Quality Change of Garlic during Storage by Stem and Root Cutting Treatments

Jong-Hoon Kim, Jin-Ju Kim, Jin-Woong Jeong, Ho-Jun Lee and *Jai-Neung Kim
Korea Food Research Institute, Songnam 463-420, Korea
*Department of Biochemical Engineering, Yanbian Univ of Science & Technology, China

Abstract

Physicochemical properties of garlic bulb during storage with different cutting treatments were estimated. Garlic harvested in early June was used in this experiments.

Various physicochemical factors of garlic bulb such as weight loss rate, rotten rate, sprouting rate, moisture content, reducing sugar content, and total pyruvate content were investigated. Bulbs with roots, bulb without roots and bulb with stem length of 1cm, 3cm, 5cm were stored at 2℃ for eight months. The weight loss increased sharply after 8 months for all treatments. Weight loss occurred most severely in treated garlics with bulbs with 5cm stem length and progressed steadily at low rates in bulbs with 1cm stem length. Also, less decay and internal sprouting were observed in bulbs with 1cm stem length. Cutting treatments of roots were not significant for internal sprouting. Incidence of other chemical properties of bulbs, contents of total sugar, reducing sugar and pyruvic acid were not significant statistically. Moisture contents of treated garlics was remarkably reduced in longer leaving stems. As a result, top-clipped leaving stems 1cm long, seemed to have a beneficial effect on physicochemical properties of garlic stored at 2℃ for 8 months possibly due to reduced weight loss, rotten decaying and sprouting rates. Utilization of such results in the processing industry can be effective.

Key words: Garlic, cutting treatments, storage

서 례

마늘(Allium sativum L.)은 독특한 풍미로 옛날부터 우리 식생생활에도 중요한 향신료로 사용되어오고 있다. 마늘은 백합과(Liliaceae)에 속하는 단정족 체소로서 우리 나라 체소류 중 제재만으로도 잘 채취해 주는 주요 작물(1)이며, 최근 여러 가지 약리작용(2-11)과 항균작용(12-14), 항산화 작용(15) 등이 밝혀지면서 생리활성성분으로 널리 이용되고 있다.

우리의 식생활과 밀접한 관계를 가지고 연중 사용되는 마늘은 5월 하순부터 7월 초순에 수확된 후 일정시간 건조된 다음 저장되고 있으나 수확기간, 수확방법, 저장조건과 기후 등 여러 가지 환경의 영향으로 발아, 부패, 난해 등이 발생하며 저장 중 품질변화가 일어나게 된다(16). 이와 관련하여 마늘의 저장성 향상을 위하여 환경적 조절 포장방법(17), 방사선 조사방법(18), 방충지방방법(19), 예진 처리방법(20) 등 많은 연구가 이루어져 왔다.

마늘이 생산장에서 저장, 출하되는 형태는 크게 두 가지로 통곡마늘의 증가를 자극하지 않고 50, 100개의 묶은 집단의 형태와 일정한 길이로 증가를 자름 후 골단이나 그물망으로 포장한 형태이다. 기존 집단의 형태의 경우에는 kg으로 경량값이 결정되고 있는 마늘마늘 표준화에 문제점이 발생되고 있으나, 마늘의 증가가 소비자에게 인기있는 쓰레기로 환경문제를 유발시키고 있다. 최근 이러한 환경문제를 줄이기 위하여 “마늘 포장화 사업”이 서울시와 대형 도매시장에서 시행되고 있다. 마늘 포장화 사업에는 마늘증가를 제거하여 그물을이나 골단지 상자에 포장하여하는 농민에게 포장비를 지원하거나 비포장마늘을 도매시장내로 반입을 금지하는 등 수확 후 선에서 마늘을 증가를 절단하여 저장 및 출하하도록 유도하고 있다. 또한 기존의 집단의 형태로 저장할 때에는 넓은 저장 공간이 필요하고, 저장기간 중 변질되어 흑정되는 마늘량도 상당한 점을 고려해 볼 때, 마늘 저장시 필요한 공간과 저장 경비를 줄이고 저장 중 마늘의
손실을 방지하며 안정된 마늘 공급 가격을 형성하기 위해서는 마늘의 품질변화를 최소화하면서 저장공간을 확보하는 것이 중요하다. 따라서 향후에는 마늘산지에서 수확 후 동 마늘의 줄기 및 뿌리를 절단하여 저장하는 방식이 확대될 것으로 판단된다. 그러나 수확 후 줄기 및 뿌리 절단이 저장기간동안 마늘의 품질에 미치는 영향에 대한 연구는 부족한 실정이어서 적절한 절단 방식 및 감의 확립 또한 의미가 있다.

최근 국내에서도 마늘의 품질을 유지하고 처리비용을 절감하며 저류각은의 표준화와 마늘보상 대책을 추진하기 위하여 마늘 수확 후 생산지에서 마늘의 줄기와 뿌리를 절단하고 세척, 식별, 포장공정을 거쳐 저장 및 출하를 위한 관련 연구가 진행되고 있다. 본 연구는 마늘의 줄기 및 뿌리 절단 시스템 개발 및 저장 기간동안 마늘의 품질변화를 최소화할 수 있는 줄기 및 뿌리 절단 방법의 기초자료로 활용하고자 마늘 수확 후 줄기 및 뿌리의 절단에 따른 마늘의 저장 중 품질변화를 분석하였다.

제료 및 방법

재료

국내에서 재배되는 마늘은 한지형과 난지형으로 분류되며, 한지형 품종은 우리 나라 재래종으로 중부지방에서 재배되고, 난지형 품종은 중국에서 도입된 남도마늘과 스파인에서 도입된 대서마늘 등으로 남부지방에서 주로 재배된다. 본 실험에서는 국내에서 재배되는 4개 품종 중 재경, 남도마늘, 대서마늘을 생산현장의 성장, 낮, 무반 생산능가에서 구입하여 사용하였다.

Table 1. Conditions of cutting treatments & storage temperature

<table>
<thead>
<tr>
<th>Samples</th>
<th>Growing area</th>
<th>Length of leaving stems (cm)</th>
<th>Presence of cutting root</th>
<th>Storage temperature (℃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Muan</td>
<td>1</td>
<td>non-cutting</td>
<td>2℃</td>
</tr>
<tr>
<td>A2</td>
<td></td>
<td>1</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td></td>
<td>3</td>
<td>non-cutting</td>
<td></td>
</tr>
<tr>
<td>A4</td>
<td></td>
<td>3</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td></td>
<td>5</td>
<td>non-cutting</td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>Euisong</td>
<td>1</td>
<td>non-cutting</td>
<td>2℃</td>
</tr>
<tr>
<td>B2</td>
<td></td>
<td>1</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td></td>
<td>3</td>
<td>non-cutting</td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td></td>
<td>3</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td></td>
<td>5</td>
<td>non-cutting</td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>Narnation</td>
<td>1</td>
<td>non-cutting</td>
<td>2℃</td>
</tr>
<tr>
<td>C2</td>
<td></td>
<td>1</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td></td>
<td>3</td>
<td>non-cutting</td>
<td></td>
</tr>
<tr>
<td>C4</td>
<td></td>
<td>3</td>
<td>cutting</td>
<td></td>
</tr>
<tr>
<td>C5</td>
<td></td>
<td>5</td>
<td>non-cutting</td>
<td></td>
</tr>
</tbody>
</table>

전처리 및 저장

Table 1은 마늘의 줄기 및 뿌리 절단에 따른 저장 중 품질변화를 분석하기 위하여 본 실험에 사용된 시료 처리구를 나타낸 것이다. 마늘 시료를 종별별로 선별하여 수확:서시 구입하여 줄기를 기존과 비교하여 주로 마늘의 줄기 1cm, 3cm, 5cm로 절단하였고, 뿌리는 1cm 이내로 절단한 것과 절단하지 않은 처리구를 실험에 사용하였다. 시료의 줄기와 뿌리의 처리가 완료된 시료는 폐지함을 거쳐 거울방에 20kg로 담아 2℃의 저온저장고에 저장하여 실험에 사용하였다.

품질변화분석

마늘의 줄기 및 뿌리 절단에 따른 저장 중 품질변화는 8 개월의 저장기간동안 2개월 간격으로 중량감소율, 부패율, 발아율과 마늘의 주요성분으로 수분, 총당, 환당량 및 total pyruvate 등을 분석하였다.

중량감소율은 저장전후의 중량을 저장하여 저장초기 중량에 대한 저장기간 중량변화의 비율로 다음과 같은 식을 사용하였다.

\[
\text{Weight loss rate} = \left(\frac{W_t - W_0}{W_0} \right) \times 100
\]

\((W_t : \text{저장 중단의 중량}, W_0 : \text{저장 중단 전의 중량})\)

부패율은 마늘 100개를 인공으로 분리한 후 부패된 부패 수를 유한으로 판정하여 전체 수에 대한 백분율로 표시하였다. 발아율은 마늘 100개를 착하으로 절단하여 발아된 개체수 조사 개체수에 대한 백분율로 표시하였다.

마늘의 화학적 성분분석에서 수분은 처리구별로 각 부위에서 무작위로 5개씩 채취한 후 인편을 분리하여 세척한 다음 각각 105℃ 상업가열 건조물로 측정하였다. 원양단은 Dinitrosalicylic acid에 의한 비색법(21)으로 환당량을 구하였으며, 전량은 25%-HCl로 가수분해한 후 같은 방법으로 측정하였다. Total pyruvate 함량은 마늘의 줄기 및 뿌리 절단으로 인하여 저장 중 품질변화 소실과 마찬가지로 품질의 간접적으로 측정하고자 Schwimmer 등의 방법(22)에 따라 분석하였다. 일정량의 시료에 증류수를 가하여 증류작과 시료에 trichloroacetic acid 5ml을 가하고 1시간 방치한 후 여과하고 이에 1ml의 0.0125% dinorphenylhydrazine 1ml을 가하여 37℃에서 10분간 방치한 다음 0.6N NaOH용액 5ml을 가하고 420nm에서 흡광도를 측정하였으며, 이때의 표준은액은 sodium pyruvate를 0.2μM/ml의 간격으로 농도 조정하여 사용하였다. 시료의 주요성분 분석은 총 5회 반복 실시하여 평균 값을 나타내었으며, 시료처리구별 저장기간에 따른 유의성은 SAS(statistical analysis system)에 의한 분산분석과 Duncan's multiple range test에 의해 검정하였다(23).
결과 및 고찰
중량감소율 변화

Fig. 1은 마늘의 증기 및 �НЫ리걸단에 따른 저장기간 중의 중량감소율 변화를 분석한 결과를 나타낸 것이다. 저장기간 증가에 따른 중량감소율의 변화를 산지별로 비교한 결과 3품종 중 우리 나라의 용목 마늘의 의상산은 무안산 조생종이나 남해산에 비해 가장 높은 변화를 나타내었다. 이것은 남중 동(20)이 마늘을 산지별로 6개월 동안 저장하면서 수확 당시의 중량을 기준으로 하여 중량 감소율의 변화를 측정한 결과로서 산지의 마늘의 무안산 조생종보다 중량 감소율의 변화가 낮게 나타난 것임을 알리는 결과이다. 저장 기간 동안의 의상산, 무안산, 남해산 마늘의 중량 변화를 살펴보면, 저장 4개월까지는 3품종 모두 3% 미만이었으나 6개월부터 중량이 현저히 감소되어 저장 8개월에는 각각 50.9%, 35.5%, 44.0%로 중량감소율이 가장 크게 나타났다. 증기 길이와 뿌리절단의 차이에 따른 중량감소율을 비교하면, 세 품종 모두 증기 길이가 1cm인 처리구가 저장 8개월을 기준으로 19%~23% 정도로 중량감소율이 낮게 나타났으며, 증기 길이와 동일한 경우 제거를 했을 때 중량감소율이 감소되었다. 따라서 마늘의 저장기간 중에 중량감소율은 품종에 관계없이 증기 길이가 길수록, 뿌리절단 처리구에서 크게 나타났다.

![Fig. 1. Changes in weight loss rate during storage of garlics influenced by cutting treatments.](image)

부패율 변화

Fig. 2는 저장기간에 따른 처리구별 부패율의 변화를 조사한 결과를 나타낸 것이다. 마늘 품종에 따른 부패율의 변화를 비교했을 때 남해산 마늘은 저장 6개월째 이미 25~33% 에 달하는 부패율을 나타냈으며, 반면에 무안산은 처리구에 다소 차이는 있으나 저장기간 8개월에도 부패율이 13%로 마늘 종종일 부패율은 남해, 양성, 무안 순으로 높게 나타나 품종에 따른 부패율의 차이가 나타났다. 증기 길이에 따른 부패율 변화는 모든 품종에서 증기 길이가 길어질수록 부패율이 큰 것으로 나타났다. 저장기간 8개월째 부패율은 무안산의 경우 증기 길이가 1cm, 3cm, 5cm일 때 각각 12.8%, 20.0%, 23.0%로 나타났으며, 남해산은 각각 48.8%, 70.3%, 85.1%로 증기 길이가 길수록 부패율이 현저히 증가되었다. 또한 뿌리절단에 따른 부패율은 무안산, 의상산 모두 동일한 증기 길이에서 뿌리를 제거한 경우 부패율이 증가하는 것으로 나타났다. 특히 증기길이가 1cm인 무안산 마늘은 저장 8개월 이후 12.8%가 부패되었으나, 동일길이의 증기에서 뿌리를 제단한 처리구에서는 16.0%가 부패된 것으로 나타났다. 또한 증기 길이가 3cm인 처리구는 부패율이 20.0%이었으나 뿌리를 제단한 처리구는 78.8%로 나타나 뿌리절단 유무에 따른 현저한 차이를 보였다. 그 외 남해산 마늘은 뿌리절단 처리에 따른 저장기간 중에 부패율에서 큰 변화를 나타내지 않았다. 마늘은 저장 중 부패율로 인한 손실이 큰 것으로 알려져 있는데, 증기 길이에 따르면 저장 중 발생되는 변화율은 주로 마른 떡가루를 일으키는 Fusarium oxysporum과 푸른 곰팡이인 Penicillium funiculosum으로 알려졌으며, 저장 중 자연균조보다는 염분균조 방식이 부패율을 감소시킬 수 있다고 하였다(24). 이러한 마늘의 부패는 대부분 저장 방식에 따른 현저한 차이를 보이는 것으로 알려져 있는 데 마늘의 부패현상은 변화길이와 큰 상관성이 없이 저장 온도와 상대습도의 영향을 많이 받는 것으로 생각되며, 저장 중 부패율을 줄이기 위해서는 자연 환경에서 저장하는 것이 적당한 것으로 보고되고 있다(25). 따라서 마늘 저장 시 증기길이와 더불어 적절 저장온도를 유지한다면 부패율 감소 등의 저장성을 향상시킬 것으로 판단된다.

![Fig. 2. Changes in rotting rate during storage of garlics influenced by cutting treatments.](image)
발아율 변화

Fig. 3은 마늘의 증기 및 뿌리질산에 따른 저장기간 중의 발아율 변화를 조사한 결과이다. 발아율은 저장 6개월째 급속히 증가하였으며 품종별 처리구 중 증기 질산이 발아율에 미치는 영향이 큰 것으로 나타났다. 증기 질산이 5℃일 때 무안, 의성, 남해산 마늘의 8개월째 발아율은 각각 85.7%, 79.5%, 66.0%로 증기질이 1℃일 때 각각 47.4%, 58.2%, 45.6%인 것보다 큰 차이를 보였다. 뿌리 질산이 발아율에 미치는 영향은 일관성 있는 경향이 나타나지 않았으며, 뿌리 질산의 처리가 저장기간 동안의 발아율에 미치는 영향은 미미한 것으로 판단되었다. 마늘의 발아율은 온습도에 민감한 것으로 알려져 있는데 선정 연구들에서 온도를 낮게 해 줄 경우에 어느 정도 발아율을 억제시킬 수 있다고 하였다. 현재까지 마늘의 증기나 뿌리가 인면의 물리적 특성에 어떠한 영향을 미치는 가에 대한 연구가 부족한 실정이다. 수확시기에 있는 마늘의 부귀황 할당율은 증기의 수분은 88.0%, 마늘 인면은 72.0%, 그 외 뿌리는 55.0%로(26) 수분을 가장 많이 흡수하고 있는 부위가 저장기간동안 인면의 물리적 특성과 발아율에 많은 영향을 미칠 수 있다고 판단되어진다.

Table 2. ANOVA of postharvest cutting treatment effects on the changes in moisture contents during storage of garlic bulbs

<table>
<thead>
<tr>
<th>Samples</th>
<th>Storage time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>68.56(1)ab</td>
</tr>
<tr>
<td>A2</td>
<td>67.96b</td>
</tr>
<tr>
<td>A3</td>
<td>68.79b</td>
</tr>
<tr>
<td>A4</td>
<td>68.56b</td>
</tr>
<tr>
<td>A5</td>
<td>56.05b</td>
</tr>
<tr>
<td>B1</td>
<td>66.28b</td>
</tr>
<tr>
<td>B2</td>
<td>66.389b</td>
</tr>
<tr>
<td>B3</td>
<td>67.98b</td>
</tr>
<tr>
<td>B4</td>
<td>66.23b</td>
</tr>
<tr>
<td>B5</td>
<td>67.56b</td>
</tr>
<tr>
<td>C1</td>
<td>66.67b</td>
</tr>
<tr>
<td>C2</td>
<td>66.29b</td>
</tr>
<tr>
<td>C3</td>
<td>66.89b</td>
</tr>
<tr>
<td>C4</td>
<td>68.98b</td>
</tr>
<tr>
<td>C5</td>
<td>66.35b</td>
</tr>
</tbody>
</table>

1) Mean value (n=3)
2) Means with same letter in the same row are not significantly different(p<0.05) by Duncan’s multiple test.

저장 및 환원력 함량의 변화

Table 3은 처리구별 저장기간에 따른 억제된 변화를 분석한 결과로서, 저장기간이 증가할수록 전량함량이 감소하는 경향이 나타났다. 년 등(25)은 저장 초기 산화된 마늘의 전량 및 환원력 함량은 각각 18.9%, 1.0% 정도이며, 저장 기간의 경과에 따라 전량 함량이 감소하는 것은 마늘의 발아, 호흡 등으로 인한 저장물질의 소모 때문으로 알려지고 있다. Table 3에서 전량은 대부분의 처리구에서 저장기간 4개월에서 유의적인 차이가 나타났으며, 증기질이 3℃인 처리구에서 전량의 변화가 적은 것으로 분석되었다. 무안, 의성산의 경우에는 뿌리를 절단한 시료가 전량의 변화가 적은 것으로 나타났으며, 특히 무안산 증기질이 3℃이고 뿌리를 절단한 시료는 저장기간 8개월에서 전량 변화의 유의적인 차이가 나타났다.
Table 3. ANOVA of postharvest cutting treatment effects on the changes in total sugar contents during storage of garlic bulbs

<table>
<thead>
<tr>
<th>Samples</th>
<th>Storage time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>18.51 a,b</td>
</tr>
<tr>
<td>A2</td>
<td>18.42 b</td>
</tr>
<tr>
<td>A3</td>
<td>18.40 b</td>
</tr>
<tr>
<td>A4</td>
<td>18.62 b</td>
</tr>
<tr>
<td>A5</td>
<td>18.43 b</td>
</tr>
<tr>
<td>B1</td>
<td>18.61 b</td>
</tr>
<tr>
<td>B2</td>
<td>18.67 b</td>
</tr>
<tr>
<td>B3</td>
<td>18.51 b</td>
</tr>
<tr>
<td>B4</td>
<td>18.60 b</td>
</tr>
<tr>
<td>B5</td>
<td>18.90 b</td>
</tr>
<tr>
<td>C1</td>
<td>19.10 b</td>
</tr>
<tr>
<td>C2</td>
<td>19.10 b</td>
</tr>
<tr>
<td>C3</td>
<td>19.21 b</td>
</tr>
<tr>
<td>C4</td>
<td>18.51 b</td>
</tr>
<tr>
<td>C5</td>
<td>18.40 b</td>
</tr>
</tbody>
</table>

1) Mean value (n=3) 2) Means with same letter in the same row are not significantly different (p<0.05) by Duncan’s multiple test.

Table 4. ANOVA of postharvest cutting treatment effects on the changes in reducing sugar contents during storage of garlic bulbs

<table>
<thead>
<tr>
<th>Samples</th>
<th>Storage time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>1.01 a,b</td>
</tr>
<tr>
<td>A2</td>
<td>0.92 b</td>
</tr>
<tr>
<td>A3</td>
<td>1.12 b</td>
</tr>
<tr>
<td>A4</td>
<td>1.08 b</td>
</tr>
<tr>
<td>A5</td>
<td>1.12 b</td>
</tr>
<tr>
<td>B1</td>
<td>1.00 b</td>
</tr>
<tr>
<td>B2</td>
<td>0.91 b</td>
</tr>
<tr>
<td>B3</td>
<td>1.06 b</td>
</tr>
<tr>
<td>B4</td>
<td>1.06 b</td>
</tr>
<tr>
<td>B5</td>
<td>0.99 b</td>
</tr>
<tr>
<td>C1</td>
<td>1.04 b</td>
</tr>
<tr>
<td>C2</td>
<td>1.03 b</td>
</tr>
<tr>
<td>C3</td>
<td>1.03 b</td>
</tr>
<tr>
<td>C4</td>
<td>0.97 b</td>
</tr>
<tr>
<td>C5</td>
<td>1.10 b</td>
</tr>
</tbody>
</table>

1) Mean value (n=3) 2) Means with same letter in the same row are not significantly different (p<0.05) by Duncan’s multiple test.

Table 5. ANOVA of postharvest cutting treatment effects on the changes in pyruvic acid contents during storage of garlic bulbs

<table>
<thead>
<tr>
<th>Samples</th>
<th>Storage time (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>A1</td>
<td>144.25 b,c</td>
</tr>
<tr>
<td>A2</td>
<td>144.31 b</td>
</tr>
<tr>
<td>A3</td>
<td>143.26 b</td>
</tr>
<tr>
<td>A4</td>
<td>143.65 b</td>
</tr>
<tr>
<td>A5</td>
<td>143.25 b</td>
</tr>
<tr>
<td>B1</td>
<td>145.21 b</td>
</tr>
<tr>
<td>B2</td>
<td>143.28 b</td>
</tr>
<tr>
<td>B3</td>
<td>143.75 b</td>
</tr>
<tr>
<td>B4</td>
<td>145.63 b</td>
</tr>
<tr>
<td>B5</td>
<td>143.21 b</td>
</tr>
<tr>
<td>C1</td>
<td>142.56 b</td>
</tr>
<tr>
<td>C2</td>
<td>142.89 b</td>
</tr>
<tr>
<td>C3</td>
<td>143.21 b</td>
</tr>
<tr>
<td>C4</td>
<td>144.88 b</td>
</tr>
<tr>
<td>C5</td>
<td>143.56 b</td>
</tr>
</tbody>
</table>

1) Mean value (n=3) 2) Means with same letter in the same row are not significantly different (p<0.05) by Duncan’s multiple test.

Total pyruvate 함량의 변화
마늘의 품질지표로 매우 중요한 지식섭취나 피부바이산의 함량을 분석하였다. 마늘의 품질선은 무색, 무취의 alliin이 물리적 손상을 받아 세포가 파열될 때 cystein sulfoxide lyase (allinase)는 효소의 작용을 받아 allin, pyruvate 및 ammonia를 생성한다(26). allin은 마늘의 독특한 품질성품으로서 마늘의 저장이나 가공 중 중요한 품질 지표가 될 수 있으나 매우 불안정한 상태로 존재하기 때문에 보통 allin의 구조상 결합물질인 유황성을 측정하거나 총 불물질 질인 ammonia나 pyruvic acid를 측정하고 있다. 이중에도 pyruvic acid 함량은 마늘 및 양파의 품질성과 높은 상관 관계가 있어 allium속 식물의 품질성분을 측정하는 간편적인
요 약

마늘의 수확 후 증기 및 뿔리의 절단이 마늘의 저장 중 몰리, 화학적 특성에 미치는 영향을 조사하기 위하여 두안산(스페인산)과 의성산(체제년), 남해산(중국산) 마늘을 각각 1cm, 3cm, 5cm의 줄기를 당기고 체제년 1cm 이내로 절단한 것과 절단하지 않은 처리구에 대하여 2℃ 저장 온도에서 8개월의 저장기간동안 중량감소율, 부패율, 맛아 용, 전달, 환원량 및 피루비산의 함량 변화를 분석하였다.

시험결과 증기 절단이 긴 처리구 일수록 중량감소율, 부패율, 맛아율이 저장 4개월 후 유의적으로 크게 증가한 것으로 나타났으며, 일의 함유율은 중량 감소율 증가와 더불어 저장 기간이 길어질수록 급격히 감소하였다. 전달의 함량은 저장기간이 증가함에 따라 감소하고, 환원량은 그 반대로 증가하는 경향이 나타났으나 피루비산의 함량과 더불어 증기 절단 및 체제년에 따른 처리구간 유의적인 차이는 나타나지 않았다. 따라서 증기 절단은 그 길이에 상관없이 당함량 및 피루비산의 전 영향을 미치지 않는 것으로 보였으며, 환반적으로 증기 1cm 당기고 절단한 처리구에서 가장 저장성이 좋은 것으로 판단되었다. 그 외 체제년 처리는 중량 감소율 및 부패율이 다른 등소 영향을 미치는 것으로 나타났다. 따라서 본 연구에서는 마늘 수확 후 저장고로 방입시 부피의 대부분을 차지하는 줄기를 많이 남겨두음을 수록 오히려 마늘의 중량감소율, 부패율, 맛아율에 좋지 않는 영향을 미치는 것으로 나타나, 녹지에서는 불필요한 줄기를 절단하여 저장함으로써 마늘의 향 및 맛을 정제할 수 있어 전산 활용에 큰 영향을 미치지 않는 것으로 판단되었다.

감사의 글

본 연구는 농림부에서 시행한 농림기술개발사업 연구비에 의해 이루어진 결과의 일부로써, 이에 감사드립니다.

참고문헌

24. 송정춘, 박용환, 윤인화, 한관주 (1980) 비축농산물 저장 연구 사업보고서. 농촌진흥청, 191