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Development of Neuronal Cell Type Inducible GM-CSF Gene Expression 

System and Combined Cell Therapy in Spinal Cord Injury Model 

 

Youngsang You 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Yoon Ha) 

 

Promising therapy is needed to treat spinal cord injury (SCI) associated with 

permanent neurological damage. It is difficult to expect a sufficient therapeutic 

outcome by a single treatment method. Therefore, a strategy combining two or more 

techniques might be better for improving therapeutic effects. 

In this study, it was designed that a merged treatment strategy using neural stem 

cells (NSCs) introduced with neuronal cell-type inducible transgene expression 

system controlled by a neuronal specific enolase (NSE) promoter to maximize the 

therapeutic efficiency. The luciferase gene was chosen to confirm whether this 

combined system was working properly prior to using a therapeutic gene. The 

luciferase expression levels of NSCs introduced with a neuronal cell-type inducible 

luciferase expression system (NSE-Luci) or with a general luciferase expression 

system (SV-Luci) were measured and compared in vitro and in vivo. 

After verified neuronal cell-specific gene expression by luciferase gene, therapeutic 

gene, GM-CSF, was substituted with luciferase gene. Neuronal cell type-inducible 

GM-CSF expression system (NSE-GMCSF) compared with a general GM-CSF 
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expression system (SV-GMCSF) in vitro and in vivo.  

The results show that neural stem cells introduced with a neuronal cell-type 

inducible luciferase expression system (NSE-Luci) showed a high level of luciferase 

expression compared to neural stem cells introduced with a general luciferase 

expression system (SV-Luci). And also therapeutic gene system, a neuronal cell-type 

inducible GM-CSF expression system (NSE-GMCSF) was higher expressed GM-CSF 

than a general GM-CSF expression system (SV-GMCSF).  

A neuronal cell-type inducible gene expression system has been demonstrated that 

it’s suitable for NSCs in a merged-treatment strategy. Therefore, it is suggested that 

this merged-treatment strategy based on NSCs and a neuronal cell-type–inducible 

gene expression system is a promising tool for treatment of neurodegenerative 

disorder, including SCI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key words: Neuronal specific enolase (NSE), Granulocyte-macrophage colony-

stimulating factor (GM-CSF), Neuronal cell-type inducible transgene expression, 

Neural stem cells (NSCs), Merged treatment strategy, Spinal cord injury (SCI) 
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Development of Neuronal Cell Type Inducible GM-CSF Gene Expression 

System and Combined Cell Therapy in Spinal Cord Injury Model 

 

Youngsang You 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Yoon Ha) 

 

 

I. INTRODUCTION 

Spinal cord injury (SCI) is often associated with permanent disability as a result of 

sensory or motor functional defects caused by neuronal death and demyelination after 

primary physical damage.1 A single treatment strategy is unlikely to result in 

complete recovery. Therefore, a merged-treatment method might be effective for 

improving the therapeutic efficacy. In the field of gene therapy, therapeutic gene 

expression controlled by hypoxia-specific or tissue-specific gene expression systems 

offers a possibility for efficient and safe gene therapy.2-6  

In the stem cells therapy field, transplantation with neural stem cells (NSCs) showed 

therapeutic potential in animal models with incurable disorders, including SCI.7,8 

Interestingly, it has been reported that stem cells can be used as a gene delivery 

system,9 and stem cell-mediated gene therapy resulted in a better therapeutic outcome 

and more stable therapeutic gene delivery than single therapy with stem cells or 

therapeutic genes alone.10-13  

Granulocyte-macrophage colony-stimulating factor (GM-CSF), synonym is colony 

stimulating factor (CSF2), which is also known as a hematopoietic factor and is a 
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14.2kDa globular protein structure secreted by macrophages, T cell, mast cells, NK 

cells, endothelial cell and fibroblasts.14 GM-CSF is 125 amino acids and is essential 

for the in vitro proliferation and differentiation of precursor cells into mature 

granulocyte and macrophage.15 

GM-CSF recruited monocytes and macrophage and convert to their mature form.16 

After mature macrophages are transfer to a lesion site, they remove the debris that 

interferes with neuronal regeneration.17 GM-CSF is possible to pass through the 

blood-brain barriers or blood-cerebrospinal-fluid barriers so that GM-CSF is 

potentially pharmacological material for the treatment of CNS injury.18 The results in 

many previous studies were shown that GMCSF not only regulates formation of glial 

scar, also promotes survival of neuronal cells in vitro and in SCI and Parkinson’s 

disease model.19-23 Anti-apoptotic effect of GMCSF was also demonstrated in clinical 

study.24,25 Based on the results of previous research, GM-CSF was chosen as a 

therapeutic gene to combine with the neuronal cell type-inducible gene expression 

system. 

Considering that most stem cell therapies for SCI have used neural stem cells or 

neural precursor cells, which have high neuronal differentiation potentials, the neuron 

specific enolase (NSE) promoter was chosen for transgene over-expression in neural 

stem cells which have it considerably. It was assumed that a combined treatment 

strategy based on NSCs which were controlled by NSE promoter would increase 

therapeutic efficiency and neural differentiation. Finally, it was demonstrated that an 

NSE promoter is suitable with NSCs for the establishment of a gene and neural stem 

cell therapy platform.   
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II. MATERIALS AND METHODS 

1. Plasmid construction 

A neuronal cell type-inducible luciferase expression system (NSE-Luci) and a 

general luciferase expression system (SV-Luci) were made by pGL3 luciferase 

reporter vectors to verify that the NSE with mNSCs was suitable for a merged therapy 

strategy. SV-Luci was purchased from Promega (Madison, WI, USA, Cat.no E1761). 

Neuron-specific enolase promoter was provided by Professor Lee (Hanyang 

University, Seoul, Korea). The NSE region was inserted between NheI and BglII sites 

of a pGL3-basic vector (Promega, Cat.no E1751). 

Another experiment 2, SV-GMCSF and NSE-GMCSF vector were made by a 

backbone of SV-Luci and NSE-Luci vectors. The Luciferase gene was replaced by 

mouse GM-CSF (Sino biological Inc., Beijing, China). The construction designs of 

the plasmids are shown in Fig. 1A. 

 

2. Cell culture 

Mouse neural stem cells (mNSCs) were used in this study. mNSCs (CRL-2925, 

ATCC, Manassas, VA, USA) were cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) / F12 and supplemented with 10 % Fetal Bovine Serum (FBS; Thermo 

Scientific HyClone, Logan, UT, USA), and 1 % penicillin and streptomycin 

(Invitrogen, Carlsbad, CA, USA). Approximately, 4×104 cells/cm2 were seeded with 

culture media. the culture dishes were incubated at 37 ℃ in a humidified atmosphere 

containing 5 % CO2. 

For the other experiment, we used the human embryonic kidney cells (HEK 293FT) 

which were provided from Professor Kang (Yonsei University, Seoul, Korea). Cells 

were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 

10 % FBS, 1 % Penicillin and Streptomycin, 1 X Non-Essential Amino Acid (NEAA, 

Invitrogen) and 1 X Sodium pyruvate (Invitrogen). Approximately 6×105 cells were 
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plated in 6-well culture dishes (6×104 cells/cm2) and incubated at 37 °C in a 

humidified atmosphere containing 5 % CO2. 

 

3. Gene transfection 

Only transient gene expression method was used throughout the experiment. To 

generate transfected mNSCs, plasmid vectors (4 μg DNA per well) were used with 

Lipofectamine 2000 (10 μl per well; Invitrogen, Carlsbad, CA, US) or ViafectTM  (10 

μl per well : Promega, Madison, WI, USA).  

Before experiments were conducted, the transfection efficiency into mNSCs was 

tested. mNSCs (approximately 2×104 cell/cm2) were seeded with a mixture of DsRed 

plasmid /ViafectTM) in a 6-well plate, then incubated under normal conditions (pO2, 

21 %, 37 ) for 48 h℃ . DsRed and DAPI positive cells were counted. 

In the first experiment, approximately, 2×104 cells/cm2 mNSCs were seeded with a 

mixture of plasmids/Lipofectamin with DMEM/F12 media in a 6 well plate and 

incubated under normal condition (pO2, 21 %). The day after transfection, culture 

media was changed and incubated in hypoxia condition (pO2, 1 %) during 24 h. Over-

expression of transfected gene was demonstrated by luciferase assay and IVIS image. 

In the second experiment, GM-CSF expression, approximately 2×104 cells/cm2 of 

mNSCs were seeded with mixture of plasmids/ViafectTM with DMEM/F12 media in a 

6 well plate and incubated in 37 ℃ for 48 h. Like a first experiment in hypoxia 

condition, transfected cells were incubated in hypoxia chamber, with or without 

DMSO, in 24 h from the day after transfection. After total 48 h, GM-CSF expression 

was determined by using supernatant of media with the mouse GM-CSF ELISA kit. 

Whether the levels of expression of GM-CSF were sustained, mNSCs (approximately 

2×104 cells/cm2) were seeded in a 6-well plate and transfected with a mixture of 

transfection reagent and each group of vectors (Control, SV-GMCSF, and NSE-

GMCSF). The supernatant was harvested at 3, 5, and 7 days after transfection. The 

amount of GM-CSF secreted in culture media was measured using the mouse GM-
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CSF ELISA kit. 

 

4. Neural differentiation 

For inducing of neural differentiation, mNSCs were cultured in presence of retinoic 

acid (RA, sigma, USA) for 7 days. RA was dissolved in DMSO (working solution, 10 

mM), and diluted with culture media (final concentration, 1 μM). Briefly, mNSCs 

were seeded on poly-L-lysine (2 μg/cm2, Sigma, StLouis, MO, USA) – coated glass 

cover slips at a density of 2×104 cells/cm2, and then transfected with the plasmid. 

After 24 h incubation, the medium was replaced with a complete medium with or 

without RA and then changed every 2 days. Neural differentiation was carried out for 

7 days. 

 

5. Cell transplantation 

All protocols were approved by the Animal Care and Use Committee of the Medical 

Research Institute at Yonsei University College of Medicine. All experiments were 

conducted in accordance with international guidelines on the ethical use of animals, 

and the number of animals used was minimized. ICR mice (male, 6 weeks, 30 g, 

OrientBio, Gyeonggi-do, Korea) were intraperitoneally injected with Ketamine (100 

mg/kg, Yu-han, Seoul, Korea), and Rompun (10 mg/kg, Bayer Korea, Seoul, Korea) 

for anesthetization. Laminectomy was performed at thoracic level 11. Spinal cord 

injury was carried out using a self-closing forcep (compression injury for 10 sec).  

7 days after SCI, animals were anesthetized and transfected mNSCs of each group 

were transplanted into a lesion of a spinal cord. At the experiment 1, mNSCs of each 

group were prepared by conducting transfection with SV-Luci and NSE-Luci at the 

day before for transplantation. At the experiment 2, all mice were randomly divided 

into 4 groups : Sham (only SCI) and Control (Ds-Red), SV-GMCSF and NSE-

GMCSF.  
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mNSCs of all groups were transplanted to spinal cords for 2 min (5×105 cells in a 2 

μl volume) using a micro-injector pump (KDS310; KD Scientific, US). The exposure 

site was sealed using suture wound clips and Cyclosporine A (10 mg/kg) and 

Cefazolin (20 mg/kg, Yu-han) were injected into mice daily until being sacrificed. 

Mice were sacrificed within 1 day after transplantation to detect a gene expression 

and sacrificed 4 days to conduct western blotting. 

 

6. In Vivo Imaging System (IVIS) 

The IVIS Spectrum (Xenogen, Alameda, CA, USA) was used to detect luciferase 

expression. For in vivo imaging, mice were anesthetized with ketamine (100 mg/kg) 

and Rompun (10 mg/kg), and then the substrate D-luciferin (150 mg/kg) was injected 

intraperitoneally. Twenty minutes after injection, bioluminescence images were 

captured for 10 min. Regions of interest (ROIs) were analyzed and total quantification 

of bioluminescence was quantified using Living Image® (Xenogen) software. For in 

vitro imaging, the substrate D-luciferin (150 μg/ml) was added to the Control (DsRed), 

SV-Luci, and NSE-Luci in medium, followed by mounting and bioluminescence 

detection for 2–3 min. 

 

7. Luciferase Assays 

Transfected cells were harvested and lysed with Pro-prepTM (iNtRON biotechnology, 

Gyeonggi-do, Korea) adding 400 μl for in vitro transfection assay. The concentrations 

of the extracted protein were measured by using BCA protein assay kit (Pierce, Iselin, 

NJ) and amount of luciferase expression was detected by using Luminometer by 

relative light units (RLU) for 10 sec. the level of luciferase expression was presented 

by RLU per mg of total protein. For ex vivo assay, anesthetized animals were 

conducted perfusion with PBS and immediately extracted that spinal cord segments at 

4 mm rostral and caudal of the transplanted region. Samples were transferred to the 
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micro centrifuge and then lysed with lysis buffer 400 μl for 1 h and centrifuged at 

13,000 rpm for 10 min. The supernatant was poured into other tubes and measured the 

quantity of extracted protein and the level of luciferase expression. 

 

8. ELISA Assay 

To detect levels of secreted GM-CSF in spinal cords, a kit of mouse GM-CSF 

ELISA (Young-In Frontier Inc., Seoul, Korea) was used. Before using the ELISA kit, 

the samples were prepared with collecting sample media in vitro. supernatant of 

media was separated by centrifuging at 2,000 × g for 10 min at 4 ℃ and stored at   

–20 ℃ until testing took place. 

For in vivo model, to detect the level of secreted GM-CSF in spinal cords, all spinal 

cords were removed after saline perfusion to eliminate blood, and temporarily stored 

at –70 .℃  Before conduct ELISA, spinal cord samples were lysed with 400 μl Pro-

prepTM for 1 h to extract protein. Extracted proteins were used to ELISA assay and 

total concentrations of the extracted protein were measured using BCA protein assay 

kit. ELISA assay was conducted following the manufacturer’s protocol. Standard and 

samples of serum or supernatant media (100 μl per well) were added to the plate and 

incubated for 2 h at room temperature. Then secondary antibody solution and 

streptavidin HRP solution were added to each well and incubated for 1h. Before 

starting each step, washing the well was conducted 3 times. After substrate were 

added into each well, stop solution were add in 5 min. ELISA assay was measured by 

using the ELISA reader (VERSAmax, Molecular Devices, Sunnyvale, CA, USA). 

The values of the sample’s optical density (OD) were detected at 450 nm. 

 

9. Immunocytochemistry 

Differentiated cells were fixed in 4 % paraformaldehyde, pH 7.4 (Merck, Darmstadt, 

Germany), for 10-15 min at RT. Samples were washed with phosphate buffered saline 
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(PBS, Thermo) three times. Blocking was performed with 10 % normal donkey serum 

in PBS containing 0.3 % Triton X-100 for 60 min at RT. Primary antibodies against 

beta-III-Tubulin (TUJ1), microtubule-associated protein 2 (MAP2), neural cell 

adhesion molecule (NCAM), Luciferase and neuro-filament heavy (NF-H) were 

incubated overnight at 4 °C. Samples were washed three times with PBS, and 

secondary antibodies were added and incubated for 1 h at RT. Samples were washed 

three times with PBS, and 4’, 6’-diamino-2-phenylinodole (DAPI; Vector Labs, 

Burlingame, CA, USA) was added. Samples were covered with glass coverslips. A 

laser confocal microscope (LSM 700; Zeiss, Oberkochen, Germany) was used for 

analysis. 

 

10. Western blotting 

Western blotting was conducted to determine the function of the therapeutic gene 

GM-CSF. All of the extracted tissue lysates were prepared and loaded onto SDS-

PAGE gels (10-12 % gel, Bio-Rad, Richmond, CA, USA). After electrophoresis, 

transferring and blocking, primary antibodies targeting Bax (dilutions of 1:1,000, 

Millipore Corp., Milford, MA, USA) and -actin (1:10,000, Abcam, Cambridge, UK) 

were applied. After conjugation of secondary antibodies, detection of protein signals 

was performed with the automatic X-ray film processor (TM-300E; TAEAHN Inc, 

Incheon, Korea), and densitometry was quantified using ImageJ (NIH, Bethesda, MD, 

USA). 

 

11. Cell viability assay 

The protective effect of GM-CSF was measured in 96-well plates by using the MTT 

assay. mNSCs were seeded at a density of 0.5×104/cm2 and incubated for 3 days with 

supernatant media from each group (Control, SV-GMCSF, NSE-GMCSF) and treated 

with a chemically toxic reagent (diluted in 1 % DMSO) for an additional 24 h. MTT 
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reagent (final concentration of 0.5mg/ml; Sigma) was added to each well. After 3 h, 

the viability of cells was measured using the ELISA reader (VERSAmax) at 562 nm. 

 

12. Statistical analysis 

Statistical analysis was performed using Prism 6 (Graphpad, San Diego, CA, USA) 

and MedCalc software version 14.12.0 (MedCalc, Mariakerke, Belgium). All data 

were evaluated using Student’s t-test and a one-way ANOVA followed by the Tukey-

Kramer Post hoc test. All data are expressed as the mean ± standard error of the mean 

(S.E.M). A P-value < 0.05 was considered statistically significant.   
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Table 1. List of Antibodies used in the whole experiments 

Antibody Host 
Product Information Dilution 

Factor Company Cat.No 

MAP2 Mouse Abcam AB11267 1:500 

MAP2 Rabbit Abcam AB32454 1:200 

Luciferase Goat Novus 100-1677 1:500 

Neurofilament-H Chicken Abcam AB4680 1:1000 

TuJ1 Rabbit Abcam AB18207 1:1000 

NCAM Rabbit Abcam AB75813 1:200 

Bax Rabbit Upstate 
biotechnology 

06-499 1:1000 

-actin Mouse Abcam AB8226 1:10,000 

GMCSF Mouse Abcam AB9741 1:1000 
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III. RESULTS 

 

1. Establish gene expression system in mouse neural stem cells 

Whole experiments were conducted using pGL3 based plasmid. NSE-Luci was 

constructed using neuron specific enolase (NSE) promoter and pGL3-basic plasmid. 

SV-GMCSF and NSE-GMCSF was made by substituted luciferase gene of SV-Luci 

and NSE-Luci to GM-CSF gene (Fig. 1A). 

To examine the neuronal differentiation potency of mNSCs used in this study, cells 

were cultured in differentiation media containing RA (1 μM) for 7 days. 

Differentiated cells were positive with the neuronal markers TUJ1, MAP2, NCAM, 

and neuro-filament. This result showed that cells used in this study are neural stem 

cells which can be differentiated into neurons (Fig. 1B-D). 

 Before whole experiments were conducted, transfection characteristic was confirmed. 

Because of using transient gene expression system, transfection efficiency and gene 

expression in mNSCs was tested.  

Transfection efficiency in mNSCs was measured by using DsRed expression vector. 

2 days after transfection, positive cells of DsRed or DAPI were counted and 

compared with them. The average of DsRed positive cell was 40 % percentage 

compared with DAPI (Fig. 2A).  

The target gene expression by transfected mNSCs was confirmed. After mNSCs 

were transfected with SV-GMCSF or NSE-GMCSF, the immune-fluorescence 

staining was conducted using anti-GMCSF. Although anti-GM-CSF was positive in 

mNSCs, but there didn’t show a difference between SV-GMCSF and NSE-GMCSF. 

This means that over-expressed GMC-SF was secreted extra-cellular membrane (Fig. 

2B). 
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Figure 1. Plasmid construction and characterization of mouse neural stem cells 

(A) Plasmid construction of neuronal cell type-inducible or general luciferase over-

expression vectors. The NSE promoter region was inserted to pGL3-basic vector after 

digestion (NheI and BglII sites). The mouse GM-CSF was inserted into luciferase site 

sites of neuronal cell type-inducible or general luciferase expression vector. Neuronal 

differentiation potency of mNSCs was confirmed by fluorescence staining specific for 

each neuron. (B and C) Most of the differentiated cells were positive for neuron-

specific markers such as beta-III-tubulin, MAP2, and NCAM. (D) The thick axonal 

bundle was confirmed by staining with neuro-filament and beta-III-tubulin. 
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Figure 2. Transfection efficiency and gene expression in mNSCs 

(A) The DsRed expressing plasmid was tranfected into mNSCs to examine the 

transfection efficiency in mNSCs. 2 days after transfection into mNSCs, DsRed or 

DAPI positive cells were counted. About 40 % of mNSCs were positive with DsRed 

compared with DAPI positive cells. Fluorescence scale bar, 200 m. (B) Immune-

fluorescence staining was carried out for detecting of GM-CSF expression in mNSCs 

which were transfected with SV-GMCSF or NSE-GMCSF. There are no difference 

between SV-GMCSF and NSE-GMCSF. Fluorescence scale bar, 20 m. 
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2. Expression pattern of neural stem cells transfected with a neuronal cell type-

inducible luciferase over-expression system (NSE-Luci) 

The level of luciferase expression in mNSCs was investigated which were 

transfected with Control (DsRed), SV-Luci, and NSE-Luci plasmid to confirm 

whether this neuronal cell type-inducible gene over-expression system is suitable for 

mNSCs. Based on the results of IVIS and the luciferase assay, luciferase expression 

significantly increased in NSE-Luci compared to SV-Luci (Fig. 3). These results 

indicate that the neuronal cell type-inducible transgene over-expression system is 

suitable for mNSCs.  

To identify whether the transgene over-expression pattern can be sustained after 

hypoxic injury (mimicking tissue ischemia after SCI), the luciferase expression levels 

of Control, SV-Luci, and NSE-Luci were compared after hypoxic injury for 24 h. the 

luciferase expression level significantly increased in NSE-Luci compared to that in 

SV-Luci (Fig. 3). These results indicate that the merged therapy strategy with mNSCs 

and a neuronal cell type-inducible gene over-expression system can be applied to 

spinal cord injuries that cause tissue ischemia. 

In order to assure whether the NSE was selectively working in neuronal lineage cells, 

the luciferase expression levels were examined in HEK 293FT cells, which are human 

embryonic kidney cells, transfected with Control (DsRed), SV-Luci, and NSE-Luci 

plasmid. The luciferase expression level in 293FT transfected with NSE-Luci plasmid 

was significantly lower than 293FT transfected with SV-Luci plasmid (Fig. 4). This 

result means that the efficacy of the neuronal cell-type–inducible gene expression 

system depends on neuronal lineage cell type. 
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Figure 3. Luciferase expression pattern of neural stem cells introduced with a 

neuronal cell type-inducible luciferase over-expression system (NSE-Luci) in 

normoxia and hypoxia 

Luciferase expression levels of Control, SV-Luci, and NSE-Luci were examined by 

luciferase expression imaging, the day after transfection, which were incubated at 24 

h more in normoxia or hypoxia. (A) The result of luciferase expression imaging of 

IVIS indicates that luciferase in NSE-Luci group was highly over-expressed 

compared to the other groups. The color scale bar indicates the luciferase expression 

level. (B) Quantitative analysis of luciferase expression imaging in Fig. 3A. (C) 

Luciferase expression levels of Control, SV-Luci, and NSE-Luci examined by 

luciferase assay. Luciferase expression of NSE-Luci was much higher than the other 

groups in normoxia and hypoxia. * P < 0.05. Data represent mean ± S.E.M. 
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Figure 4. Neuronal cell type-inducible luciferase gene over-expression systems in 

non-neuronal cells 

To confirm whether the NSE was selectively working in neuronal lineage cells, 

Human Embryonic Kidney 293 cells (HEK-293FT), non-neuronal cells, were 

transfected. Luciferase expression levels of SV-Luci and NSE-Luci were confirmed 

by luciferase assay at 48 h after transfection. * P < 0.05. Data represent mean ± S.E.M. 
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3. Transgene expression pattern in differentiated neuron 

In order to verify whether the luciferase expression pattern of the NSE-Luci can be 

increased after neuronal differentiation (1 μM RA) compared to neural stem cells 

stage (0 μM RA), the level of luciferase expression was compared between neural 

stem cells which were un-differentiated and differentiated neuron and also compared 

between NSE-Luci and SV-Luci after inducing neuronal differentiation. The 

luciferase expression level of NSCs transfected with NSE-Luci plasmid was much 

higher after neuronal differentiation than un-differentiation (Fig. 5). At the neuronal 

differentiation condition (1 μM RA), the luciferase expression level of NSE-Luci was 

significantly higher than that of SV-Luci (Fig. 6). 

These results mean that the transgene expression by NSE promoter was induced by 

neuronal differentiation. Thus, these findings indicate that the neuronal cell type-

inducible transgene over-expression system appropriates with NSCs which have the 

neuronal differentiation potency for merged treatment strategy.  
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Figure 5. High luciferase expression pattern after differentiation into neurons 

Induced cell differentiation with treatment of 1 M RA for 7 days after transfected 

with NSE-Luci, Luciferase expression level was compared between undifferentiated 

(without RA) and differentiated cells (with 1 M RA). (A and B) Double staining was 

conducted by using immunocytochemistry with MAP2+ (mature neuronal marker, 

Green) and Luciferase+ (Luciferase marker, Red). The positive cells by 

immunostaining were indicated by arrows. (C) The Luciferase expression level of 

differentiated neurons was compared with undifferentiated neurons by using the 

luciferase assay. Luciferase expression was significantly greater in differentiated 

neurons than in neural stem cells. * P < 0.05. Data represent mean ± S.E.M. 

 

 

 

* 
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Figure 6. A neuronal cell type luciferase expression pattern after differentiation 

into neurons 

After induced differentiation for 7 days, a neuronal cell-type luciferase expression 

system was compared with a general luciferase expression system. (A) IVIS imaging 
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indicated that NSE-Luci was over-expressed luciferase than SV-Luci. (B) Using 

Luciferase assay, the luciferase expression level of NSE-Luci after neuronal 

differentiation was significantly greater than that of SV-Luci after differentiation. * P 

< 0.05. Data represent mean ± S.E.M. 
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4. Transgene expression pattern in vivo 

To confirm whether NSE-Luci show a consistent high expression pattern in vivo, 

both SV-Luci and NSE-Luci were transplanted into the spinal cord, and carried an 

IVIS analysis and luciferase assay was carried out 24 h after transplantation. Similar 

to our results in vitro, the luciferase expression level was significantly higher in NSE-

Luci than in SV-Luci (Fig. 7A and B). These results indicated that a merged treatment 

strategy based on neuronal cell type-inducible transgene expression system and NSCs 

can be applied to spinal cord injury. 
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Figure 7. Luciferase expression pattern of neuronal cell type-inducible luciferase 

gene over-expressing neural stem cells after transplantation  

(A) To define over-expression level of luciferase gene by NSE::Luci in vivo, 

transfected mNSCs (5x105 cells/2l) were transplanted 7 days after SCI mice model. 

Luciferase expression pattern of SV-Luci and NSE-Luci confirmed by IVIS 24 h after 

cell transplantation. NSE-Luci transplanted into spinal cord showed a high luciferase 

expression compared to SV-Luci after transplantation. The color scale indicates the 

luciferase expression level, not the cell numbers in this study. (B) Luciferase 

expression pattern of SV-Luci and NSE-Luci confirmed by luciferase assay 24 h after 

cell transplantation. NSE-Luci transplanted into the spinal cord consistently showed a 

high luciferase expression pattern compared to SV-Luci after transplantation. * P < 

0.05. Data represent mean ± S.E.M. 
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5. Therapeutic Gene, GM-CSF, expression pattern of a neuronal cell-type 

inducible gene expression system (NSE-GMCSF) 

To confirm expressing therapeutic gene, luciferase gene was substituted to mouse 

GM-CSF gene which is reported that GM-CSF has the effect survival of neuronal cell 

(Fig. 1A). GM-CSF is secreted cytokine, thus mature GM-CSF will be secreted out of 

the extracellular membrane.  

The level of secreted GM-CSF was investigated in culture media for 2 days after 

transfection with the GM-CSF expression vector. The amount of GM-CSF secreted 

into the culture media was significantly increased in the supernatant of mNSCs 

transfected with NSE-GMCSF plasmids compared to mNSCs transfected with 

Control (Ds-Red) or SV-GMCSF plasmid (Fig. 8A). 

In order to examine whether the GM-CSF over-expression pattern of mNSCs with 

the neuronal cell type-inducible gene over-expression system was maintained after 

transplantation into an ischemic environment, the amount of secreted GM-CSF was 

measured by conducting ELISA after mNSCs which were transfected with NSE-

GMCSF or SV-GMCSF were cultured in hypoxia or cell-toxicity conditions 

(mimicking an ischemic environment). The GM-CSF over-expression pattern of NSE-

GMCSF was consistent in the hypoxia or cell-stress conditions (Fig. 8B and C). 

Therefore, these results demonstrate that the neuronal cell type-inducible gene over-

expression system is stable, even after replacing luciferase with GM-CSF.  
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Figure 8. NSE-GMCSF in normoxia, hypoxia and injury condition 

A day after transfection, mNSCs were incubated in (A) normoxia, (B) hypoxia and 

(C) injury condition (hypoxia + 1 % DMSO) for 1 day. The expression level of GM-

CSF was measured by conducting the GMCSF ELISA assay with the culture media 

where GM-CSF was secreted. NSE-GMCSF was higher express GM-CSF than other 

groups. * P < 0.05. Data represent mean ± S.E.M. 
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6. GM-CSF expression sustains to transplanted cell survival 

To neuronal survival, expression of GM-CSF is more sustain than Control (DsRed) 

group until neuronal differentiation. The secretion period of GM-CSF into the culture 

media has been checked after transient gene transfection was carried out. The amount 

of GM-CSF secreted in culture media was measured at 3, 5 and 7 days after 

conducting transfection with SV-GMCSF and NSE-GMCSF. The result showed that 

GM-CSF secretion was sustained for about 7 days; also, the GM-CSF over-expression 

pattern of NSE-GMCSF was sustained after 7 days (Fig. 9). 
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Figure 9. The secretion pattern of GM-CSF following transient expression 

To activate the protective effect of GM-CSF to transplanted mNSCs, highly over-

expression and continuous secretion of GM-CSF were need. The amount of GM-CSF 

secreted in culture media at 3, 5 and 7 days after transfection with SV-GMCSF and 

NSE-GMCSF. Until secretion of GM-CSF became extinct, the expression level of 

GM-CSF by NSE-GMCSF was higher sustained than SV-GMCSF. * P < 0.05. Data 

represent mean ± S.E.M. 
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7. Cell survival effect of GM-CSF in vitro 

The MTT assay was used to test the protective effect of GM-CSF in vitro. 

To compare with the effect of GM-CSF, mNSCs were incubated for 3 days with 

supernatant media of each group that had been incubated in normal conditions (Fig.  

7A). In order to induce chemical damage into mNSCs, a toxic reagent, 1 % DMSO, 

was treated to mNSCs for 1 day and then and conducted an MTT assay. The data 

show that the more the level of GM-CSF increased, more mNSCs survived (Fig. 10). 

The mNSCs treated with the supernatant media of NSC-GMCSF had the highest 

survival, compared with other groups of cells. This result indicates that GM-CSF 

affects to increase the cell viability in injury condition. 
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Figure 10. Cell survival as the effect of GM-CSF in vitro  

To confirm the protective effect of GM-CSF, mNSCs incubated with the culture 

media of each group for 3 days and then 1 % DMSO was treated 24 h for injury. Cell 

survival was measured by MTT assay. The higher the level of GM-CSF expressed by 

mNSCs, the more cell viability increased. * P < 0.05. Data represent mean ± S.E.M. 
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8. GM-CSF expression pattern and anti-apoptotic effect of NSE-GMCSF  

in vivo 

To test whether similar pattern of NSE-Luci expression can be found in vivo, injured 

mice model was divided 4 groups : Sham (Only SCI), Control (DsRed), SV-GMCSF 

and NSE-GMCSF. Each transfected group was transplanted with transfected mNSCs 

into lesion of spinal cord. Consistently, the amount of secreted GM-CSF significantly 

increased in the NSE-GMCSF group, compared to other groups (Fig. 11). This result 

demonstrated that the neuronal cell type-inducible GM-CSF expression on neural 

stem cells consistently and stably functions in vivo. The level of GM-CSF was 

showed as a unit of pg/mg of total protein.  

After confirming expression of GM-CSF in mNSCs in vivo, anti-apoptotic effect of 

GM-CSF was tested in vivo. To find out the effect of GM-CSF, the western blotting 

was performed using the apoptosis marker Bax on tissue samples collected on post-

transplantation day 4. The ratio of Bax/β-actin in each transplanted cell group was 

significantly decreased compared to the Control group. Moreover, the level for NSE-

GMCSF was decreased compared with Control and SV-GMCSF (Fig. 12A and B). 

 These results supported the conclusions of previous studies that GM-CSF has a 

direct or indirect neuro-protective effect and reduces cell apoptosis. 
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Figure 11. GM-CSF expression pattern of neuronal cell-type inducible GM-CSF 

expressing neural stem cells after transplantation 

mNSCs of each group (5x105 cell/2l) was transplanted to spinal cord injury model. 

A day after transplantation, spinal cord samples were used to ELISA assay. The 

amount of GM-CSF secreted from transplanted mNSCs, which were transfected by 

NSE-GMCSF, over-expressed compared to other groups. * P < 0.05. Data represent 

mean ± S.E.M. 
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Figure 12. The anti-apoptotic effect of GM-CSF in vivo  

4 days after transplanted mNSCs into SCI model, extracted spinal cord lysates were 

examined by western blotting with apoptotic marker, Bax. (A and B) Western blotting 

data showed that transplanted mNSCs expressed decreased levels of Bax and NSE-

GMCSF expressed highly decreased levels of Bax, compared with other groups. ** P 

< 0.01. Data represent mean ± S.E.M.  
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IV. DISCCUSION 

As one of the pathologies that appear after spinal cord injury, an ischemic 

environment in the spinal cord is caused by the destruction of blood vessels; this 

ischemic condition lasts from several days to several weeks. The survival rate of the 

stem cells transplanted into the ischemic environment would normally rapidly decline. 

Therefore, a gene and stem cell therapy platform based on neural stem cells and a 

neuronal cell-type–inducible gene expression system were designed to protect 

transplanted stem cells and the injured spinal cord. 

The gene over-expression by neuron specific enolase (NSE) promoter is already 

known as working on mature neurons. It was confirmed that the luciferase expression 

level of NSE-Luci was significantly higher than the luciferase expression level of SV-

Luci; however, the luciferase expression level of 293FT cells (used as a mean non-

neuronal cell type) transfected with NSE-Luci was significantly lower than that of 

293FT cells transfected with SV-Luci plasmid. This result means that transgene over-

expression by NSE promoter is specifically working at the neural stem cell stage. The 

previous study also investigated the difference of gene over-expression based on NSE 

promoter in between neurons and non-neuronal cells such as HEK293 and HeLa 

cells.4 In addition to, it has been known that NSE is expressed not only in mature 

neuron, but also in other immature cell types such as a neuroblastoma, small cell lung 

cancer, medullary thyroid cancer, carcinoid tumors, and melanoma.26-32 Thus, it 

suggested that NSE promoter may function extensively in neuronal lineage cells. 

NSE-Luci showed a higher luciferase expression level than that of SV-Luci under 

normoxia and hypoxia. Interestingly, the luciferase expression level of NSE-Luci in 

hypoxia was higher than that of NSE-Luci in normoxia. This result consider that the 

response of mNSCs stimulated by hypoxic condition.33-36 In addition to, the luciferase 

expression level of NSE-Luci was much higher after differentiation into neurons. All 

of these features can be used advantageously, if the luciferase used in this study were 

replaced by other therapeutic genes.  

In previous study, it was confirmed that NSCs transfected with a hypoxia-inducible 
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gene expression system should be maintained for at least 1 day under hypoxic 

conditions for transgene over-expression.3 However, the gene expression level of 

NSCs transfected with a neuronal cell type-inducible gene over-expression system 

was sufficiently greater in normoxia, namely before transplantation (saving time, as 

there is no need to wait 24 h). Thus, the high amount of secreted therapeutic protein 

may be useful for improving the survival of transplanted stem cells, as well as 

protecting the injured spinal cord from exposure to an ischemic environment. 

Subsequently, the high amount of secreted therapeutic protein from transplanted 

NSCs would be sustained under the ischemic environment and, would also increase 

further neuronal differentiation.  

As known as one of the therapeutic gene, GM-CSF is a secreted cytokine, and 

mature GM-CSF is secreted out of extracellular membranes. As examining the GM-

CSF expression pattern in cell lysates of SV-GMCSF or NSE-GMCSF by Western 

blot analysis, GM-CSF expression level of NSE-GMCSF was similar to SV-GM-CSF 

(the data was not shown). Finally, the amount of GM-CSF secreted in culture media 

was significantly increased in NSE-GMCSF. These results indicate that mature 

therapeutic protein was properly made by neural stem cells transfected with the 

neuronal cell type-inducible therapeutic gene over-expression system. The blood 

brain barrier or blood spinal cord barrier are present in the central nervous system so 

that it is very difficult to deliver a relatively large sized therapeutic protein to a lesion 

site by oral ingestion or injection. Based on this problem, direct transplantation of 

therapeutic gene expressing stem cells at the injured region of the central nervous 

system may provide the maximal therapeutic benefit by allowing a relatively large 

sized therapeutic protein to be provided directly and sustainably to the neural tissues 

or other cells.  

In this study, it has a limited part that only focused on the reproducibility regarding 

the stability or consistency of the neuronal cell type-inducible therapeutic gene over-

expression system in neural stem cells. Thus, the biological effect of the therapeutic 

gene did not further investigated. Because the transient gene transfection method was 
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used in all experiments, the secretion of GM-CSF couldn’t be expected beyond 7 days 

(Fig. 9). In future studies, it will be necessary to establish a stably therapeutic gene-

expressing neural stem cell line for long-term secretion of therapeutic protein after 

transplantation. If that happens, it could be expected that the high amount of the 

therapeutic gene secreted by therapeutic gene-expressing NSCs will be performed 

effectively their innate biological function.  

Thus, these findings suggest that a neuronal cell type-inducible gene expression 

system is suitable for use combined with NSCs for expressing a high amount of 

therapeutic genes, and such gene and neural stem cell therapy methods based on 

present systems would be very promising tools as potential treatment for spinal cord 

injury.  
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V. CONCULSION 

In this study, a combined treatment strategy using a neuronal cell type-specific 

transgene expression system with NSCs was established for spinal cord injury. It was 

confirmed that the luciferase gene expression level of NSE-Luci was significantly 

higher than that of SV-Luci. This pattern was sustained after hypoxic injury and in 

vivo. After verified by using Luciferase gene, GM-CSF gene expression level of NSE-

GM-CSF was compared with SV-GMCSF. The amount of secreted GM-CSF is 

significantly increased in the supernatant of NSCs transfected with NSE-GMCSF. 

The GM-CSF over-expression of NSE-GMCSF was consistently stable in hypoxic or 

cell stress conditions as well as in vivo. It is suggest that a neuronal cell type inducible 

transgene expression system is suitable for neural stem cells; furthermore, a combined 

treatment strategy based on a neuronal cell type-inducible therapeutic gene over-

expression system and NSCs may provide an effective therapeutic outcome for 

neurological disease treatment. 
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ABSTRACT (IN KOREAN) 

 

척추신경손상모델에서 신경계열 세포 특이적 유전자 발현시스템과 

신경줄기세포를 이용한 병합 치료 기술 개발 

 

<지도교수 하 윤> 

 

연세대학교 대학원 의과학과 

 

유 영 상 

 

영구적인 신경손상과 관련된 척수 손상 치료에 있어서 유망한 치

료기술이 필요하다. 단일 치료 기술로 충분한 치료효과를 기대하기 

힘들기에 두 가지 이상 병합된 치료 기술이 치료 효과를 보다 향상 

시킬 수 있을 것이다.  

본 연구에서, 치료 효율을 극대화하고자 신경세포 계열 특이적인 

프로모터로 조절되는 신경세포 계열 특이적 발현시스템과 신경줄기

세포 병합 기술을 개발하였다. 치료유전자를 사용하기 전에 병합 시

스템이 적절히 작동하는지 확인하고자 루시퍼레이즈 유전자를 선택

하여 신경 세포 계열 특이적 유전자 발현시스템 (NSE-Luci)과 신경

세포 계열 비특이적 유전자 발현시스템 (SV-Luci)을 생체 내와 생체 

외 조건에서 비교 분석하였다. 루시퍼레이즈 유전자로 신경세포계열 

특이적 유전자 발현시스템을 확인 한 뒤, 치료유전자인 과립대식세
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포 자극인자 발현 시스템을 제작하였으며 생체 내와 생체 외 조건에

서 신경세포 계열 특이적 발현시스템을 비교하였다.  

실험 결과로 신경줄기세포에 도입된 신경세포계열 특이적 유전자 

발현 시스템이 비특이적 유전자 발현시스템보다 루시퍼레이즈 유전

자가 과발현되는 것을 확인하였고 또한 치료유전자 발현시스템에서 

과립대식세포 자극인자가 과발현되는 것을 확인하였다.  

신경세포 계열 비특이적 유전자 발현시스템보다 신경 세포 계열 

특이적 유전자 발현시스템이 신경 줄기 세포와 병합 치료 기술에 

있어서 적합하다는 것을 증명해보았다. 따라서, 척수손상과 같은 

신경퇴행성 질환 치료에 있어서 이와 같은 병합치료기술이 유용한 

기법으로 사용될 수 있음을 제안을 해본다. 
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