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ABSTRACT 

 

Comparative analysis of human umbilical cord blood derived 

mesenchymal stem cells between preeclampsia and normal pregnant 

women 

 

Han-Sung Hwang 

 

Department of Medicine 

The Graduate School, Yonsei University  

 

(Directed by Professor Yong-Won Park) 
 

 

Preeclampsia is a syndrome characterized by deterioration of either the 

maternal condition or the fetal condition. The adverse intrauterine environment 

made by preeclampsia results into intrauterine growth restriction, and increased 

risk of a variety of diseases in future life. Given the adverse environment of 

fetal circulation made in the preeclamptic condition, and the role of 

mesenchymal stem cell (MSC) as a multipotent progenitor cell, it is reasonable 

to hypothesize that MSCs derived from human umbilical cord blood 

(hUCB-MSCs) obtained from preeclampsia may be perturbed compared with 

normal pregnancy. The aim of this study was to analyze the biological 

characteristics, and compare the functional abilities and gene expression 

patterns of hUCB-MSCs originating from pregnant women with and without 

preeclampsia. hUCB-MSCs were isolated, and cultured from 28 pregnant 

women with severe preeclampsia and 30 normal pregnant women. 
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Characterization analysis of hUCB-MSCs including flow cytometry, semi 

quantitative real time quantitative polymerase chain reaction (RT-qPCR), 

immunofluorescence staining, and in vitro differentiation studies, comparative 

analysis including proliferation assay, senescence-associated β-galactosidase 

(SA-β-gal) assay, telomerase activity assay, and reactive oxygen species (ROS) 

activity assay, and comparison of gene expression including gene expression 

pattern using microarray, hierarchical cluster analysis of differentially expressed 

genes, gene ontology classification, and pathway network analysis between two 

groups were performed. hUCB-MSCs obtained from women with preeclampsia 

were less proliferative, more senescent, and had lower telomerase activity and 

higher ROS activity than cells from women with normal pregnancy. Many 

senescence-related DEGs were identified by analysis of gene expression 

profiles, and significantly associated with the gene ontology term cell aging. In 

conclusion, hUCB-MSCs obtained from women with preeclampsia are 

functionally defective compared with cells from women with normal 

pregnancy. 

 

 

 

 

 

---------------------------------------------------------------------------------------- 

Key words : Human umbilical cord blood, Mesenchymal stem cell, 

Preeclampsia, Senescence, Microarray, Network analysis 
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Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Yong-Won Park) 
 

 

 

I. INTRODUCTION 

 

The discovery of mesenchymal stem cells (MSCs) by Fridenstein et al. in 

1976 suggested a potentially useful model for gene therapy, regenerative 

medicine, and better and more advanced treatment strategies for various 

diseases, even those that seem to be incurable
1
. An increasing number of reports 

indicate that MSCs have extensive proliferative potential and the ability to 

differentiate into various cell types, including osteoblastic, adipogenic, 

chondrogenic, myogenic, and neurogenic cells
2-5

. Because of these properties, 

numerous laboratories are studying the clinical safety and efficacy of MSCs for 

the treatment of a number of pathological conditions, such as heart failure
6
, 

spinal cord injury
7
, and bone and cartilage diseases

8
. Whereas bone marrow was 

the first main source of MSCs, recent studies have suggested that MSCs can be 

obtained from many other tissues of the human body, such as fat
9
, umbilical 
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cord blood, chorionic villi of the placenta
10

, amniotic fluid
11

, peripheral blood
12

, 

lung
13

, skeletal muscle
14

, synovial membrane
15

, hepatic tissue
16

, and even 

exfoliated deciduous teeth
17

. In particular, recent studies showed that MSCs 

derived from human umbilical cord blood (hUCB-MSCs) could be isolated 

more efficiently and are more primitive than MSCs derived from adult tissues
18

. 

For hematopoietic stem cells of umbilical cord blood, the various senescent 

stages and their regulatory pathways are well known
19-21

. In contrast, the 

mechanisms of senescence and functional impairment of MSCs remain 

unknown, although several recent studies have shown that MSCs isolated from 

older donors are more senescent than those isolated from younger donors
22,23

, 

and that MSCs have a replicative senescence pathway involving intracellular 

superoxide accumulation
24,25

.  

Preeclampsia is a complication found in 3% of pregnancies and a major cause 

of maternal and perinatal morbidity and mortality. Preeclampsia is a syndrome 

characterized by deterioration of either the maternal condition (hypertension 

and proteinuria with or without multiorgan abnormalities) or the fetal condition 

(intrauterine growth restriction, decreased amniotic fluid)
26,27

. Intrauterine 

growth restriction is a major fetal complication of preeclampsia. Although 

reduced placental blood flow
28,29

, and increased sensitivity of the human 

placental vasculature to vasoconstrictors have been suggested as possible 

causes
30

, the pathophysiology of intrauterine growth restriction in preeclampsia 

is still unclear. Moreover, children born at term to mothers with preeclampsia 
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have an increased risk of a variety of diseases, such as endocrine, nutritional, 

and metabolic diseases, as well as diseases of the blood and blood-forming 

organs
31

. These findings in the preeclamptic condition may originate through 

adaptations of the fetus to an adverse intrauterine environment. Previous studies 

have given explanations for this adverse condition comparison of umbilical cord 

blood with and without preeclampsia. As compared with the normal pregnancy 

group, increased anti-angiogenic factors, reduced expression of pro-angiogenic 

signal, elevated oxidative stress, and increased inflammatory response have 

been founded in fetal serum during preeclampsia
32-34

.  

Given the adverse environment of fetal circulation made in the preeclamptic 

condition, and the role of MSC as a multipotent progenitor cell, it is reasonable 

to hypothesize that hUCB-MSCs obtained from preeclampsia may be perturbed 

compared with normal pregnancy. The aim of this study was to analyze the 

biological characteristics, and compare the functional abilities and gene 

expression patterns of hUCB-MSCs originating from pregnant women with and 

without preeclampsia. 
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II. MATERIALS AND METHODS 

 

1. Study participants and sample collection 

We studied the cord blood of pregnant women who visited Konkuk 

University Hospital, 30 of whom had no pregnancy complications (normal 

group), and 28 of whom had severe preeclampsia (preeclampsia group). Only 

women delivered by cesarean section without labor were enrolled in this study. 

Umbilical cord blood was obtained from each pregnant woman at the time of 

cesarean section. The indications of cesarean section for pregnant women 

without preeclampsia were previous cesarean section, previous myomectomy, 

breech presentation, or transverse lie. All subjects were enrolled in this study 

after signing an informed consent document approved by the institutional 

review board (IRB No: KUH1040005). Severe preeclampsia was defined as the 

presence of hypertension (systolic blood pressure ≥ 160 mmHg and/or diastolic 

pressure ≥ 110 mmHg) and proteinuria (≥ 3+ on dipstick test or 5g per 24 hours) 

beyond the 20
th
 week of pregnancy

35
. At least two consecutive measurements 

were required for diagnosis. Subjects were excluded from this study if they had 

known fetal or maternal complications, such as multiple gestation, fetal 

structural or genetic problems, maternal chronic hypertension, cardiovascular 

disease, renal disease, hepatic disease, diabetes mellitus, infectious disease, 

connective tissue disease, and autoimmune disease. 
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2. Isolation and cultivation of hUCB-MSCs 

Umbilical cord blood samples (about 50 mL each) with anticoagulant were 

collected from umbilical cord vein attached to placenta by gravity flow after 

delivery. Mononuclear cells (MNCs) were isolated from cord blood samples by 

density gradient centrifugation over Biocoll (Biochrom, Berlin, Germany) for 

30 minutes at 400×g, washed three times in phosphate-buffered saline (PBS) 

(Biochrom). Among the MSCs, CD133/c-kit-positive cells were selected to 

differentiate into MSCs. CD133/C-kit-positive cells were enriched using the 

MACS system (Miltenyi Biotech, Bergisch Gladbach, Germany) according to 

the manufacturer's instructions. Briefly, MNC were washed and resuspended in 

PBS buffer. Cells were incubated with anti-CD133/C-kit microbeads in the 

presence of human IgG as blocking reagent at 4°C for 30 min. Labeled cells 

were loaded onto a column installed in a magnetic field. The column was rinsed 

with PBS buffer and negative cells passed through. Trapped cells were eluted 

after the removal of column from the magnet. Isolated CD133/C-kit positive 

cells were seeded 1×10
6
 cells on 6-well plates, coated with human fibronectin 

(Sigma-Aldrich Chemie, Munich, Germany) in endothelial basal medium-2 

(EBM-2) (Clonetics, Cell Systems, St Katharinen, Germany). The medium was 

supplemented with endothelial growth medium-2 (EGM-2; Clonetics, Cell 

Systems) containing fetal bovine serum, human VEGF-A, human fibroblast 

growth factor-B, human epidermal growth factor, insulin-like growth factor 1 

(IGF1), and ascorbic acid in appropriate amounts. After 3 days, non-adherent 
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cells were removed and fresh culture medium was added. Cultures were 

maintained with EGM-2 supplement. Phenotypical analysis of the cells was 

performed on days 7, 13 and 15. 
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3. Characterization of hUCB-MSCs 

 

A. Flow cytometric analysis 

The primary cultured cells were treated with 0.25% trypsin, washed once 

with PBS, and collected. The following fluorescently labeled antibodies were 

used for flow cytometric characterization of hUCB-MSCs: anti-CD29 

(Molecular Probes, Eugene, OR), anti-CD73 (BD Pharmingen, San Diego, CA), 

and anti-CD90 (Abcam, Cambridge, MA). Detached cells were washed twice 

with Dulbecco’s PBS, centrifuged, washed in ice-cold Dulbecco’s PBS 

supplemented with 1% bovine serum albumin (FCM buffer), and fixed in 2% 

paraformaldehyde in FCM buffer. Cells were then incubated with antibodies 

conjugated to fluorescein isothiocyanate (FITC) or phycoerythrin (PE) 

(Pharmingen, BD Biosciences Europe, Heidelberg, Germany) for 15 minutes on 

ice in a dark room at concentrations recommended by the manufacturer. We 

used anti-IgG-FITC (33814X; Pharmingen, BD Biosciences Europe) and 

anti-IgG-PE (33815X; Pharmingen, BD Biosciences Europe) as isotypic 

controls. After being washed, cells were analyzed on COULTER EPICS 

XL-MCL flow cytometer (Beckman Coulter, Krefeld, Germany) by using 

EXPO-32 software. Instrument settings for scatter conditions and background 

fluorescence were adjusted for untreated cells.  
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B. RNA isolation and semi quantitative real time quantitative polymerase chain 

reaction (RT-qPCR)  

Total RNA was extracted from cells with a TRIzol reagent kit (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. Briefly, first-strand 

complementary DNA (cDNA) was synthesized from 1 µg of total RNA with 

SuperScript II reverse transcriptase, oligo(dT) primer, and 10 mM dNTP 

mixture (Invitrogen, Carlsbad, CA). The cDNA mixture (1 µL) was used for 

PCR. Amplification of the GAPDH gene was carried out in parallel for 

normalization. The PCR was performed in a DNA thermal cycler (model 

PTC-200; MJ Research, Scientific Support, Inc, Waltham, MA) under the 

following conditions: denaturation at 94°C for 5 minutes for the first cycle and 

for 30 seconds thereafter, annealing at 60°C for 30 seconds, and extension at 

72°C for 30 seconds for 40 cycles. All results were normalized to GAPDH 

mRNA. The primers used are given in table 1.  
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Table 1. Primer sequences specific to the target genes 

Gene Direction Sequence 

CD133 Sense 5’-CCCGCAGGAGTGAATCTTTT-3’ 

 Anti-sense 5’-AGGAAGGACTCGTTGCTGGT-3’ 

c-kit Sense 5’-TCTCTTTAGGAAGCAGCCCC-3’ 

 Anti-sense 5’-ACATTTCAGCAGGTGCGTGT-3’ 

CD29 Sense 5’-GTAGCTGGTGTGGTTGCTGG-3’ 

 Anti-sense 5’-TGTCCCATTTGGCATTCATT-3’ 

CD44 Sense 5’-GGTGCATTTGGTGAACAAGG-3’ 

 Anti-sense 5’-CACCCCAATCTTCATGTCCA-3’ 

CD73 Sense 5’-TGGATGGCTCCTCTCAATCA-3’ 

 Anti-sense 5’-GCACATGGATACGTGGTTCC-3’ 

CD90 Sense 5’-TCTCCTCCCAGAACGTCACA-3’ 

 Anti-sense 5’-GAGAGGGAGAGCAGGAGCAG-3’ 

CD105 Sense 5’-GAGGCGGTGGTCAATATCCT-3’ 

 Anti-sense 5’-GTAGAGGCCCAGCTGGAAAG-3’ 

GAPDH Sense 5’-ATGGGGAAGGTGAAGGTCG-3’ 

 Anti-sense 5’-GGGGTCATTGATGGCAACAATA-3’ 
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C. Immunofluorescence staining  

Cells were put on glass coverslips at the bottom of wells in 24-well culture 

plates, fixed with 4% formaldehyde solution, and permeabilized with 0.3% 

Triton X-100. They were incubated with 3% hydrogen peroxide in methanol for 

10 minutes to block endogenous peroxidase activity and then washed twice in 

PBS for 5 minutes. Cells were incubated overnight at 4 °C with the following 

primary antibodies: mouse anti-human monoclonal antibody against α-SMC 

(Sigma-Aldrich, St. Louis, MO), 1:200; mouse anti-human monoclonal 

antibody against CD90 (Abcam, Cambridge, MA), 1:100; and mouse 

anti-human monoclonal antibody against CD73 (BD Pharmingen, San Diego, 

CA), 1:500. Cells were washed three times with PBS containing Triton X-100 

and mounted with Vectashield mounting medium containing 

4′,6-diamidino-2-phenylindole (DAPI) (Vector Laboratories). After being 

washed twice for 15 minutes in PBS, slides were incubated (30 minutes at 

37°C) with secondary antibody (anti-goat IgG antibody conjugated to Alexa 488 

or 555; Molecular Probes), and then with streptavidin-conjugated horseradish 

peroxidase. Slides were developed with 3,3′-diaminobenzidine tetrahydro 

chloride. 
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4. In vitro differentiation studies of hUCB-MSCs 

 

A. Osteogenic differentiation  

To induce osteogenic differentiation, we plated cells in a 24-well plate at 

5×10
3
 cells/cm

2
. At 70% confluency, cells were treated with osteogenic 

induction medium (low glucose Dulbecco’s modified Eagle’s medium, 10% 

FBS, 10 mm β-glycerophosphate, 10 nm dexamethasone, 50 µm ascorbate, and 

antibiotics). The medium was changed every 3 - 4 days, and cell morphology 

was assessed visually every day for up to 3 weeks. At the end of differentiation, 

cells were stained for alkaline phosphatase and with Von Kossa stain
36

.  

 

B. Adipogenic differentiation 

To induce adipogenic differentiation, we treated cells with adipogenic 

medium (1 µM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine, 10 

µg/mL recombinant human insulin, 0.2 mM indomethacin, and 10% fetal calf 

serum) for 3 weeks. Maintenance medium including only recombinant human 

insulin and 10% fetal calf serum was replaced twice weekly, and adipogenesis 

was assessed at weekly intervals. Control cells were kept in adipogenic 

maintenance medium. Cells were fixed with 10% formalin, washed, and stained 

with 0.18% Oil Red O solution for 5 minutes. Adipogenic differentiation was 

confirmed by intracellular accumulation of lipid-rich vacuoles that stained with 

Oil Red O. 
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C. Chondrogenic differentiation  

To induce chondrogenic differentiation, we cultured 3×10
5
 cells/well in 

chondrogenic medium (high glucose Dulbecco’s modified Eagle’s medium, 

1×insulin-transferrin-selenium pre-mix, 0.1 mM ascorbic acid 2-phosphate, 10 

mM sodium pyruvate, 10 ng/mL transforming growth factor-β1, and 100 nM 

dexamethasone) for three weeks. Medium changes were carried out twice 

weekly and chondrogenesis was assessed at 2 ~ 3 day intervals. Cells were fixed 

in 4% formaldehyde, dehydrated in an ethanol series, and embedded in paraffin 

blocks. Blocks were cut and sections were stained for sulphated proteoglycans 

with Safranin-O (0.1% aqueous solution) (Sigma-Aldrich) to evaluate 

chondrogenic differentiation. 
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5. Comparative analysis of hUCB-MSCs between groups 

 

A. Proliferation assay 

To compare the doubling time of hUCB-MSCs between groups, cells were 

seeded in six T-25 flasks. On each of six consecutive days, the cells from one 

flask were obtained and enumerated. Mean counts were calculated. The mean 

population doubling time (PD) was calculated with the following formula: PD = 

t × lg2 / (lgNt - lgN0), where N0 is the inoculum cell number, Nt is the number of 

harvested cells, and t is the duration of culture (in hours)
37

.  

 

B. Senescence-associated β-galactosidase assay 

The senescence-associated β-galactosidase (SA-β-gal) assay was performed 

to distinguish senescent cells
38

. SA-β-gal activity of hUCB-MSCs at passage 3 

was measured and compared between two groups. Briefly, hUCB-MSCs were 

washed in PBS, fixed for 3 minutes (at room temperature) in 2% 

paraformaldehyde, washed and incubated for 24 hours at 37°C with fresh 

SA-β-gal staining solution (1 mg/mL 5-bromo-4-chloro-3-indolyl 

β-D-galactopyranoside, 5 mM potassium ferrocyanide, 5 mM potassium 

ferricyanide, 150 mM NaCl, 2 mM MgCl2, 0.01% sodium deoxycholate, and 

0.02% Nonidet P-40). hUCB-MSCs were counterstained with DAPI (0.2 µg/mL 

in 10 mM Tris-HCl, pH 7.0, 10 mM EDTA, and 100 mM NaCl) for 10 minutes. 

Distinctly stained cells were observed by phase contrast microscopy. The mean 
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staining intensity of SA-β-gal-positive cells was calculated from four randomly 

selected microscopic fields (×200 magnification) by densitometry.  

 

C. Telomerase activity assay 

To analyze the telomerase activity of hUCB-MSCs quantitatively, we 

conducted a telomeric repeat amplification protocol assay using a TeloTAGGG 

Telomerase PCR ELISA kit (Roche Molecular Biochemicals, Brussels, 

Belgium) according to the manufacturer’s protocol. The telomerase activity of 

hUCB-MSCs at passage 3 was measured and compared between two groups. 

Briefly, 2×10
5
 hUCB-MSCs were pelleted at 3000g for 10 minutes at 4°C, 

washed twice with cold PBS, incubated for 20 minutes at 4°C with 200 μL of 

precooled lysis buffer (solution 1 of the kit), and centrifuged at 16,000g for 20 

minutes. Telomeric repeats were added to a biotinlabeled primer during the first 

reaction, and then the elongation products were amplified by PCR. Finally, the 

immobilized PCR product was detected with an anti-digoxigenin-peroxidase 

antibody and visualized as a colored reaction product with the substrate 

3,3′,5,5′-tetramethyl benzidine. The absorbance was measured in triplicate at 

450 nm, by reading against a blank (reference absorbance at 690 nm). Samples 

were regarded as telomerase-positive if the difference in absorbance (A450 - 

A690) was greater than 0.2. 
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D. Reactive oxygen species (ROS) activity assay 

Endogenous superoxide production was evaluated using the oxidative 

fluorescent dye dihydroethidium (DHE). ROS activity of hUCB-MSCs at 

passage 3 was measured and compared between two groups. Cells were plated 

on 12-well plates, washed with Krebs-HEPES buffer (pH 7.4), and stained with 

DHE for 15 minutes at 37°C in an incubator. After fixation with 

paraformaldehyde, slides were coverslipped with mounting medium and photos 

were taken. 

 

E. Densitometric analysis 

SA-β-gal-positive cells and DHE-stained cells were visualized by 

densitometric scanning using a luminescent image analyzer (LAS-1000, Fuji 

Photo Film Co. Ltd, Tokyo, Japan) and digital analysis software (Image Reader 

LAS-1000 Lite, Fuji Photo Film Co. Ltd). 
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6. Microarray expression analysis of hUCB-MSCs 

Five micrograms of total RNA from hUCB-MSCs was hybridized to the 

Human-GE 4 × 44K v2 Microarray (human whole genes; Agilent 

Technologies, Santa Clara, CA). Two types of hUCB-MSCs were analyzed 

and compared: N3 (cells at passage 3, normal pregnancy), and P3 (cells at 

passage 3, preeclampsia). The standard protocol used for sample preparation 

and microarray processing is available from Agilent Technologies. 

Expression data were analyzed using Agilent’s GeneSpring GX software 

(Genomic tree Inc. Daejeon, Korea). 

 

7. Pathway network analysis of differentially expressed genes (DEGs) 

The functional interactions between differentially expressed genes 

(DEGs) were analyzed by GeneMANIA webserver39. The GO term was 

used to create the interaction network between the DEGs and additional 

genes by using human as a source species. DEGs were mapped to the 

GeneMANIA to investigate how these genes interact with each other and 

additional genes that are related to a set of query genes by using a very large 

set of functional interaction data. By integrating these relationships, a 

network between DEGs and additional related genes was constructed for 

intersection of DEG sets N3 vs. P3. To confirm the gene network created 

with DEGs, the GO term enrichment analysis was performed among the 
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genes in the network.  

 

8. Statistical analysis 

Reported data are mean ± standard deviation (SD). Patients’ characteristics, 

cell population doubling time, densitometric values for SA-β-gal-positive cells, 

telomerase activity, and ROS activity were compared between groups by 

Mann-Whitney U test. Other variables, including cell number, were compared 

by Student t-test using SPSS, version 12.0 (SPSS, Chicago, IL). A p value less 

than 0.05 was considered statistically significant.  
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III. RESULTS 

 

1. Clinical characteristics of participants in the normal and preeclampsia 

groups 

The clinical characteristics of the patients who provided cord blood for the 

study are presented in Table 2. There was no significant difference in maternal 

age, or gestational age at delivery between the normal and the preeclampsia 

groups. Birth weight in the preeclampsia group was significantly lower than that 

in the normal group. Systolic and diastolic blood pressure were significantly 

higher in the preeclampsia group than in the normal group. 

 

Table 2. Clinical characteristics of study participants  

Variable 
Normal group 

(n = 30) 

Preeclampsia group 

(n = 28) 

Maternal age (years) 31 ± 2.1 32 ± 2.5 

Gestational age at delivery (weeks) 36 ± 1.6 35 ± 1.7 

Birth weight (kg) 3.14 ± 0.31 2.81 ± 0.48** 

Systolic blood pressure (mmHg) 115 ± 5 173 ± 12** 

Diastolic blood pressure (mmHg) 69 ± 6 106 ± 9** 

Proteinuria none 28/28* 

Data are mean ± SD. * ≥ 2+ on a urine dipstick test. 

**Mann-Whitney U test, p < 0.05 (statistically significant) 
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2. Isolation, and cultivation of hUCB-MSCs 

Primary cultured cells were obtained after 7 days of culture of MNCs 

obtained from umbilical cord blood. Among these cells, CD133/c-kit-positive 

cells were selected for differentiation into MSCs. CD133/c-kit-positive cells 

were differentiated into MSCs, as indicated by their characteristic shape (Fig. 

1). 

 

 

Figure 1. Differentiation of CD133/c-kit-positive cells from human umbilical 

cord blood into mesenchymal stem cells (MSCs). 
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3. Characterization of hUCB-MSCs 

hUCB-MSCs obtained from 20 normal pregnancies were used for MSC 

characterization analysis including flow cytometry, semi quantitative RT-qPCR, 

immunofluorescence staining, and in vitro differentiation studies.  

 

A. Flow cytometric analysis  

Flow cytometric analysis of hUCB-MSCs was performed. Representative 

results for the hUCB-MSCs are shown in Figure 2. The cells were positive for 

the MSC markers CD29, CD73, and CD90.  

 

 

Figure 2. MSCs derived from human umbilical cord blood were positive for the 

MSC markers CD29, CD73, and CD90. FITC, fluorescein isothiocyanate; PE, 

phycoerythrin  
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B. Semi quantitative RT-qPCR for MSC markers 

RT-qPCR confirmed that hUCB-MSCs expressed the MSC markers CD29, 

CD44, CD73, CD90, and CD105, but did not express CD133 and c-kit (Fig. 3). 

MNCs obtained from human umbilical cord blood had highly expression of 

CD133 and c-kit.  

 

 

Figure 3. Characterization of CD marker profile of MCSs derived from human 

umbilical cord blood (hUCB-MSCs) by RT-qPCR. hUCB-MSCs were positive 

for the expression of CD29, CD44, CD73, CD90, and CD105, but negative for 

CD133, and c-kit. 
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C. Immunofluorescence staining for hUCB-MSC markers 

hUCB-MSCs had similar levels of expression of the MSC markers α-SMA, 

CD90, and CD73 (Fig. 4).  

 

 

Figure 4. Cytoskeletal protein expression in hUCB-MSCs. hUCB-MSCs were 

stained for α-SMA (A,C), CD90 (D,F), and CD73 (G,I). Protein expression is 

indicated by green and red fluorescence, and nuclei are indicated by DAPI 

staining (blue; B, E, H).  
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4. In vitro differentiation studies of hUCB-MSCs 

Osteogenic differentiation of hUCB-MSCs was confirmed by the detection of 

an osteogenic phenotype consisting of increased expression of alkaline 

phosphatase and by the deposition of a silver-stained mineralized matrix. 

Adipogenic differentiation of the cells was demonstrated by the accumulation of 

neutral lipid vacuoles stained by Oil Red O. Chondrogenic differentiation was 

confirmed by the formation of a sphere in the micromass culture and the 

secretion of cartilage specific proteoglycans stainable with Safranin O (Fig. 5).  

 

 

Figure 5. Multilineage differentiation capacity of hUCB-MSCs. The MSCs 

obtained from umbilical cord blood were investigated for their in vitro 

multilineage differentiation capacity (A, osteogenesis; B, chondrogenesis; C, 

adipogenesis). 



26 

5. Comparative analysis of hUCB-MSCs obtained from pregnant women 

with or without preeclampsia 

hUCB-MSCs obtained from 10 normal pregnancies and 10 preeclampsia 

were used for comparative analysis including proliferation assay, SA-β-gal 

assay, telomerase activity assay, and ROS activity assay between two groups. 
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A. Decreased proliferative potential of hUCB-MSCs from preeclampsia 

  To compare the proliferative ability of hUCB-MSCs from women with 

normal and preeclampsia, a proliferation assay was performed. It was apparent 

that the proliferation of hUCB-MSCs from women with preeclampsia was 

significantly reduced in comparison with normal pregnancy (Fig. 6). The data 

demonstrate that hUCB-MSCs from women with preeclampsia have a much 

lower expansion potential than those from women with normal pregnancy. 

 

 
Figure 6. Proliferation assay of hUCB-MSCs from the two groups. After 6 days, 

the number of cell was significantly lower in cultures of hUCB-MSCs derived 

from women with preeclampsia than in cultures of hUCB-MSCs derived from 

women with normal pregnancy. Data are mean ± SD. *Student’s t-test, p < 0.01. 
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B. Increased senescence of hUCB-MSCs from women with preeclampsia  

  A SA-β-gal assay of hUCB-MSCs obtained from women with normal 

pregnancy or preeclampsia was performed to assess the characteristics of 

cellular aging in vitro. The number of SA-β-gal-positive cells was significantly 

higher in hUCB-MSCs from women with preeclampsia (64.5%; range, 

58.8-70.2%) than in those from women with normal pregnancy (39.8%; range, 

35.0-44.6%; p < 0.001) (Fig. 7A). The mean staining intensity was significantly 

higher in the preeclampsia group than in the normal group (129.5 ± 12.3 % vs. 

100.0 ± 11.1 %; p < 0.001) (Fig. 7B). 

 

 
Figure 7. Increased senescence of hUCB-MSCs from women with 

preeclampsia. (A) The number of SA-β-gal-positive cells was counted from at 

least 200 cells. The percentage of cells that were clearly SA-β-gal-positive was 

significantly higher in the preeclampsia group (n=10) than in the normal group 

(n=10). (B) The staining intensity of SA-β-gal-positive cells was determined by 

densitometry. The relative staining intensity was significantly higher in the 

preeclampsia group. Values are mean ± SD. p < 0.001 by Mann-Whitney U test. 
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C. Decreased telomerase activity in hUCB-MSCs from women with 

preeclampsia 

Preeclampsia-related alterations of telomerase activity in hUCB-MSCs were 

evaluated. Telomerase activity was lower by 40% in hUCB-MSCs from the 

preeclampsia group compared with those from the normal group (Fig. 8). 

 

 

Figure 8. Quantitative analysis of preeclampsia-related alterations of 

telomerase activity. Mean telomerase activity of hUCB-MSCs was significantly 

lower in the preeclampsia group (n=10) than in the normal group (n=10). 

Values are mean ± SD. p < 0.001 by Mann-Whitney U test. 
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D. Increased ROS activity in hUCB-MSCs from women with preeclampsia 

ROS can bring about cellular senescence, apoptosis, or carcinogenesis. 

ROS-induced cellular damage also contributes to stem cell aging
40

. As shown in 

Figure 9, ROS were significantly increased in hUCB-MSCs from women with 

preeclampsia. 

 

 

Figure 9. Increased reactive oxygen species production in hUCB-MSCs from 

women with preeclampsia. (A) Representative photomicrographs showing 

hUCB-MSCs stained for ROS, from women with normal pregnancy and 

preeclampsia. (B) Quantification of fluorescence intensity of hUCB-MSCs. The 

staining intensity was determined by densitometry (n=10 in each group). 

Relative staining intensity was significantly higher in the preeclampsia group. 

Values are mean ± SD. p < 0.001 by Mann-Whitney U test. 
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6. Comparisons of gene expression in hUCB-MSCs from the normal and 

preeclampsia groups using microarray analysis 

hUCB-MSCs obtained from 2 normal pregnancies and 2 preeclampsia were 

used for comparison of gene expression including gene expression pattern using 

microarray, hierarchical cluster analysis of differentially expressed genes, 

gene ontology classification, and pathway network analysis between two 

groups. 

 

A. Gene expression pattern of hUCB-MSCs from the two groups 

After data processing, expression profiles were analyzed by scatter plot and 

MA (log ratio and mean) plot (Fig. 10). hUCB-MSCs at passage 3 from the 

normal group (N3) were compared with cells at passage 3 from the 

preeclampsia group (P3). In the plots, red spots represent genes with higher 

signal intensity in hUCB-MSCs from the preeclampsia group than in the 

hUCB-MSCs from the normal group. Green spots represent decreased signal 

intensity. The scatter plot and MA plot show the differentially expressed 

genes (DEGs) between N3 and P3. 
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Figure 10. Microarray analysis of hUCB-MSCs from the normal and 

preeclampsia groups. The scatter plot and MA plot show the DEGs between 

N3 and P3 cells. In the scatter plot, the median line indicates no difference 

in signal intensity between the two groups. The upper gray line indicates a 

two-fold higher signal intensity, and the lower gray line indicates a two-fold 

lower signal intensity for hUCB-MSCs from the preeclampsia group as 

compared to the normal group. In the MA plot, the median line represents N 

signal/P signal = 1. The upper gray line represents N signal/P signal = 2, and 

the lower gray line represents N signal/P signal = 0.5. N3, hUCB-MSCs at 

passage 3, normal pregnancy; P3, hUCB-MSCs at passage 3, preeclampsia. 
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B. Screening of differentially expressed genes (DEGs) 

Expression of genes was compared between hUCB-MSCs from the normal 

and preeclampsia groups, and genes were clustered by expression pattern (Fig. 

11). In the comparison between N3 and P3 cells, twofold and fourfold 

differences in expression (either up- or down-regulation) were detected for 2684 

up-regulated and 259 down-regulated genes, respectively. 

 

 

Figure 11. Differentially expressed genes (DEGs) of hUCB-MSCs from the 

normal and preeclampsia groups. Hierarchical cluster analysis of DEGs 

between N3 and P3 cells. Red represents up-regulated gene clusters, and green 

represents down-regulated gene clusters. The panels show genes up- or 

down-regulated twofold (A) or fourfold (B) in P3 (versus N3) cells. N3, 

hUCB-MSCs at passage 3, normal pregnancy; P3, early hUCB-MSCs at 

passage 3, preeclampsia. 
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C. Comparison of DEGs between N3 and P3 cells 

Genes differentially expressed between N3 and P3 cells were compared to 

identify specific DEGs in each group and DEGs common to both groups (Fig. 

12). Twofold up- and down-regulated genes were used in these comparisons. 

We identified 1227 up-regulated and 1457 down-regulated genes that were 

common between N3 vs. P3. 

 

 
Figure 12. Comparison and cluster analysis of DEGs between N3 and P3. 

Twofold up-regulated genes (A) and twofold down-regulated genes (B) were 

identified between N3 vs. P3. N3, hUCB-MSCs at passage 3, normal 

pregnancy; P3, hUCB-MSCs at passage 3, preeclampsia.  
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D. Analysis of senescence related gene expression in N3 vs. P3 

After the hierarchical clustering of senescence-related DEGs, we constructed 

a dendrogram to display the clusters (Fig. 13). Forty senescence-related DEGs 

were identified.  

 

 
Figure 13. Dendrogram showing differential senescence-related gene 

expression in hUCB-MSCs from women with normal pregnancy or 

preeclampsia. DEGs related to senescence were compared between N3 and P3 

cells. N3, early hUCB-MSCs at passage 3, normal pregnancy; P3, early 

hUCB-MSCs at passage 3, preeclampsia. 
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7. Functional categorization and pathway network analysis of 

senescence-related differentially expressed genes (DEGs) 

 

A. Gene ontology classification of the senescence-related differentially 

expressed genes 

  The GO term was used to create the interaction network between the 

senescence-related DEGs and additional genes by using human as a source 

species. The relationship between the genes in the network includes 

co-expression, physical interactions, pathways, co-localization and protein 

domain similarity. The list of senescence-related DEGs was enriched for certain 

GO terms. Among the GO terms that have a significant relationship with 

senescence, determined by low FDR, were genes associated with cell cycle, 

which showed a very strong relationship with the selected genes (Table 3). 
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Table 3. Gene ontology classification of the senescence-related differentially 

expressed genes in hUCB-MSCs from the normal and preeclampsia groups 

GO name 
List 

numbers 

Total 

numbers 
FDR 

cell cycle phase 122 414 1.78E-37 

cell cycle 170 776 2.96E-34 

M phase 103 329 4.64E-34 

cell cycle process 140 565 5.40E-34 

mitotic cell cycle 107 370 4.92E-32 

M phase of mitotic cell cycle 80 224 7.77E-31 

nuclear division 79 220 1.23E-30 

mitosis 79 220 1.23E-30 

organelle fission 79 229 2.74E-29 

cell division 79 295 2.02E-21 

DNA replication 56 190 2.30E-17 

chromosome segregation 35 81 1.11E-16 

regulation of cell cycle 73 331 8.05E-15 

DNA metabolic process 95 506 2.13E-14 

DNA packaging 37 117 1.25E-12 

protein-DNA complex assembly 30 91 7.44E-11 

cell cycle checkpoint 30 91 7.44E-11 

regulation of mitotic cell cycle 39 152 2.96E-10 

response to DNA damage stimulus 68 373 6.05E-10 

spindle organization 20 45 6.12E-10 

chromatin assembly 28 87 6.55E-10 

chromosome organization 81 485 8.97E-10 

List numbers, numbers of DEGs belonging to specific GO terms; Total numbers, 

total numbers of genes belonging to specific GO terms; FDR, false discovery 

rate 
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B. Pathway network analysis of senescence-related DEGs in hUCB-MSCs 

Among 40 senescence related DEGs, we identified eight genes with filtering 

conditions of differential expression with more than twofold in N3 vs. P3, and 

then performed a GO term enrichment analysis with these genes. Especially, we 

investigated any relationship of those genes. The eight senescence-related 

DEGs had two networks. GeneMANIA network analysis for those genes 

suggested enrichment of 7 genes related to ‘cell aging’ GO term, including 

NM_078467, NM_058197, NM_001114121, NM_145862, NM_003483, 

NM_014397, and NM_003483 (genebank with large red circle in Fig. 14). Most 

of relations between genes were co-expressed. In the network, GO term ‘cell 

aging’ is significantly enriched with FDR-corrected p-value 2.89e
-8

. Among 57 

genes related with ‘cell aging’, seven genes were covered.  
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Figure 14. Network analysis of senescence-related DEGs. Genes represented by 

large circle are senescence-related DEGs obtained from microarray analysis. 

Red ones are genes related with senescence as well as cell aging. FDR, false 

discovery rate 
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IV. DISCUSSION 

Preeclampsia is a disease characterized by pregnancy-induced hypertension 

and proteinuria that affects 2-8% of all pregnancies
26-28

. In women with this 

condition, the intrauterine environment is modified by changes in signaling 

patterns and substrate transport to the fetus
41,42

. This modification can lead to 

fetal growth restriction, and increased susceptibility to diseases later in life, 

such as cardiovascular, endocrine, nutritional, metabolic, and blood-related 

disease. The change of intrauterine environment made in the preeclampsia may 

be explained by the researches for the umbilical cord blood from two groups. 

The fetal circulation during preeclampsia may be associated with an increase in 

circulating anti-angiogenic factors such as sFlt-1 (soluble fms-like tyrosine 

kinase 1) and soluble endoglin, or reduced expression and activity of 

proangiogenic signals such as vascular endothelial growth factor or 

adenosine
43,44

. Some studies founded higher concentration of protein oxidation 

product (ex, protein carbonyl), and an increase of oxidative stress and lipid 

peroxidation in the cord blood of preeclamptic pregnancy compared to 

normotensive
45

. The umbilical serum level of inflammatory markers 

(interleukin-6, interleukin-8, and tumor necrosis factor-alpha) in pregnancies 

complicated by preeclampsia was significantly increased compared with 

normal
46

. Because of these pathologic conditions in the umbilical cord blood of 

women with preeclampsia, it is reasonable to hypothesize that circulating 

hUCB-MSCs in preeclamptic pregnancy cannot but be functionally impaired.  
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Recent studies showed that in women with preeclampsia, cord blood 

endothelial progenitor cells (EPCs) or circulating endothelial colony-forming 

cells were decreased, and functionally perturbed, and this might contribute to an 

increased risk of future cardiovascular events
20,47

. However, fetal growth 

restriction and diseases occurring after birth cannot be explained simply by 

alteration of endothelial stem cells derived from umbilical cord blood. There are 

many kinds of multipotent stem cells in umbilical cord blood including EPCs 

and MSCs. Because MSCs can self-renew, have a high proliferative capacity, 

and can differentiate into various cell types such as chondrocytes, osteocytes, 

adipocytes, myocytes, and neurons, hUCB-MSCs are highly likely to be 

functionally impaired in women with preeclampsia. In the present study, it was 

shown that hUCB-MSCs obtained from women with preeclampsia were less 

proliferative and more senescent than cells from women with normal pregnancy, 

and many senescence-related DEGs were identified by analysis of gene 

expression profiles. 

Despite being a promising tool in regenerative medicine, MSCs remain 

controversial. This is because the clinical usefulness of MSCs, resulting from 

their multipotency and wide accessibility, is countered by their finite 

proliferative ability. Many factors affect the proliferation and senescence of 

MSCs in vitro, such as replicative senescence, donor age, and culture 

condition
48-50

. Therefore, many studies of MSCs have generated conflicting data 

showing a tremendous variance in growth potential. The results of this study 
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showed that hUCB-MSCs from women with preeclampsia were poorly 

proliferative, more senescent, and had decreased telomerase activity and 

increased ROS activity. These preeclampsia-associated changes in 

hUCB-MSCs were not related to donor age, replicative senescence, and culture 

condition. Therefore, there may be an unknown pathway associated with MSC 

senescence. Hierarchical clustering identified 40 senescence-related DEGs. 

These genes will be potential research targets in the future studies of MSCs.  

At present, MSCs are extensively characterized in a culture-expanded state, 

and relatively little is known of their biological properties in vivo. Generally, 

ROS can bring about cellular senescence, apoptosis, or carcinogenesis. 

ROS-induced cellular damage also contributes to stem cell aging
40

. A recent 

study showed that human MSCs had high resistance to oxidative-stress induced 

death, which correlated with a low level of intracellular reactive species due to 

effective ROS scavenging, constitutive expression of enzymes required to 

manage oxidative stress and high levels of total intracellular glutathione
51

. Also, 

many studies suggest that telomeres and telomerase have important roles in 

senescence in vitro and in vivo
52

. Telomerase, a ribonucleoprotein complex 

containing a template RNA subunit, extends telomere length by adding 

telomeric repeats to the chromosome ends
54

. The high production of ROS 

results in a state of oxidative stress, which subsequently leads to senescence 

with the shortening of telomeres
53

. So, telomerase has telomere-independent 

anti-apoptotic, cytoprotective and pro-proliferative effects of telomerase or 
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protection of mitochondrial DNA against oxidative stress in addition to 

telomere elongation
55

. In this study, all cells were cultured under the same 

normoxic conditions. Nevertheless, hUCB-MSCs from women with 

preeclampsia were consistently more senescent and had higher ROS activity 

and lower telomerase activity than in women from the normal group. These 

findings can give explanations for the senescence of hUCB-MSCs from 

preeclampsia.  

Comparison and cluster analysis of genes differentially expressed between 

N3 and P3 cells showed that 1227 up-regulated and 1457 down-regulated DEGs 

were common to both sets and were related the reduced function of 

hUCB-MSCs from women with preeclampsia. Through intersection analysis of 

microarray data, we eliminated the false-up or down-regulated DEGs, which 

could have caused misinterpretation of the microarray data. Through GO term 

categorization and pathway network analysis, we confirmed that the selected 

genes are highly related to proliferation, and cell cycle, all of which are the 

important causes or effects of cellular senescence. The senescence-related 

DEGs in two networks may be mainly associated with increased senescence of 

preeclamptic hUCB-MSCs. Those genes showed a network with coexpression 

pattern, and some of them are definitely involved in cell aging process. The 

senescence-related genes identified in this study can be further analyzed in 

many different ways. 

Further studies are needed. A potential new pathway for MSC senescence 
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should be studied through the verification and analysis of senescence-associated 

genes. If hUCB-MSC markers related to intrauterine growth restriction and 

diseases occurring later in life are found, these pathological consequences of 

preeclamptic pregnancy may be resolved. Future studies of MSCs should focus 

on the effective promotion of long-term cell expansion, identification of 

pathways relevant to replicative exhaustion, and maximum growth capability 

without loss of the ability to differentiate.  
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V. CONCLUSION 

In conclusion, the pathologic condition in the umbilical cord blood of women 

with preeclampsia causes fetal growth restriction, and increased susceptibility to 

diseases later in life. hUCB-MSCs obtained from women with preeclampsia are 

poorly proliferative, more senescent, have increased ROS activity and decreased 

telomerase activity compared with cells from women with normal pregnancy, 

and are related with many senescence-related DEGs identified by analysis of 

gene expression profiles. Because these preeclampsia-associated changes in 

hUCB-MSCs are not related to donor age, replicative senescence, and culture 

condition, another pathway associated with MSC senescence should be studied 

in the near future. 40 senescence-related DEGs identified in this study will be 

potential research targets in the future studies of MSCs.  
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ABSTRACT (IN KOREAN) 

 

정상산모와 임신중독증 산모의 제대혈액에서 유도된 

중간엽줄기세포의 비교연구 

 

< 지도교수 박용원 > 

 

연세대학교 대학원 의학과 

 

황   한   성 

 

임신중독증은 산모 및 태아의 건강에 영향을 주는 임신관련 

질환이다. 임신중독증을 앓고 있는 산모의 자궁 내 환경은 좋지 

않아서, 태아의 자궁내성장지연이나 출생 후 성인이 되면서 

다양한 질환을 앓게 될 가능성이 높다. 중간엽줄기세포는 

다양한 세포로 분화할 수 있는 능력이 있으며, 태아의 성장 및 

다양한 장기의 성장에 관여한다. 임신중독증산모의 제대혈액 

내에 만들어지는 부적절한 환경은 혈액 내 다양한 줄기세포에 
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영향을 줄 수 있고, 특히 중간엽줄기세포의 특성을 고려해 볼 

때, 정상에 비해서 임신중독증산모의 제대혈액 내 

중간엽줄기세포의 기능에 이상이 발생했을 가능성이 높다. 

따라서 본 연구의 목적은 제대혈액에서 유도된 

중간엽줄기세포의 특성을 분석하고, 이를 바탕으로 정상산모와 

임신중독증산모의 제대혈액에서 유도된 중간엽줄기세포의 

기능적 특성과 유전자 발현의 차이를 비교하는 것이다. 30명의 

정상산모와 28명의 임신중독증 산모가 본 연구에 포함되었으며, 

각각에서 제대혈액에서 중간엽줄기세포를 분리, 배양하였다. 

제대혈액에서 분리 배양된 중간엽줄기세포의 특성은 

유세포분석법, 반정량 중합효소연쇄반응법, 면역형광염색법, 

생체 외 분화유도의 방법을 사용하여 분석하였다. 두 군간의 

중간엽줄기세포의 특성은 세포증식비교, 노화 관련 

β-galactosidase 염색법, 텔로머라아제 활성도 비교, 활성산소 

방법을 이용하여 비교하였고, 마이크로 어레이, 위계적 

군집분석, 유전자 온톨로지분석, 유전자 pathway network 

분석의 방법을 사용하여 유전자 발현의 차이를 비교하였다. 

였다. 임신중독증 산모에서 배양된 중간엽줄기세포는 정상에 
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비해서 증식속도가 늦으며, 더 노화되어 있고, 텔로머라아제 

활성도는 낮고, 활성산소는 높아져 있었다. 많은 수의 노화관련 

유전자들이 유전자 분석을 통하여 확인 되었으며, 특히, 이들 

유전자들은 유전자 온톨로지 분석에서 세포의 노화와 밀접한 

관련이 있는 것으로 확인되었다. 결론적으로 임신중독증 산모의 

제대혈액에서 유도된 중간엽줄기세포는 정상에 비해서 

기능적으로 결함이 많다. 이러한 변화는 임신중독증 산모에게서 

나타나는 태아의 성장 장애나 그 아이가 출생 후 다양한 질환에 

이환 될 가능성이 높아지는 것이 자궁 내 환경이 좋지 않아서 

생기는 현상이라는 것을 보여주는 충분한 근거가 될 수 있을 

것이다.  
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