries such as Japan\(^24\) or Taiwan\(^25\)\(^,\)\(^26\).

Table 1. Clinical characteristics of FH patients enrolled in the KSLA-supported study (from reference with permission)

<table>
<thead>
<tr>
<th></th>
<th>Total ((n=97))</th>
<th>Mutation (+) ((n=31))</th>
<th>Mutation (−) ((n=66))</th>
<th>(p)-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>54.1 ± 11.4</td>
<td>50.8 ± 13.2</td>
<td>55.6 ± 10.2</td>
<td>0.06</td>
</tr>
<tr>
<td>Female</td>
<td>59 (60)</td>
<td>13 (42)</td>
<td>46 (70)</td>
<td>0.01</td>
</tr>
<tr>
<td>Medical history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>7 (7)</td>
<td>2 (7)</td>
<td>5 (8)</td>
<td>1.00</td>
</tr>
<tr>
<td>Hypertension</td>
<td>37 (38)</td>
<td>12 (39)</td>
<td>25 (38)</td>
<td>0.94</td>
</tr>
<tr>
<td>CAD</td>
<td>27 (28)</td>
<td>11 (36)</td>
<td>16 (24)</td>
<td>0.25</td>
</tr>
<tr>
<td>Smoking</td>
<td>15 (16)</td>
<td>5 (17)</td>
<td>10 (16)</td>
<td>1.00</td>
</tr>
<tr>
<td>Family history</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypercholesterolemia</td>
<td>54 (58)</td>
<td>20 (65)</td>
<td>34 (55)</td>
<td>0.37</td>
</tr>
<tr>
<td>Premature CAD</td>
<td>50 (54)</td>
<td>20 (67)</td>
<td>30 (48)</td>
<td>0.10</td>
</tr>
<tr>
<td>Body mass index</td>
<td>25.0 ± 3.5</td>
<td>25.4 ± 4.0</td>
<td>24.8 ± 3.2</td>
<td>0.50</td>
</tr>
<tr>
<td>Tendon xanthomas</td>
<td>19 (20)</td>
<td>7 (23)</td>
<td>12 (18)</td>
<td>0.61</td>
</tr>
<tr>
<td>Laboratory values, mg/dL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>313 ± 43</td>
<td>332 ± 44</td>
<td>303 ± 39</td>
<td>0.002</td>
</tr>
<tr>
<td>Triglycerides</td>
<td>169 ± 81</td>
<td>155 ± 62</td>
<td>176 ± 88</td>
<td>0.18</td>
</tr>
<tr>
<td>HDL-cholesterol</td>
<td>49.9 ± 14.7</td>
<td>45.0 ± 10.8</td>
<td>52.3 ± 15.7</td>
<td>0.02</td>
</tr>
<tr>
<td>LDL-cholesterol</td>
<td>226 ± 38</td>
<td>249 ± 42</td>
<td>216 ± 31</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Numbers in parentheses are percentages; FH: familial hypercholesterolemia; KSLA: Korean Society of Lipidology and Atherosclerosis; CAD: coronary artery disease; HDL: high-density lipoprotein; LDL: low-density lipoprotein
the general population according to a study from the UK32). However, both studies had methodological limitations. The death rate from stroke was not increased by FH in Japanese people33). Interestingly, a recent meta-analysis revealed that the risk of cerebrovascular disease in FH populations was reduced after the introduction of statin therapy34). Meanwhile, the impact of FH on peripheral artery disease has been reported in several studies. In a study from the Netherlands, the prevalence of peripheral artery disease in FH patients was 31%, and it was about 8 times higher than that in the general population35). In other studies, the risk of this complication was 5 to 10 times greater than that in controls36). The prevalence of iliac artery disease (more than minimal) in FH patients in Japan was 56%37). Information on cerebrovascular or peripheral artery disease in Korean FH patients remains to be evaluated.

In the KSLA-supported study, 28% heterozygous FH patients had a history of coronary artery disease (CAD) (45% in males and 17% in females; unpublished data)39). In the study population, 13% experienced acute coronary syndrome (21% in males and 7% in females; unpublished data). In the subgroup with CAD, majority of the patients had multivessel disease (Table 2). The prevalence of myocardial infarction in Japanese FH patients is 22% and 10% in males and females, respectively38, and these data are similar to those in Koreans. A recent imaging study indicated that coronary atherosclerosis may begin in early twenties even in Asian FH patients28).

Traditional cardiovascular risk factors including age and sex have been known to predispose FH patients to CAD in Western countries29). In Korea, independent predictors of CAD in FH patients were hypertension and low high-density lipoprotein cholesterol (HDL-C) levels5). These findings are similar to those in Japanese FH patients for whom classical risk factors were associated with CAD11). The relationship between Achilles tendon thickness and CAD has not been clarified in Koreans, although this has been reported as a significant factor in other countries30).

Results from studies on the relationship between FH and cerebrovascular disease have been inconsistent. Although a study performed in Finland showed that FH increased the risk of stroke 20 times31), stroke mortality in FH patients was not higher than that in the general population according to a study from the UK32). However, both studies had methodological limitations. The death rate from stroke was not increased by FH in Japanese people33). Interestingly, a recent meta-analysis revealed that the risk of cerebrovascular disease in FH populations was reduced after the introduction of statin therapy34). Meanwhile, the impact of FH on peripheral artery disease has been reported in several studies. In a study from the Netherlands, the prevalence of peripheral artery disease in FH patients was 31%, and it was about 8 times higher than that in the general population35). In other studies, the risk of this complication was 5 to 10 times greater than that in controls36). The prevalence of iliac artery disease (more than minimal) in FH patients in Japan was 56%37). Information on cerebrovascular or peripheral artery disease in Korean FH patients remains to be evaluated.

In the KSLA-supported study, 59 of 97 FH probands underwent echocardiographic examination, of whom 57% showed aortic valve changes, whereas 16% showed calcified or sclerocalcified changes (Table 2: data presented at the Satellite Symposium of the ISA 2015 in Tokyo, Japan). In a European study, computed tomography detected aortic valve calcification in 38% FH patients38). Conversely, the rate of aortic valve surgery was 24% in homozygous FH patients39). Groups of researchers have demonstrated that cholesterol levels and duration after diagnosis of FH are associated with aortic stenosis39, 40). However, the relation between cholesterol exposure and aortic stenosis
probucol is not actively prescribed in Korean FH patients. Meanwhile, probucol is more commonly used in Japanese FH patients, with supportive evidence of long-term cardiovascular benefits. In addition, a combination of statins, ezetimibe, and resins showed further lowering of LDL-C levels without serious safety issues.

In the future, novel therapeutic agents may improve prognosis in FH patients. Recently, clinical trials using emerging pharmacological agents, including a proprotein convertase subtilisin–kexin type 9 (PCSK9) inhibitors, were performed in FH patients. PCSK9 inhibitors have shown tremendous and consistent LDL-C-lowering efficacy with acceptable tolerability and seem to be the most promising among new therapeutic options. These agents, with or without ongoing statin therapy, reduced LDL-C levels by greater than 50% compared with the control group. Although outcome studies remain to be completed, combined analyses support the reduction of cardiovascular risk with the use of PCSK9 inhibitors. Other new lipid-lowering agents have also shown effects on LDL-C lowering in homozygous FH patients: lomitapide inhibits microsomal triglyceride transfer protein that is involved in the assembly of very low-density lipoprotein and reduces LDL-C levels. Mipomersen, which is based on an antisense oligonucleotide, inhibits apoB synthesis and results in a similar effect. However, as both agents have limitations, including liver adverse events, the risks and benefits of their use in FH is not consistent among studies.

Effect of Treatment

Although older generation statins have known to lower LDL-C levels by not more than 35%–40%, treatment with stronger statins such as atorvastatin and rosuvastatin lowered LDL-C by 46% in Korean FH patients enrolled in the KSLA-supported study (data presented at the Satellite Symposium of the ISA 2015 in Tokyo, Japan). In the same population, the achievement rates of LDL-C target were 21% and 44% when targets of 100 mg/dL and 50% of the baseline level were set, respectively. In Western countries, statins are known to reduce LDL-C levels up to 55% in FH patients. A study in FH patients in the UK showed that lipid-lowering therapy reduced cardiovascular risk by 24%–48%. Furthermore, the relative risk reduction by lipid management was up to 76% in another study. Although data regarding cardiovascular protection of lipid-lowering therapy in FH is insufficient in Asian countries, a retrospective study in Japan found that CAD onset was delayed in FH patients after the widespread use of statins.

In Korea, ezetimibe is known to reduce LDL-C levels by 10%–19% and is widely used in FH patients. According to data from the KSLA-supported study, statin–ezetimibe combination is used in about half of all registered patients (unpublished data). Although resins are also used as second-line agents,
need to be considered when prescribing these drugs.

Conclusions

Phenotypical severity, such as cholesterol levels or xanthoma, is relatively mild in Korean FH patients. Mutations have been reported at various locations in classical FH-associated genes. Although CAD and aortic valve changes were prevalent in this population, the achievement rate of LDL-C target with current medical treatment was not satisfactory. An expanded registry and additional analysis may provide more useful clinical tools for the detection and management of FH patients in Korea.

Sources of Funding

This research was financially supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (2012R1A4A1029061 and 2014R1A1A2056104), the Bio & Medical Technology Development Program of the NRF funded by the Korean government, MSIP (2012R1A4A1029061 and 2014R1A1A2056104), and the Creative Allied Project (CAP) grant funded by the Korean Research Council of Fundamental Science and Technology (KRCF).

Conflict of Interest

There is no conflict of interest.

References

21) Chae JJ, Park YB, Kim SH, Hong SS, Song GJ, Han KH, Namkoong Y, Kim HS, Lee CC: Two partial deletion mutations involving the same Alu sequence within intron 8 of the LDL receptor gene in Korean patients with familial hypercholesterolemia. Hum Genet 1997; 99: 155–163

familial hypercholesterolemia in Japan