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Calorie restriction or a low-carbohydrate diet (LCD) can
increase life span in normal cells while inhibiting
carcinogenesis. Various phytochemicals also have calorie
restriction-mimetic anticancer properties. We investigated
whether an isocaloric carbohydrate-restriction diet and
AMP-activated protein kinase (AMPK)-activating
phytochemicals induce synergic tumor suppression. We
used a mixture of AMPK-activating phytochemical extracts
including curcumin, quercetin, catechins, and resveratrol.
Survival analysis was carried out in a B16F10 melanoma
model fed a control diet (62.14% kcal carbohydrate,
24.65% kcal protein and 13.2% kcal fat), a control diet with
multiple phytochemicals (MP), LCD (16.5, 55.2, and
28.3% kcal, respectively), LCD with multiple phytochemicals
(LCDmp), a moderate-carbohydrate diet (MCD, 31.9, 62.4,
and 5.7% kcal, respectively), or MCD with phytochemicals
(MCDmp). Compared with the control group, MP, LCD, or
MCD intervention did not produce survival benefit, but
LCDmp (22.80±1.58 vs. 28.00±1.64 days, P= 0.040) and
MCDmp (23.80±1.08 vs. 30.13±2.29 days, P= 0.008)
increased the median survival time significantly.
Suppression of the IGF-1R/PI3K/Akt/mTOR signaling,
activation of the AMPK/SIRT1/LKB1pathway, and NF-κB
suppression were the critical tumor-suppression
mechanisms. In addition, SIRT1 suppressed proliferation of
the B16F10 and A375SM cells under a low-glucose
condition. Alterations in histone methylation within Pten and
FoxO3a were observed after the MCDmp intervention. In the

transgenic liver cancer model developed by hydrodynamic
transfection of the HrasG12V and shp53, MCDmp and
LCDmp interventions induced significant cancer-prevention
effects. Microarray analysis showed that PPARα increased
with decreased IL-6 and NF-κB within the hepatocytes after
an MCDmp intervention. In conclusion, an isocaloric
carbohydrate-restriction diet and natural AMPK-activating
agents induce synergistic anticancer effects. SIRT1 acts as
a tumor suppressor under a low-glucose
condition. European Journal of Cancer Prevention 25:54–64
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Introduction
Calorie restriction (CR), defined as 20–40% restriction of

the daily energy intake, extends the longevity of normal

cells, but suppresses tumor growth (Colman et al., 2009).
Inhibition of the insulin-like growth factor-1 receptor

(IGF-1R)/phosphatidylinositol-3-kinase (PI3K)/Akt and

mitogen-activated protein kinase pathways have been

proposed as underlying tumor-suppression mechanisms

(Dunn et al., 1997; Mjiyad et al., 2011). In particular, acti-

vation of the AMP-activated protein kinase (AMPK)

pathway plays a crucial role through increased cellular

NAD+/NADH ratio, which in turn activates NAD+-

dependent class III histone deacetylase, silent mating-type

information regulation 2 homolog 1 (SIRT1), and liver

kinase B1 (LKB1). This signaling pathway results in a

closed-loop AMPK/SIRT1/LKB1 activation process with

tumor growth suppression (Lan et al., 2008; Shackelford
and Shaw, 2009; Ruderman et al., 2010).

However, CR has major limitations including weight loss,

especially in patients with cancer in the advanced stage.

Recently, an isocaloric carbohydrate-free ketogenic diet or
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a low-carbohydrate diet (LCD, carbohydrate intake < 20%

of the daily caloric intake) has been introduced as a sup-

portive dietary intervention (Last and Wilson, 2006; Masko

et al., 2010; Ho et al., 2011; Seyfried et al., 2012). These

interventions might also produce metabolic disturbances

such as ketoacidosis or even weight loss (Bravata et al.,
2003). Alternatively, a synthetic antidiabetic AMPK ago-

nist, metformin, has been proposed as a CR-mimetic

anticancer agent (Bost et al., 2012).

Various plant-derived bioactive phytochemicals includ-

ing curcumin, quercetin, (-)-epigallocatechin-3-gallate

(EGCG) in green tea extract, and resveratrol are known

to be CR-mimetic AMPK activators (Dasgupta and

Milbrandt, 2007; Pan et al., 2008; Park et al., 2009; Jung
et al., 2010) and SIRT1 activators as well (Chung et al.,
2010). Nevertheless, the anticancer effects of a single

phytochemical are minimal because of its poor bioavail-

ability, poor intestinal absorption, and rapid metabolism

despite strong anticancer activities in-vitro studies. A

single agent is only effective at an extremely high-dose

oral administration (Scott et al., 2009). In contrast, a

mixture of bioactive compounds exerts biological effects

at a much lower dose, with synergistic enhancement of

each individual compound (Liu, 2004; Ghosh et al., 2009;
Ricciardiello et al., 2011).

Previous studies have reported that metformin induced

massive apoptosis of cancer cells with glucose restriction,

whereas these anticancer effects were attenuated under a

high-glucose condition. Synergic tumor growth suppres-

sion has also been observed in mice when metformin was

used in combination with a glucose uptake inhibitor

(Cheong et al., 2011; Menendez et al., 2012). These data

suggest that energy restriction in combination with

AMPK-activating agents could enhance tumor suppres-

sion synergistically.

In this study, we tested whether an isocaloric

carbohydrate-restriction diet supplemented with natural

AMPK-activating agents would extend the survival time

in an animal model using C57BL6 mice bearing B16F10

melanoma. We also explored whether CR-induced

SIRT1 activation is oncogenic or acts as a tumor sup-

pressor as the role of SIRT1 in malignant tumors is still

controversial (Liu et al., 2009; Herranz and Serrano, 2010;

Roth and Chen, 2013). In addition, we evaluated the

chemoprevention effects of our dietary modification in a

transgenic liver cancer model.

Materials and methods
Dietary formulas

The Picolab Rodent Diet 5053 formula (LabDiet,

Brentwood, Missouri, USA) consisting of 62.14% kcal

carbohydrate, 24.65% kcal protein, and 13.2% kcal fat

with 3.07 kcal/g of metabolizable fuel value was used as

the control formula. We purchased the TestDiet 9G1X

formula (TestDiet, Brentwood, Missouri, USA) consisting

of 16.5% kcal carbohydrate, 55.2% kcal protein, and

28.3% fat with a 4.13 kcal/g fuel value for the LCD

intervention. We used green tea, curcumin, quercetin,

and resveratrol extracts for CR-mimetic AMPK-activating

agents. Approximately 5 mg of each phytochemical

extract/g was added to the control and to the LCD for-

mula to prepare the multiple phytochemical (MP) and

LCDmp formulas, respectively. We designed a moderate-

carbohydrate diet (MCD, < 50% of the daily carbohydrate

intake) formula consisting of 31.9% kcal carbohydrate,

62.4% kcal protein, and 5.7% kcal fat with 3.22 kcal/g of

fuel value, and prepared an MCDmp formula by adding

phytochemical extracts.

Survival analyses in the malignant melanoma model

B16F10 melanoma cells (1× 106 cells) were injected

subcutaneously into the back of 6-week-old C57BL6

male mice (Orient Bio Inc., Seongnam, Korea) after

preliminary feeding of each dietary formula ad libitum for

1 week. We divided the mice randomly into six groups:

control, MP, LCD, LCDmp, MCD, or MCDmp formula

(n= 15/group).

We carried out survival analysis using the Kaplan–Meier

method, and diet-induced tumor suppression mechan-

isms were investigated using tumor tissues removed from

the control (n= 6) and MCDmp (n= 5) groups.

Evaluation of energy-dependent signaling pathways

Western-blot analyses were carried out using antibodies

against proteins involved in energy-dependent signaling

pathways.

Evaluation of the role of SIRT1 under a carbohydrate

restriction condition

B16F10 mouse or human A375SM melanoma cells were

treated with various concentrations of SIRT1 Activator 3

(SA3), which is an allosteric SIRT1 activator (Nayagam

et al., 2006), under standard glucose (11 mmol/l) or low-

glucose (5.5 mmol/l) conditions in RPMI-1640 medium.

A viability assay was performed and we evaluated the

protein expression of p-AMPK, SIRT1, acetyl-p53 (Lys

382), acetyl-NF-κB, and nuclear fraction of the NF-κB
p65 subunit in the B16F10 melanoma cells cultured in a

standard medium or a low-glucose medium (LGM).

ChIP-on-chip microarray

Chromatin immunoprecipitation (ChIP) assay was per-

formed with the EpiQuik TM ChIP Kit (Epigentek,

Brooklyn, New York, USA) using randomly selected

melanoma tissue samples (n= 3/group from the control

and MCDmp groups). Chromatin preparation was per-

formed using an anti-H3K4me3 antibody as H3 methy-

lation precedes acetylation (Wang et al., 2001). An Agilent

microarray chip containing 97 651 oligonucleotide probes

(Agilent Technology, Palo Alto, California, USA) was

used for ChIP-on-chip analysis.
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cDNA microarray

Total RNA fraction was extracted from the melanoma

tissues removed from the control (n= 7) and MCDmp

groups (n= 6), and cDNA microarray was performed.

Confocal microscopy

Frozen tissue sections from the control and MCDmp

groups were prepared using a cryostat (micron HM-525;

Thermo Scientific Inc., Pittsburgh, Pennsylvania, USA)

at a 6-µm thickness. Immunohistochemistry to evaluate

cellular polarity and tyrosinase-related protein-1

(TYRP1) was performed.

Cancer-prevention effects in a transgenic liver cancer

model

We evaluated the cancer-prevention effects of each

dietary intervention in a transgenic liver cancer model

produced by transfection of the HrasG12V and shp53 into

C57BL6 male mice as described previously (Ju et al.,
2013).

This study was carried out in accordance with the Guide

for the Care and Use of Laboratory Animals of the

National Institutes of Health. The protocols of animal

experiments were approved by our Institutional Animal

Care and Use Committee (IACUC) (Number: 09-199-1

and 2012-0116).

Statistical analysis

Kaplan–Meier survival data were evaluated using the log-

rank (Mantel–Cox) test, and a P value less than 0.05 was

considered to be statistically significant. The statistical

analysis of gene expression on cDNA microarray was

carried out at the threshold of P less than 0.05 with more

than two fold-change of gene expression. The protein or

mRNA expression levels were evaluated as the percen-

tage of control signals (% control).

Detailed materials and methods are described in

Supplemental digital content 1.

Results
Survival analyses in the B16F10 melanoma model

Supplementation of a mixture of natural AMPK activators

under a normal control diet (MP intervention) did not

increase the survival time (Fig. 1a), although the mean

tumor volume was slightly smaller than that of the control

group (Supplemental digital content 2). Smaller tumor

volume with a slower tumor growth rate was also observed

in both LCD and LCDmp groups (Supplemental digital

content 3, P< 0.05). The median survival time was sig-

nificantly increased in the LCDmp (Fig. 1b) and the

MCDmp groups (Fig. 1c, Supplemental digital content 4)

compared with the control group. The MCD intervention

did not produce significant survival benefit (Fig. 1c).
18F-FDG MicroPET imaging showed a smaller tumor size

with lower intratumoral 18F-FDG uptake in the MCDmp

group compared with the control group (Fig. 2a). Protein

expression of the hexokinase type 2 (HK2) and pyruvate

kinase type M2 (PKM2) within tumor tissues was

decreased in the MCDmp group (Fig. 2b).

Alterations in energy-dependent signaling pathways

Serum glucose level was significantly lower in the

MCDmp group (106.1 ± 12.19 mg/dl) than in the control

group (148 ± 13.36 mg/dl) (P< 0.04), as also the serum

insulin level (0.10 ± 0.02 and 0.18 ± 0.02 ng/ml, respec-

tively, P< 0.02). Protein levels of the IGF-1R, PI3K, and

p-Akt at Thr308, phospho-ribosomal protein S6 kinase

(p-S6K) at Ser411, and the phospho-eukaryotic initiation

factor 4E-binding protein 1 (p-4E-BP1) at Thr37/46 were

decreased after the MCDmp intervention (Supplemental

digital content 5).

In theMCDmp group, theNAD+/NADH ratio was increased

(>3-fold difference) (Fig. 2c). The phosphorylated-liver kinase
B1 at Ser428 (p-LKB1-Ser428), phosphorylated-AMPK at

Thr172 (p-AMPK-Thr172), and SIRT1 were increased

independent of nicotinamide phosphoribosyltransferase

(NAMPT) expression. NF-κB in the nuclear fraction was

decreased (Fig. 2d). On confocal microscopy of melanoma

tissues removed from mice, peripheral tumor cells showed

restoration of cell polarity (Supplemental digital content 6).

Effects of SIRT1 on tumor cell proliferation

In-vitro MTT analyses showed that SA3 treatment did not

affect cellular proliferation of both B16F10 and human

melanoma cells in a standard glucose medium, but decreased

proliferation under a low-glucose condition along with

increasing p-AMPK in a dose-dependent manner (Fig. 3a,

Supplemental digital contents 7 and 8). The level of acetyl-

p53 was not decreased in the LGM despite increased SIRT1

expression (Fig. 3b). The NF-κB p65 subunit level in the

nucleus fraction was decreased in the LGM and further

suppressed after SA3 treatment (Fig. 3b and c).

Histone modification

The ChIP-on-chip study showed alterations in histone

methylation (H3K4me3) in the MCDmp group. In par-

ticular, H3K4me3 was increased within the promoter

region of the Pten and FoxO3a. ChIP-PCR analysis con-

firmed increased H3K4me3 within the Pten and FoxO3a
promoter regions (Fig. 4a) and increased expression of

these proteins as well as downstream Bim and BAX

(Fig. 4b). PTEN, FOXO3a, and Bim were also increased

in B16F10 melanoma cells cultured in a LGM (Fig. 4c).

cDNA microarray results

Forty-three genes were downregulated and two genes

were upregulated at the threshold of false discovery rate

corrected (P< 0.05) (Fig. 5a) in melanoma tumor tissues.

In particular, Mitf and Tyrp1 were decreased, along with

decreased vascular endothelial growth factor (VEGF) and

DEK oncoprotein mRNAs. In contrast, expression of the

serine peptidase inhibitor F member 1 (Serpinf1), which
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is known as the pigment epithelium derived factor was

increased (Supplemental digital content 9). Western-blot

analysis confirmed their protein expression patterns

(Fig. 5b). Confocal microscopy of tumor tissue samples

showed lower TYRP1 expression within the cytoplasm of

tumor cells with less pigmentation in the MCDmp group

(Fig. 5c and d). Compared with the MCD intervention,

MCDmp produced stronger anticancer effects including

suppression of the MITF, mTOR signaling, and mitogen-

activated protein kinase pathways (Fig. 5e).

Cancer-prevention effects in a transgenic liver cancer

model

Numerous tumor nodules developed throughout the

entire liver at 4 weeks after transfection of both HrasG12V

and shp53 DNAs. The nodules were proven to be poorly

differentiated aggressive tumors on H&E staining. Fewer

tumor nodules were observed only in the MCDmp and

LCDmp groups compared with the control group

(Supplemental digital content 10). There was no sig-

nificant difference in cancer-prevention effects in the

group in which MCDmp was started on the day of DNA

transfection (Group 2) however, fewer and smaller tumor

nodules developed when the MCDmp intervention was

started 2 weeks before DNA transfection (Group 3)

(Fig. 6a). Finally, postmortem liver tissues showed fewer

tumor nodules in Group 3 (Fig. 6b and c). On

Kaplan–Meier survival analysis, the overall survival was

significantly prolonged only in Group 3 (P< 3.5× 10−7,

Fig. 6d).

cDNA microarray analysis of the tumor-free liver tissues

showed upregulation of the peroxisome proliferator-

activated receptor α (PPARα) and downregulation of

numerous genes that regulated energy metabolism,

tumor initiation, and proliferation in Group 3 (Fig. 7a,
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Dietary effects on survival. (a) Kaplan–Meier survival analysis showed that AMPK-activating phytochemicals alone do not produce survival benefit in a
melanoma model. The median survival time was not significantly increased after the multiple phytochemical (MP) intervention. (b) Survival benefit was
not observed after the low-carbohydrate diet (LCD) intervention either. However, LCD supplemented with a mixture of phytochemicals (LCDmp)
significantly increased the median survival time. The median survival time of the control, LCD, and LCDmp groups was 22.80 ±1.58, 24.69 ±1.42, and
28.00±1.64 days after inoculation of melanoma cells, respectively. (c) The median survival time of the MCDmp group was also significantly increased
compared with that of the MCD and control groups (30.13 ±2.29, 25.40 ±1.24, and 23.80 ±1.08 days, respectively). (d) Tumor size of the MCDmp
group was smaller than that of the control group (arrow).
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Supplemental digital content 11). Among these, we

confirmed decreased mRNA expression of the IL-6 and

NF-κB in Group 3 compared with Group 1 using quan-

titative real-time PCR (Fig. 7b). H&E and TRITC–

phalloidin immunostaining of the tumor-free liver tissues

obtained 4 weeks after DNA transfection showed distorted

lobular arrangement and bile canaliculi in Group 1,

whereas normal liver architecture was grossly preserved in

Group 3 (Fig. 7c). SIRT1 expression was increased in Group

3 compared with Group 1 (Supplemental digital content 12).

Discussion
Glucose is a major energy source in both normal and cancer

cells. The glycolytic rate is increased in malignant tumors,

and the normal metabolic control mechanisms are modified

by numerous oncogenes to enhance the glycolytic rate

(Levine and Puzio-Kuter, 2010). Our study confirmed that

the inhibition of diet-induced hyperinsulinemia and the

IGF-1R/PI3K/Akt pathway along with downregulation of

the mTOR signaling could be important tumor-suppression

mechanisms of the MCDmp intervention. HK2 and PKM2,

which are the key enzymes that increase aerobic glycolysis

in cancer cells (Sebastian and Kenkare, 1997; Sun et al.,
2011), were also suppressed after the MCDmp intervention.

This resulted in reduced glucose uptake with a lower

intracellular glucose concentration (Fig. 2a and b), and this

process could generate a vicious cycle in tumor cell-

proliferation processes. Although amino acids, especially

glutamine, can potentiate cellular proliferation, glucose

restriction might inhibit glutamine uptake and cellular pro-

liferation despite abundant amino acids (Lopez-

Lazaro, 2008; Wellen et al., 2010).

AMPK/SIRT1/LKB1 closed-loop activation after energy

restriction plays an important role in tumor suppression.

SIRT1 activation might enhance tumor cell proliferation

Fig. 2

Control

(a) (b)

(d)

(c)

MCDmp

Ventral

T T

b
b

Dorsal

140
120
100

80
60
40
20

p-LKB1
(Ser 428)

p-AMPK
(T172)

AMPK

Nampt

IkB α (CE)

Actin

Actin (CE)

Actin (NE)

NF-κB
p65 (NE)

LKB1

SIRT1

0.45

0.35

0.25

0.15

0.05
0

0.3

0.2

0.1

0.4

0

140
120
100

80

Control MCDmp

Control MCDmp

Control MCDmp

60
40
20

0
HK2/actin

Control (n = 6)

NAD+/NADH ratio

MCDmp (n = 5)

PKM2/actin

∗

∗P < 0.05 ∗∗P < 0.01

MCDmp-induced alterations in energy-dependent signaling pathways. (a) 18F-FDG PET scan shows decreased 18F-FDG uptake within tumors in the
MCDmp group. T, tumor, b, urinary bladder. (b) The expression of the key enzymes for glycolysis (HK2 and PKM2) decreased significantly in the MCDmp
group. (c) NAD+/NADH ratio was significantly increased (>3-fold) in melanoma tissues removed from the MCDmp group compared with the control
group (*P=0.044, n=15 in each group). (d) Western-blot analysis showed activation of the LKB1/SIRT1/AMPK loop in the MCDmp group. There was no
significant alteration in Nampt expression. Therefore, the NAD+/NADH ratio could be increased in the MCDmp group, independent of Nampt expression.
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through deacetylation of p53; however, AMPK counteracts

the deacetylase activity of SIRT1 on p53, but enhances p53

stability (Lee et al., 2012). Our study also showed that the

level of acetyl-p53 in B16F10 melanoma cells did not

decrease in a LGM even with increased SIRT1 expression.

In-vitro study showed that melanoma cell proliferation was

suppressed after treatment with an allosteric SIRT1 acti-

vator, SA3, along with AMPK activation in a dose-

dependent manner when tumor cells were cultured in a

LGM. Melanoma tissues from the MCDmp group showed

activation of the AMPK/SIRT1/LKB1 signaling with

apparent tumor growth suppression with restored cell

polarity compared with the control group. As cell polarity is

abolished during the carcinogenesis process (Lee and

Vasioukhin, 2008; Luo et al., 2010), our data clearly show

that our dietary modification inhibited tumor growth effec-

tively through the activation of AMPK/SIRT1/LKB1 sig-

naling, in particular, SIRT1 activation.

Fig. 3

180

(a)

(b) (c)

P < 0.001

P < 0.001
P < 0.01

P < 0.04

P < 0.00005

P < 0.00005

P < 0.0005

P < 0.03

P < 0.0001

P < 0.003

SM
SM-SA3
LGM
LGM-SA3

Concentration
SA3 1 (μmol/l)
SA3 5 (μmol/l)
SA3 10 (μmol/l)

P < 0.005

160

140

120

100

80

60

40

20

0

SIRT1
1.2

0.8

0.6

0.4

0.2

0
p65/actin

1

p-AMPK

NF-κB p65
(NE)

Actin

Actin (NE)

Acetyl-p53
(Lys382)

SM

SM

LGM

LG
M

24 h 48 h

SM LGM

Tumor-suppressive role of SIRT1 under an energy restriction condition. (a) MTTassay of B16F10 melanoma cells cultured in a standard medium (SM,
11mmol/l of glucose in RPMI-1640 medium) showed no significant cell proliferation at 24 or 48 h after treatment of SA3. However, cell proliferation
was significantly suppressed after SA3 treatment when melanoma cells were culture in a low-glucose medium (LGM, 5.5 mmol/l of glucose). (b)
SIRT1 and p-AMPK were increased in melanoma cells cultured in an LGM. However, the acetyl-p53 level was not significantly decreased despite an
increased SIRT1 level. NF-κB p65 in the nuclear fraction was decreased under a low-glucose condition. (c) NF-κB level was decreased after SA3
treatment under both standard and low-glucose conditions.
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NF-κB is an important downstream target of SIRT1 that

deacetylates the RelA/p65 subunit of NF-κB, thereby
decreasing NF-κB-induced transcription of the genes

encoding antiapoptotic proteins after SIRT1 activation

(Yeung et al., 2004). Our study showed decreased NF-κB
expression in tumor tissues removed from the MCDmp

group as well as in B16F10 melanoma cells cultured in a

LGM, especially after the treatment with SA3. Taken

together, our data clearly show that energy restriction-

induced SIRT1 activation is linked to tumor suppression.

FOXO3a is another target of SIRT1. Transcriptional

activity of the FOXO3a can be activated within the

nucleus by SIRT1-induced deacetylation of its lysine

residues or AMPK-induced phosphorylation (Greer et al.,
2007; Canto et al., 2009). Nutrient restriction could fur-

ther enhance FOXO3a activity through enhanced trans-

location of the FOXO3a into the nucleus following

inhibition of the PI3K/Akt signaling cascade (Calnan and

Brunet, 2008). Nuclear FOXO3a can act as a tumor

suppressor after binding to the promoters of various

genes including Bim (Czabotar et al., 2009) or removing

p53 from the SIRT1-binding sites (Nemoto et al., 2004).
In fact, our study showed increased nuclear FOXO3a

levels in both melanoma tissues from the MCDmp group

and B16F10 melanoma cells cultured in a LGM.

Epigenetic modification of tumor-related genes could be

involved in diet-induced tumor suppression. Li et al. (2010)
have already reported increased longevity in normal cells

after glucose restriction, but it resulted in growth inhibition

of cancer cells by epigenetic modification. In this study,

histone modification of the Pten and FoxO3a was observed

in the MCDmp group. Although carbohydrate restriction

alone can increase PTEN and FOXO3a expression, natural

AMPK-activating phytochemicals could synergistically

enhance tumor-suppression activities through various

anticancer activities including histone modification,

Fig. 4
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suppression of the energy-dependent signaling cascade,

and cancer-related inflammation (Surh, 2003; Link et al.,
2010).

cDNA microarray data showed final signaling pathways

that are specific for melanoma growth suppression. In

particular, MITF, which is the master transcription factor

regulating melanocyte differentiation, cell cycle pro-

gression, and survival, was suppressed with decreased

Tyrp1, which encodes tyrosinase interacting protein

within melanoma tissue after the MCDmp intervention

(Levy et al., 2006). Increased expression of pigment

epithelium derived factor, which is an endogenous

VEGF inhibitor, along with decreased VEGF, and DEK

oncoprotein suppression could play critical roles in

melanoma growth suppression by inhibiting angiogenesis

and antiapoptotic activities, respectively (Khodadoust

et al., 2009; Konson et al., 2010). Notably, the MCDmp

intervention produced stronger anticancer effects than

the MCD intervention. Therefore, the AMPK activation

induced from energy restriction and natural AMPK-

activating agents synergistically inhibit tumor growth,

although carbohydrate restriction or phytochemical sup-

plementation alone may not be effective in increasing the

survival time.

Dietary modification not only suppresses tumor cell

proliferation but also inhibits the development of cancer.

Fig. 5
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In our transgenic hepatic tumor model, fewer tumor nodules

developed after LCDmp and MCDmp interventions. Our

data suggest that carbohydrate restriction with AMPK-

activating phytochemicals controls malignant transforma-

tion of cells synergistically despite cells already acquired

oncogenic properties through the suppression of the cancer-

related inflammatory process including inhibition of the NF-

κB/IL-6/STAT3 pathway (Yang et al., 2010). Increased

PPARα expression could also enhance chemoprevention

effects as CR or CR-mimetic phytochemicals might induce

PPARα expression directly or indirectly by AMPK activation

and inhibits various transcription factors, particularly NF-κB
(Seymour et al., 2010; Peters et al., 2012). Increased SIRT1

activity could negatively regulate NF-κB-dependent
STAT3 expression (Bernier et al., 2011). However, carbo-

hydrate restriction or supplementation of AMPK-activating

agents alone did not produce significant cancer-prevention

effects. Notably, cancer-prevention effects were not appar-

ent when dietary intervention was started after DNA

transfection. This suggests that a diet-induced metabolic

reprogramming period is necessary before malignant trans-

formation of cells for cancer prevention. Indeed, previous

data showed that the incidence of cancer was significantly

low in rhesus monkeys when CR was started at a young age

(Mattison et al., 2012).

In conclusion, we confirmed that isocaloric carbohydrate

restriction in combination with a mixture of natural AMPK-

activating agents could be an effective anticancer approach

through synergic activities of each dietary intervention in

animal models. SIRT1 enhances tumor suppression under

an energy restriction condition.

Fig. 6
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