Present Status of Human Paragonimiasis and Intestinal Parasitic Infection in Bokildo (Islet), Korea

Duk-Young Min, M.D., Jae-Sook Ryu, M.D., Myoung-Hee Ahn, M.D.
Han-Kyu Choi, M.D., Sung-In Kang, M.D. and Myeong-Heon Shin, M.D.*

Department of Parasitology, Hanyang University College of Medicine, Department of Parasitology, Yonsei University College of Medicine, Seoul, Korea

Background: Bokildo (Islet) has been well known as an endemic area of paragonimiasis in Korea, and still crayfishes caught from this area are used as source of intermediate host of experimental paragonimiasis. For the reason, this study was carried out to elucidate the present status of human paragonimiasis in this region and intestinal parasites were studied at the same time.

Methods: From June 9 to June 12, 1999 authors visited Buyong-ri and Buwang-ri which are located in the endemic area. All possible inhabitants including nursery children, primary and middle school children were examined by intra-dermal skin test with veronal buffered saline (VBS) antigen of Paragonimiasis westermani and Clonorchis sinensis. Spumata were collected from 22 adults of positive reactors. Stool examination was done for the intestinal parasites, and anal swabs with adhesive tape for the pinworm were carried out simultaneously.

Results: Overall positive rates in skin test was 9.5% in inhabitants and higher rate were observed in older age groups. On microscopic examination of sputa for paragonimiasis, 2 egg-positive cases from 55-year old man and woman were detected. Prevalence rate of intestinal parasites was 7.8% (26/332) and the most predominant infected parasite was Trichuris trichiura (4.2%). The pinworm infection rate was 29.7% (nursery school children 30.0%, primary school children 29.6%, respectively).

Conclusion: Through this study human paragonimiasis was confirmed and the life cycle of Paragonimus westermani was known to be maintained continuously in this region. Meanwhile control of intestinal parasites should be performed, especially in school children. (Korean J Infect Dis 34:230~234, 2002)

Key Words: Paragonimiasis, Intestinal parasites, Skin test

서 론

전라남도 완도군 보길도 보길도는 지금도 패홍증감염이 이

로어지고 있는 지역으로 알려져 있다. 1979년 이 지역에서의
패홍증감염 반면상태를 조사 보고한 이래1) Soh 등5의 절제
한 역학조사와 치료사업이 이루어졌으나5) 아직도 제2증간속
주인 가체에서의 피낭응중 감염율이나 개체감염량은 감소되
어 있지 않고 높은 비율로 유지되고 있다5).

이 조사연구는 이 지역의 주민을 대상으로 한 역학 조사
를 통하여 현재의 패홍증 감염상을 알아보고자 하였으며 패
홍증감염 관리에 대한 기초자료를 제공하고자 시행하였다.
아울러 이 지역주민의 장비 가생중감염상황과 유치원 및 초
동학생의 요충감염율을 조사하여 도서주민의 장내 기생충 감염상을 알아보았다.

1. 조사대상
전라남도 완도군 보길면 소재의 폐흡충 만연지역인 부항리와 부항리에서는 폐흡충 감염을 조사하였고, 부항리, 부항리 및 선창리에서는 장내기생충 감염여부를 조사하였다.

2. 조사방법
1) 피내반응 검사
폐흡충 및 간흡충의 veronal buffered saline (VBS) 희혈(농축시액)을 이용한 피내반응 검사를 실시하였다. 피내주사 15분 후에 두드리기의 크기 60 mm² 이상을 양성으로 판정하였으며, 초등학생 112명, 중학생 186명, 그리고 성인 79명
2) 대변검사
피내반응검사 양성자를 포함하여 초등학생 73명, 중학생 143명, 성인 116명을 대상으로 formalin-ether 원심분리법으로 검사하였다.
3) 객담내 충량검사
피내반응검사 양성자 중 객담수집이 가능하였던 22명을 대상으로 하였다. 수집된 객담은 1% NaOH에 녹인 후 원심
4) 요충검사
유치원생 30명과 초등학생 71명을 대상으로 향문도말(scotch adhesive tape anal swab) 검사를 시행하였다.
5) 통계적 유의성 검정
조사대상에 따른 어린이의 감염율의 통계적 유의성은 Chi-square test나 Cochran Amritage test를 이용하여 하였다.

3. 치료
1) 폐흡충 피내반응검사 양성자
폐흡충치료약의 치료에서 모든 양성자에게 Distocide (신종제약)를 1일 25 mg/kg/세 3회, 2일간 투여하였다.
2) 간흡충 피내반응검사 양성자
폐흡충피내반응 양성자와 마찬가지로 Distocide (신종제약)를 1일 25 mg/kg/세 3회 투여하였다.
3) 장내충충 및 요충 양성자
대면검사에서 확인된 장내충충감염 및 요충증례 양성자 모두에게 Alzental (신종제약, 1일=400 mg)를 1정씩 투여하였다.
4) 장흡충양성자
Distocide (신종제약)를 20 mg/kg/세 단회 투여하였다.

결과
1. 폐흡충 피내반응검사 및 객담검사 성적
보길의 폐흡충 만연지역인 부항리 주민 377명 중 36명(9.5%)에서 양성반응을 보였으며 성인에서 높은 양성율을 보였다. 특히 부항리 성인남자가 57.9%로 가장 높았으며 전체 성인의 양성율은 32.9%로 초등학생과 중학생의 양성율 3.4%보다 10배 높았다(Table 1).
한편 부항리를 제외하고는 남자가 여자보다 높은 양성율을 보였고 20대와 60대 성인이 각각 43.8%, 50.0%로 양성율이 높았다(Table 2). 아르벤약은 부항리 성인의 양성율이 39.0%로 부항리 성인의 양성율을 26.3%보다 높았으나 통계적으로 유의하지 않았으며(P=0.23) 초등학생과 중학생의 양성율은 4.5% 및 2.7%로 낮았다(Table 1).
한편 폐흡충 피내반응성에서 양성을 보인 성인 26명으로부터 수집한 객담 22에의 검사에서 2에(9.1%)에서 충량이 검출되어 폐흡충의 인체감염이 확인되었다.

2. 보길도 일부 주민의 장내기생충 감염율
보길 초등학생, 보길 중학생, 부항리, 부항리 및 폐흡충 만연지역인 선창리 주민의 장내 기생충 감염율은 조사인원 332명 중 26명(7.8%)에서 충량 또는 포양성이 검출되었으며 전충감염이 14명(4.2%)으로 가장 높았고 요코가와흡충 2명(0.6%), 동양모양충 1명(0.3%), 간흡충 1명(0.3%)에서만 충량이 검출되었다. 원충류는 5명(1.5%)에서 대장아메바 포양이 관찰되었다(Table 3).
전체 충량 또는 포양양성율은 선창리 주민에서 13.5%로 부항리 및 부항리 주민의 감염률 5.9% 및 8.0%에 비해 높았으나 통계적으로 유의하지 않았다(P=0.57).

3. 보길도 유치원생 및 초등학생의 요충감염율
보길 폐흡충 감염지역내 보길 초등학교의 유치원생 및 초등학생의 요충감염율은 29.7%로 다른 기생충 감염율 7.8%에 비해 유의하게 높았다(P<0.0001). 유치원생 30명(남자 17명, 여자 13명)의 요충 감염율은 30.0%이었고 감염자 9명
중 남자가 7명으로 여자 2명에 비해 3배 이상 높았다. 초등
Table 1. Comparison of Positive Rate by Skin Test for Paragonimiasis in Pupil Group and Adult Group Who Resided in Bokildo (Islet)

<table>
<thead>
<tr>
<th>Group</th>
<th>Age range</th>
<th>Sex</th>
<th>No. exam</th>
<th>No. positive</th>
<th>Skin test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pupil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogil</td>
<td>(7 – 12)</td>
<td>M</td>
<td>54</td>
<td>5 (9.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>58</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>112</td>
<td>5 (4.5)</td>
</tr>
<tr>
<td>Bogil</td>
<td>(13 – 15)</td>
<td>M</td>
<td>93</td>
<td>4 (4.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>93</td>
<td>1 (1.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>186</td>
<td>5 (2.7)</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>M</td>
<td>147</td>
<td>9 (6.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>151</td>
<td>1 (0.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>298</td>
<td>10 (3.4)</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buhwang-ri</td>
<td>(28 – 77)</td>
<td>M</td>
<td>16</td>
<td>3 (18.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>22</td>
<td>7 (31.8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>38</td>
<td>10 (26.3)</td>
</tr>
<tr>
<td>Buyong-ri</td>
<td>(39 – 80)</td>
<td>M</td>
<td>19</td>
<td>11 (57.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>22</td>
<td>5 (22.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>41</td>
<td>16 (39.0)</td>
</tr>
<tr>
<td>Subtotal</td>
<td></td>
<td>M</td>
<td>35</td>
<td>14 (40.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>F</td>
<td>44</td>
<td>12 (27.3)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
<td>79</td>
<td>26 (32.9)</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>377</td>
<td>36 (9.5)</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Positive Rate by Skin Test for Paragonimiasis Among Inhabitants in Bokildo (Islet)

<table>
<thead>
<tr>
<th>Age</th>
<th>No. exam. (M/F)</th>
<th>No. positive (M/F)</th>
<th>Positive rate (% , M/F)</th>
<th>Soh et al. (% , M/F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 9</td>
<td>49 (26/23)</td>
<td>2 (2/0)</td>
<td>4.1 (7.7/0)</td>
<td>20.7 (17.6/24.6)</td>
</tr>
<tr>
<td>10 – 19</td>
<td>251 (121/130)</td>
<td>8 (7/1)</td>
<td>3.2 (5.8/0.8)</td>
<td>38.4 (39.2/37.3)</td>
</tr>
<tr>
<td>20 – 29</td>
<td>2 (2/0)</td>
<td>0 (0/0)</td>
<td>0.0 (0/0)</td>
<td>32.0 (38.5/25.0)</td>
</tr>
<tr>
<td>30 – 39</td>
<td>7 (3/4)</td>
<td>1 (1/0)</td>
<td>14.3 (33.3/0)</td>
<td>32.8 (44.8/22.9)</td>
</tr>
<tr>
<td>40 – 49</td>
<td>11 (8/3)</td>
<td>1 (1/0)</td>
<td>9.1 (12.5/0)</td>
<td>47.8 (58.1/38.3)</td>
</tr>
<tr>
<td>50 – 59</td>
<td>16 (7/9)</td>
<td>7 (5/2)</td>
<td>43.8 (71.4/22.2)</td>
<td>37.7 (50.0/25.7)</td>
</tr>
<tr>
<td>60 – 69</td>
<td>26 (10/16)</td>
<td>13 (6/7)</td>
<td>50.0 (60.0/43.8)</td>
<td>27.3 (57.1/13.3)</td>
</tr>
<tr>
<td>70 –</td>
<td>15 (5/10)</td>
<td>4 (1/3)</td>
<td>26.7 (20.0/30.0)</td>
<td>ND ¹</td>
</tr>
<tr>
<td>Total</td>
<td>377 (182/195)</td>
<td>36 (23/13)</td>
<td>9.5 (12.6/6.7)</td>
<td>33.5% (220/656)</td>
</tr>
</tbody>
</table>

¹Soh et al. (1986): Positive rates by skin test (1983), ND: Not done, Total No. positive/Total No. exam

Table 3. Prevalence Rate of Intestinal Parasites Among Inhabitants in Bokildo (Islet)

<table>
<thead>
<tr>
<th>Group</th>
<th>No. exam</th>
<th>No. positive (%)</th>
<th>T.t (%)</th>
<th>T.o (%)</th>
<th>C.s (%)</th>
<th>M.y (%)</th>
<th>E.c (%)</th>
<th>Others (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pupil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogil primary school</td>
<td>73</td>
<td>4 (.55)</td>
<td>4 (.55)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bogil Middler school</td>
<td>143</td>
<td>9 (.63)</td>
<td>5 (.35)</td>
<td>0</td>
<td>0</td>
<td>4 (.28)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Adult</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buhwang-ri</td>
<td>17</td>
<td>1 (.59)</td>
<td>0</td>
<td>1 (.59)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buyong-ri</td>
<td>25</td>
<td>2 (.80)</td>
<td>1 (.40)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 (.40)</td>
<td></td>
</tr>
<tr>
<td>Sunchang-ri</td>
<td>74</td>
<td>10 (13.5)</td>
<td>4 (5.4)</td>
<td>1 (1.4)</td>
<td>0</td>
<td>2 (2.7)</td>
<td>1 (1.4)</td>
<td>2 (2.7)</td>
</tr>
<tr>
<td>Total</td>
<td>332</td>
<td>26 (7.8)</td>
<td>14 (4.2)</td>
<td>1 (.3)</td>
<td>1 (.3)</td>
<td>2 (0.6)</td>
<td>5 (1.5)</td>
<td>3 (0.9)</td>
</tr>
</tbody>
</table>

T.t.: Trichuris trichiura, T.o.: Trichostrongylus orientalis, C.s.: Clonorchis sinensis, M.y.: Metagonimus yokogawai, E.c.: Entamoeba coli
Table 4. Infection Rate of *Enterobius vermicularis* Among Nursery and Primary School Children in Bokildo (Islet)

<table>
<thead>
<tr>
<th>Group</th>
<th>Sex</th>
<th>No. exam.</th>
<th>No. positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nursery school</td>
<td>M</td>
<td>17</td>
<td>7 (41.2)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>13</td>
<td>2 (15.4)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>30</td>
<td>9 (30.0)</td>
</tr>
<tr>
<td>Primary school</td>
<td>M</td>
<td>6</td>
<td>2 (23.3)</td>
</tr>
<tr>
<td>1st grade</td>
<td>F</td>
<td>8</td>
<td>4 (50.0)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>14</td>
<td>6 (43.0)</td>
</tr>
<tr>
<td>2nd grade</td>
<td>M</td>
<td>8</td>
<td>3 (37.2)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>5</td>
<td>2 (40.0)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>13</td>
<td>5 (38.5)</td>
</tr>
<tr>
<td>3rd grade</td>
<td>M</td>
<td>12</td>
<td>4 (33.3)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>8</td>
<td>1 (14.3)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>20</td>
<td>5 (25.0)</td>
</tr>
<tr>
<td>4th grade</td>
<td>M</td>
<td>13</td>
<td>3 (23.1)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>11</td>
<td>2 (18.2)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>24</td>
<td>5 (20.8)</td>
</tr>
<tr>
<td>Subtotal</td>
<td>M</td>
<td>39</td>
<td>12 (30.8)</td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>32</td>
<td>9 (28.1)</td>
</tr>
<tr>
<td></td>
<td>Subtotal</td>
<td>71</td>
<td>21 (29.6)</td>
</tr>
</tbody>
</table>

Total	M	56	19 (34.0)
	F	45	11 (24.4)
	Total	101	30 (29.7)

학교에서는 1학년의 감염율이 43.0%로 가장 높았고 2학년이 그 다음으로 38.5%이었다. 오존의 감염율은 학년이 높아 젤수록 낮아지는 경향이 있었다(표P<0.0520)(표4).

고 참

이 조사연구에서 실제로 2명이 간담검사를 통해 충분히 검출된으로 인해검자제가 확인되었으며 간담검사의 수행상 어려운 점을 고려한다면 또다른 검사항자가 존재할 가능성이 있다. 페름촉의 증상부작용되는 가해는 부용리의 가해 부양리로 내려오는 경향이 많이 사전하고 있으며 실제로 페름촉과낭증이 감염된 가해는 주로 부용리의 상류관에서 보묵된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이전에 감염 확인된 2명의 환자는 부양리의 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이전에 감염 확인된 2명의 환자는 부양리의 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다.

그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다.

그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다. 그러나 이면에 감염 확인된 2명의 환자는 부분위를 결제 과반결체의 사는 주로 간담검사의 상류관에서 확인된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다.

다라나로 이상적으로 인해검자제가 확인되었으며 간담검사의 수행상 어려운 점을 고려한다면 또다른 검사항자가 존재할 가능성이 있다. 페름촉의 증상부작용되는 가해는 부용리의 가해 부양리로 내려오는 경향이 많이 사전하고 있으며 실제로 페름촉과낭증이 감염된 가해는 주로 부용리의 상류관에서 보묵된 것으로 가해의 피남양증 간염은 상류에 국한되어 있음을 알 수 있다.

이 연구에서는 보균도 주민을 대상으로 장내마개검을 감염 조사한 바 주민 323명 중 요코와흡충 2명, 동장호양증과 간흡충 감염이 각각 1명 뿐인데 비해 전담검사가 14명(4.2%)으로 가장 높았고 원장검은 대상아래 5명이 감염되어 있어 전체 감염율은 7.8%이었다. 특히한한 것은 최전검사가 전부 검출되지 않은 점이다. 이러한 성적은 제7차 한국 장내마개검 검사현황(주)에서 동촌지역 감염률 7.4%와 비교하여 1997년 제6차 조사보고의 3.3%의 2배 가량되는 것이다(주) 구 등의 연도주민의 39.4%에 비해 현저히 감소한 경향이 있다. 민 등(주)은 서울 시내 주민 중 3.6%의 장내마개검검률을 보고한 바 있으며(주) 나이도는 도시나 도시보다 감소현상이 자연계기에는 그러나 우리나라에서 토양마개검 감염증은 전국적으로 잘 관리되고 있으며 거의 박멸되었음을 시사하는 것으로 생각된다. 그러나 요충검사에서 보균도의 유무검사와 원장검의 검율은 29.7%(유무검사 39.0%, 초등학생 29.6%)로 매우 높았으며 제6차 한국장내마개검 검사의 0.7%에 비해 40배 이상 높았다. 1995년 Yoon 등은 충청서의 취급 된 어린이 4,711명을 대상으로 조사한 바 무균양성율이 9.2%(남
자 10.1%, 여자 8.1%)이었고 이중 유치원생은 총환양성율이 7.8%이었다. 이런 결과로 춘천시의 취학 전 여아인보다 보
길도의 유치원생이 현저히 높은 것을 알 수 있어 보길도의 유
치원생 뿐만 아니라 초등학생에 대해서 특별한 요충관리책
이 세워져야 할 것으로 생각된다.

요 약

목 적: 전라남도 완도군 보길면 부영리와 부항리 주민의
폐렴중 및 장내기생충의 감염상을 알아보고자 하였다.
방 법: 폐렴중 감염상을 알아보고자 피내반응검사, 각담
검사를 시행하였고, 장내기생충 감염상을 알아보고자 대변
검사 및 요충검사를 시행하였다.
결 과: 주민 377명의 폐렴중 피내반응검사 양성율은 9.5
%이었으며 이중 0-9세는 4.1%, 10-19세는 3.2%로 낮았으
며 60-69세는 50.0%의 가장 높은 양성율을 보였다. 폐렴중
피내반응검사상 양성자 22명의 각담을 검사한 바 2명에서
충만을 검출하여 폐렴중 인체감염예가 확인되었다. 장내기
생충 감염율은 7.8%로 국내의 타 지역에 비해 높았고, 유치
원생 및 초등학생의 요충 총환양성율은 29.7%로 매우 높았
다.
결 론: 이상의 결과로 보아 보길도에서는 아직도 폐렴중
감염이 유지되고 있음을 알 수 있으며, 유치원생 및 초등학
생에 대한 특별한 요충관리가 시급하다고 생각된다.

참고 문헌

1) 안영권, 한재금, 정경현: 완도 및 보길도(전남 완도군)에
 있어서 폐렴중 감염의 역학조사. 최신의학 22:
 1051-1056, 1979
2) Soh CT, Lee KT, Min DY, Min HK. Ahn YK, Chung PR, Yong TS, Lee JH, Chang DH, Kang JS: Field
 operational research on the control of paragoni-
3) Shin MH, Min DY: Infection status of Paragonimus
 westermani metacercariae in crabfish (Cambaro-
 ides similis) collected from Bogildo (Islet), Wando-gun, Cholla-
4) 구기수, 민득영, 안명희, 김경민, 임미혜, 윤학선: 전라
 남도 여천군 남면 연도 주민의 장내 기생충 감염상황.
 기생충학잡지 26:275-284, 1988
5) 보건복지부, 한국건강관리협회: 제5차 한국장내기생충
 감염현황, 1992
6) 보건복지부, 한국건강관리협회: 제6차 한국장내기생충
 감염현황, 1997
7) 민득영, 안명희, 김춘선: 서울지역의 장내기생
 충 감염상태조사. 기생충학잡지 24:209-212, 1986
8) Yoon HJ, Choi YJ, Lee SU, Park HY, Huh S, Yang
 YS: Enterobius vermicularis egg positive rate of pre-
 Parasitol 38:279-281, 2000