Plasma arc light를 이용한 bracket 부착시의 전단결합강도와 파절양상의 유형

박 영 철 ${ }^{1)}$. 유 형 석 ${ }^{2)}$.오 영 근 ${ }^{3)}$. 이 승 연 ${ }^{4)}$

본 연구의 목적은 bracket 부착시 광조사시간을 획기적으로 감소시킬 수 있는 plasma arc light의 임상적 유용성을 visible light 중합시의 전단결합강도와 접착파절양상과 비교해 봄으로써 평가해 보는데 있다.
사람의 상하악 소구치를 포매하여 만든 레진블럭시편에 광중합 접착제인 Transbond ${ }^{\mathbb{B}}$ 를 사용하여 수종의 bracket을 각각의 조건에 따라 부착한 후 만능 물성시험기를 이용하여 전단견합강도를 측정하고, 접착파절양상을 stereoscope을 이용하여 관찰하여 다음과 같은 결과를 얻었다.

1. Plasma arc light를 이용한 수종의 bracket 접착시 metal bracket과 ceramic bracket의 전단결합강도는 임상적으로 사용하기에 충분한 값을 나타내었으며, resin bracket의 경우 다른 bracket에 비해 전단결합강도가 현저히 작은 값을 나타내었지만 임상적으로 사용이 가능한 값을 나타내었다.
2. Visible light를 이용한 metal bracket의 광중합시 광조사시간에 따른 전단결합강도는 광조사 시간에 따른 유의한 차이 를 보이지 않았으며, 임상적으로 사용하기에 충분한 강도를 나타내었다.
3. Plasma arc light를 이용한 수종의 bracket 접착시 접착제 잔류지수를 틍해 접착파절양상을 관찰한 결과, metal bracket과 resin bracket의 경우 bracket기저면에 접착제가 반 이상 남아 있지 않은 경우가 많았으며, ceramic bracket 의 경우 bracket기저면에 접착제가 반 이상 남아 있는 경우가 많았다.
4. Metal bracket의 부착시 plasma arc light를 2 초간 광조사한 군과 visible light를 10 초간 강조사한 군의 전단결합강도 와 접착파절양상을 비교시 유의한 차이를 보이지 않았다.
5. Plasma arc light를 이용한 광중합시 광조사 거리에 따른 전단결합강도는 거리가 증가할수록 감소하였다.

이상의 실험 결과는 plasma arc light를 이용한 bracket의 접착시 전단결합강도 저하의 우려 없이 임상적으로 사용 가능 함을 시사한다.
(주요단어 : plasma arc light, bracket 접착, 전단결합강도, 접착제 잔류지수)

```
1) 여ᄂ세대하ᄀ교 치과ᄂ대하ᄀ 교저ᄋ하ᄀ교시ᄅ, 교수,
2) 여ᄂ세대하ᄀ교 치과대하ᄀ 꾜저ᄋ하ᄀ교시ᄅ, 조꾜수.
3) 여ᄂ세대하ᄀ교 치과대하ᄀ 교저ᄋ하ᄀ교시ᄅ, 대하ᄀ워ᄂ새ᄋ,
4) 여ᄂ세대하ᄀ교 ᄎ\과대하ᄀ 꾜저ᄋ하ᄀ교시ᄅ, 대하ᄀ워ᄂ새ᄋ.
*보ᄂ 여ᄂ구느ᄂ 200녀ᄂ도 여ᄂ세치대표시ᄅ. 두개아ᄂ며ᄂ기혀ᄋ여ᄂ구소의 여ᄂ구비에 의
    해 수해ᄋ되어ᄊ으ᄆ.
卫ᅭ시ᄂ저자: 바ᄀ여ᄋ처ᄅ
서우ᄅ드ᄀ벼ᄅ시 서대무ᄂ구 시ᄂ초ᄂ도ᄋ }13
여ᄂᄉ|대하교ᅭ 치과대하ᄀ 꾜저ᄋ하교ᅭ시ᄅ / 82-2-361-8780
ypark@yumc.yonsei.ac.kr
1) 연세대학교 치과대학 교정학교실, 교수,
\({ }^{2)}\) 연세대학교 치과대학 교정학교실, 조꾜수.
\({ }^{3)}\) 연세대학교 치과대학 표정학교실, 대학원생,
4) 연세대학교 치과대학 표정학교실, 대학원샘.
*본 연구는 200년도 연세치대표실, 두개안면기형연구소의 연구비에 의 해 수행되었음.
교신저자: 박영철
서울득별시 서대문구 신촌동 134
연세대학표 치과대학 꾜정학표실 / 82-2-361-8780
ypark@yumc.yonsei.ac.kr
```


I. 서 론

Buonocore ${ }^{11}$ 가 최초로 산부식법을 소개하고 New$\mathrm{man}^{2)}$ 이 epoxy resin을 사용하여 교정장치의 직접접 착술식을 시도한 이후로 직접접착술식을 위해 다양 한 레진 접착제가 개발되어 왔다. 레진 접착제는 inorganic filler를 첨가함으로써 결합강도와 마모저항도 의 큰 향상을 가져왔으며 ${ }^{3}$, 교정장치의 부착을 위해

Table 1. Number of brackets used in the experiment to determine the effect of curing time by plasma aro light.

	second	2 second	3 second	Total
Metal bracket	10	10	10	30
Ceramic bracket	10	10	10	30
Rssin bracket	10	10	10	30
Total	30	30	30	90

Table 2. Number of metal brackets used in the experiment to determine the effect of curing time by visible light.

		10 second 20	second 40	second
	Total			
Metal bracket	10	10	10	30

Table 3. Number of metal brackets used in the experiment to determine the effect of the distance between the bracket and the light source in curing for 2 seconds by plasma arc light.

	As close as possible 10 mm	20 mm	Total	
Metal bracket	10	10	10	30

가장 널리 사용하는 재료가 되었다.
접착레진의 중합방법에 따른 접착강도의 차이에 대한 연구가 활발하였는데, 그 결과가 다양하여 아직 까지 정설로 받아들여지는 것은 없으나, bracket안에 모든 정보가 포함되어 있는 Straight Wire Appliance ${ }^{4)}$ 가 개발되어 정확한 bracket 위치의 중요성이 강조되면서 조작시간이 충분한 광중합 레진 접착제 의 사용이 증가하는 추세에 있다. 광중합 레진 접 착제 는 치면 열구 전색제 ${ }^{5)}$, 레진 수복제 ${ }^{6)}$ 등에서 사용되면 서 점차 교정용 접착제 ${ }^{7}$ 영역으로 발전해왔다. 레진 접착제를 중합시키기 위한 광원으로 초기에는 자외 선(UV)이 사용되었으나 안정성문제로 1980년 visible light 중합기가 소개되었다. 자외선(UV)에 비해 visible light 중합이 중합심도가 더 깊으며 ${ }^{8)}$, 일 반적으로

널리 사용되고 있는 교정용 광중합레진인 Transbond ${ }^{\circledR}$ 의 경우 20 초정도 중합시 충분한 강도를 가진다고 제조자의 지침서에 나와있다. 그러나, 화학중합형에 비해 광중합레진은 경화시간이 길어 전체적인 진료 시간이 증가한다는 단점이 있다. 이러한 기존 visible light 중합기의 단점을 극복하기 위해 최근 광원의 세 기를 증가시켜 경화시간을 획기적으로 단축시킬 수 있는 새로운 광원으로 1980년 중반부터 1990년 초반 까지 argon laser가 도입되었고 ${ }^{9)}, 1990$ 년 중반부터 xenon arc light 혹은 plasma arc light라 불리는 광원 이 개발되었으며, 최근 이러한 높은 강도의 광원을 가 지는 여러 광중합기가 소개되고 연구되어지고 있는 형편이다 ${ }^{1011112113114)}$. Plasma arc light의 경우 제조사 의 지침서에 의하면 불투명 콤포짓레진의 경우는 10 초, 투명한 재료는 5 초 이내에 중합이 완료된다고 하 며, 최근 plasma arc light를 교정재료의 접착에 사용 한 보고가 나오고 있다 ${ }^{15)}$. 그러나, plasma arc light를 이용한 bracket 접착시의 결합강도와 접착파절양상, 기존 visible light 중합기와의 차이에 대한 연구는 아 직까지 미비한 실정이다.

본 연구에서는 수종의 bracket을 각 중합 방법에 의해 치아에 부착시 전단결합강도와 접착파절양상을 여러 가지 다양한 조건에서 비교해 봄으로써 plasma arc light의 임상적 유용성을 평가해 보고자 한다.

II. 연구재료 및 방법

1. 실험재료

치아는 치관부에 우식병소나 수복물이 없는 건전 한 사람의 소구치 150 개를 사용하였고 bracket은 metal bracket(Archist, 대승), ceramic bracket (Clarity, 3M Unitek), resin bracket(SpiritMB, Ormco)등 3 종의 상악소구치부 .018 "bracket을 사용하였다. $\mathrm{Pla}-$ sma arc light 노출시간에 따른 전단결합강도와 파절 양상관찰에 각 bracket 30 개씩 사용하였고, visible light 중합과의 차이를 보기 위해 metal bracket 30 개 를 사용하여 visible light 중합을 하였다. 또한 plasma arc light 조사시 광원과 bracket간의 거리에 따 른 전단결합강도의 차이를 보기 위해 역시 metal bracket 30 개를 사용하였다. 접착제는 Transbond ${ }^{\circledR}(3 \mathrm{M}$ Unitek)를 사용하였다. 광중합기는 plasma arc light 용으로 flipo(Lobel France), visible light 중합용으로 Ortholux(3M Unitek)를 사용하였다(Table 1,2,3).

Fig 1. Instron Universal Testing Machine(model 6022)

2. 실함방법

(1) 시편제작

교정치료를 위해 발거된 소구치를 생리식염수용액 에 보관하였으며 에폭시 레진을 사용하여 레진블록 을 만든 후 치아 순면의 법랑질이 노출되도록 블록에 고정하였다. 시편의 치아는 불소가 없는 pumice로 치 면 세마를 하였고 37% 인산용액으로 30 초간 산부식 처리하고 난 후 1 분간 water wash후 건조시켰다. 제 조자의 지시에 따라 접착제를 바른 bracket을 법랑질 면에 위치시키고 정하중 압축기를 사용하여 858 g 의 균일한 하중을 10 초간 가한 후 과잉의 레진을 탐침으 로 제거 한 후 각각의 실험조건에 따라 광중합을 시 행하였다. 접착이 완료된 시편은 Nigel 등 ${ }^{16)}$ 의 연구 에서와 같이 $37^{\circ} \mathrm{C}, 100 \%$ 상대 습도에 24 시간 보관하였 다.
(2) 전단결합강도측정

만능 물성시험기(Instron 6022)에 시편을 고정시킨

후 분당 1 mm 의 crosshead speed로 치면에 평행하게 bracket 접착부에 하중을 가하여 접착이 파절되는 순 간의 최고 하중을 측정 (Fig 1)하였고 이 측정치를 각 bracket의 면적으로 나누어 MPa 값으로 환산하였다.
3) Bracket 탈락양상의 관찰

전단결합강도 측정 후 bracket 기저면을 stereoscope(Leica MPS 60)로 관찰하여 남아 있는 레진의 양 에 따라 \AA Artun과 Bergland ${ }^{17}$)의 접착제 잔류지수(Adhesive Remnant Index)를 이용하여 다음과 같이 점 수화하였다.

Score 0:bracket 기저면에 레진이 남아 있지 않은 경우
Score 1: bracket 기저면에 레진이 반 이하 남아 있 는 경우
Score 2 : bracket 기저면에 레진이 반 이상 남아 있 는 경우
Score 3: bracket 기저면에 레진이 모두 남아 있는 경우

3. 퉁계처리

Bracket 종류와 광조사 시간에 따른 전단결합강도 를 비교하기 위하여 일원분산검정(one-way ANOVA)을 시행하여 통계적 유의성을 검증한 다음 multiple comparison에 의해 각 군간의 차이를 사후 검정 하였고, 광조사기에 따른 전단결합강도를 비교하기 위해 T-test를 시행하였다. 접착제 잔류지수에 따른 실험군간 유의성은 Kluskal-Wallis 일원분산검정을 시행하여 알아보았고, 광조사기에 따른 접착제 잔류 지수의 차이를 알아보기 위해 Wilcoxon test를 시행 하였다. 유의차 검정은 5% 유의수준에서 판정하였다.

III. 연구결과

1. 광중합기의 power 측정

Curing radiometer Model 100(Demetron)을 사용하 여 각 광중합기의 광도를 측정하여 다음과 같은 결과 를 얻었다.
flipo(Lobel France) : $1,900 \mathrm{~mW} / \mathrm{cm}^{2}$
Ortholux (3M Unitek) : $450 \mathrm{~mW} / \mathrm{cm}^{2}$

Table 4. Shear bond strength depending on the light-curing time and bracket type in curing with plasma arc light.

level of second	number	mean(Mpa)	SD	ANOVA metal bracket 1
maltiple comparison				

Fig 2. Diagram of the shear bond strength depending on the light-curing time in curing with plasma arc light.

2. 전단결합강도

Plasma arc light를 이용한 광중합시 광중합 시간 에 따른 전단결합강도는 Table 4와 Fig 2와 같았다. Metal bracket의 경우 1 초 조사시 $13.7 \pm 2.1 \mathrm{Mpa}$, 2 초 에서 $22.8 \pm 2.3 \mathrm{Mpa}$, 3 초에서 $23.2 \pm 2.7 \mathrm{Mpa}$ 로 5% 의 유의수준에서 분산검정을 시행한 결과 1 초일 때의 결 합강도가 2,3 초일 때보다 통계적으로 낮은 값을 보였 으며 2,3 초 사이는 통계적 유의차가 없었다. Ceramic bracket의 경우도 마찬가지로 1초 조사시 $20.4 \pm$ $2.9 \mathrm{Mpa}, 2$ 초에서 $24.4 \pm 1.5 \mathrm{Mpa}$, 3 초에서 24.7 ± 2.4

Fig 3. Diagram of the shear bond strength of the metal bracket depending on the curing time with visible light.

Mpa 로 5% 의 유의수준에서 분산검정을 시행한 결과 1 초일 때의 결합강도가 2,3 초일 때보다 통계적으로 낮은 값을 보였다. Resin bracket의 경우 다른 bracket에 비해 결합강도가 현저히 떨어진 값을 나타 내었다 $(\mathrm{P}<0.05)$.

Visible light를 이용한 metal bracket의 광중합시 광중합시간에 따른 전단결합강도는 10 초 조사시 25.1 $\pm 2.7 \mathrm{Mpa}, 20$ 초 조사시 $25.2 \pm 3.7 \mathrm{Mpa}, 30$ 초에서 25.7 $\pm 4.1 \mathrm{Mpa}$ 로 광중합시간에 따른 유의차는 없었다 $(\mathrm{P}>$ 0.05)(Table 5, Fig 3).

Vol. 31, No. 2, 2001. Korea. J. Orthod.

Table 5. Shear bond strength of the metal bracket depending on the curing time with visible light.

level of second number mean(Mpa)	SD		ANOVA metal bracket	
P-value				
10	10	25.1	2.7	
20	10	25.2	3.7	0.9173
40	10	25.7	4.1	

Fig 4. Diagram of adhesive failure pattern(ARI score) depending on the bracket type in curing with plasma are light.

Table 6. Adhesive failure pattern(ARI score) when plasma arc light was used for light curing.

level of second	number	ARI						K-W's one-way ANOVA
		0	1	2	3	P-value		
metal bracket								
1		3	4	2	1			
2		2	4	2	2	0.8577		
3		3	4	2	1			
ceramic bracket								
1	10	1	2	3	4			
2	10	0	2	3	5	0.8014		
3	10	0	3	3	4			
resin bracket								
1	10	6	4	0	0			
2	10	6	3	1	0	0.9795		
3	10	6	3	1	0			

3. 접착파절양상

Plasma arc light를 이용한 광중합시 접착제 잔류 지수의 빈도를 관찰한 결과 metal bracket의 경우 $\mathrm{b}-$ rcaket기저면에 접착제가 반 이상 남아있지 않은 경 우가 비교적 많았고 광중합시간에 따른 유의차는 없 었다($\mathrm{P}>0.05$). Ceramic bracket의 경우 bracket에 접 착제가 반 이상 남아있는 경우가 상대적으로 많았으

나 역시 광중합 시간에 따른 유의차는 없었다(P> 0.05). Resin bracket의 경우 metal bracket의 경우와 양상이 비슷하였으나 score 0 인 경우가 훨씬 많았다 (Table 6).
그리고, 광조사 시간에 관련 없이 bracket 종류에 따 른 접착제 잔류지수의 빈도의 차이를 Fig 4에 나타내 었다.

Table 7. Adhesive failure pattern of metal bracket in curing with visible light.

level of second
metal bracket
1

Fig 6. Comparison of the shear bond strength in metal bracket between 2 seconds light curing of plasma arc light and 10 seconds light curing of visible light.

Visible light를 이용한 metal bracket의 광중합시 접 착제 잔류지수의 빈도를 관찰한 결과 치면에 접착제가 반 이상 남은 경우가 비교적 많았으며 광중합시간에 따른 차이가 거의 없었다($\mathrm{P}>0.05$)(Table 7, Fig 5).

4. 각 광중합기에 의한 metal bracket의 중합시 전 단결합강도 비교

Plasma arc light 2 초와 visible light 10 초 광중합시 전단결합강도는 각각 $22.8 \pm 2.3 \mathrm{Mpa}, 25.1 \pm 2.7 \mathrm{Mpa}$ 로 T-test시행결과 통계적 유의차가 없었다 $(\mathrm{P}>0.05)$ (Fig 6).
또한 두 군의 접착파절양상을 비교해 보았는데 통 계적 유의차가 없었다(Fig 7).

Fig 5. Diagram of the adhesive failure pattern of metal bracket in curing with visible light.

Fig 7. Comparison of the adhesive failure pattern between metal bracket light cured with plasma aro light and visible light.

Fig 8. Shear bond strength of metal brackets light cured during 2 second with plasma arc light according to the distance from the light source.

5. Plasma arc light에 의한 metal bracket의 광 중합시 광중합 거리에 따른 전단결합강도

Metal bracket 직상방과 10 mm 상방, 20 mm 상방에 서 2 초간 광조사시 각각 $22.8 \pm 2.3 \mathrm{Mpa}, 16.9 \pm 3.8 \mathrm{Mpa}$, $4.2 \pm 2.1 \mathrm{Mpa}$ 로 거리가 증가할수록 결합강도가 감소 하였다($\mathrm{P}<0.05$)(Fig 8).

IV. 총괄 및 고안

Plasma arc light을 이용한 bracket 부착시 조사시 간 감소로 인한 접착강도의 감소가 우려되어 기존의 visible light 중합기를 사용했을 때의 전단결합강도 와 비교해 본 결과 plasma arc light를 2 초이상 광조 사하여 bracket을 부착할 경우 기존의 visible light 중합시의 전단결합강도와 유의한 차이를 보이지 않 았다.
Plasma arc light 중합기는 visible light를 470 nm 의 파장으로 집중시키는 필터를 가지고 있으며, 고에너 지와 고압의 이온화된 가스는 광중합레진의 중합률 을 향상시키는 강력한 광원을 생성하는데 이용된다 ${ }^{11)}$. 각 중합기의 광도를 조사해 본 결과 plasma arc light(flipo)의 경우 $1,900 \mathrm{~mW} / \mathrm{cm}^{2}$ 로 visible light 중합 기(Ortholux)보다 거의 4 배 정도 높은 값을 가지는 것 을 확인하였으며, 다른 plasma arc light 광중합기인 1000 PAC (plasma arc curing) system ${ }^{11)}$ 의 경우 $1,196 \mathrm{~mW} / \mathrm{cm}^{2}$, Apollo $95 \mathrm{E}^{10}$ 의 경우 $1,370 \mathrm{~mW} / \mathrm{cm}^{2}$ 을 보인다고 하였다. Blankenau 등 ${ }^{18)}$ 은 plasma arc light, visible light, argon laser light에 의해 각각 중합 된 레진의 여러 가지 강도와 탄성계수를 비교하여, plasma arc light에서 의해 중합된 레진의 강도가 다 른 2가지 광중합기에 의한 것과 통계적으로 유의한 차이를 보이지 않았다고 하였고, 중합시간의 감소는 argon laser일 때와 비슷하다고 하였다. 다른 연구 ${ }^{9119}$ 에 의하면 고에너지 중합시 visible light에 의한 것보 다 레진의 중합도가 더 크다고 하였다. 이러한 고에너 지 광원의 치수 위해성에 대한 Hannig와 Bott ${ }^{201}$ 의 연 구 결과, visible light에 비해 치수내 온도가 유의성있 게 증가하였지만 이는 매우 짧은 순간 관찰되며 치수 손상과는 무관하다고 하였다.
접착제의 두께에 따른 결합강도에 관한 연구에서 Jost-Brinkmann 등 ${ }^{21)}$ 은 광중합형 접착제는 0.2 mm 에 서 최대강도를 보였으며 0.0 mm 에서 가장 낮은 강도 를 나타낸다고 하였으며, 본 연구에서는 접착제의 두

께가 전단결합강도에 영향을 미치는 것을 배제하기 위해 정하중기를 이용하여 bracket 부착시 일정한 하 중을 가하였다.
Reynold 등 ${ }^{22)}$ 은 임상교정에서 필요로 하는 bracket 의 최소 결합강도가 $5.9-7.8 \mathrm{Mpa}$ 라고 하였고, MacColl 등 $^{23)}$ 과 Proffit 등 ${ }^{24)}$ 은 임상적으로 요구되는 bracket 의 결합강도는 교합력등을 고려하여 $5-15 \mathrm{Kg}$ 정도라 고 하였다. 또한 McCarthy와 Hondrum ${ }^{25)}$ 은 요구되는 최소 전단결합강도가 7 Mpa 이라고 하였다. 본 연구 결과 plasma arc light를 이용하여 metal, ceramic, resin bracket을 각각 광중합하였을 때 resin bracket 을 제외하고는 임상적으로 사용하기에 충분한 결합 강도를 나타내었다. 특히 1 초 광조사시 metal bracket 의 결합강도가 ceramic bracket의 결합강도보다 낮았 는데 이는 짧은 광조사시간 때문에 상대적으로 불투 명한 metal bracket의 광중합율이 낮기 때문일 것이 라 생각된다. 2 초 이상 광조사시는 두 bracket이 비슷 한 강도를 보였다. resin bracket의 경우 Guan 등ㅇㅇㅇㅔ 의하면 결합강도가 $4-6 \mathrm{Mpa}$ 로 metal bracket보다 현 저히 강도가 떨어진다고 하였으며, 본 연구에서도 다 른 두 bracket보다 현저히 낮은 결합강도를 보였으며 임상적으로 사용할 수 있는 최소결합강도와 가까웠 다. 이렇게 낮은 강도를 보인 것은 resin bracket의 polycarbonate ${ }^{277}$ 성분의 불활성도와 레진의 유연한 성 질 때문에 재료시험기의 loading stylus에 의해 하중 이 가해질 때 bracket이 휘어지면서 탈락되는 양상을 보였기 때문일 것이라 사료된다.
Visible light를 이용한 metal bracket의 부착시 10 초 광조사시와 40 초 광조사시 모두 비슷한 결합강도 를 나타내었으며, 따라서 광조사 시간은 10 초를 넘지 않아도 임상적으로 충분한 강도를 얻을 수 있을 것이 라 생각된다.
Bracket 접착계면의 파절양상에 관한 연구에서 K eizer 등 ${ }^{28)}$ 은 bracket의 접착파절양상은 법랑질과 접 착제 사이의 결합력, 접착제와 bracket 사이의 결합 력, 접착제와 bracket 재료의 화학적, 기계적 특성 등 에 의해 영향을 받는다고 하였다. O'Brien 등 ${ }^{29}$ 은 접 착파절시 잔존 접착량과 전단견합강도는 관련이 없 다고 하였고, Harris 등30) 은 접착파절시 법랑질의 손 상을 줄이기 위해 접착제와 bracket 계면의 파절이 바람직하다고 하였다. Odegaard와 Segner ${ }^{311}$, Gwinnett ${ }^{32)}$, Harris 등33 과 Viazis 등 ${ }^{341}$ 에 의하면 ceramic bracket은 법랑질과 접착제 계면애서, metal bracket 은 접착제와 bracket 계면에서 접착파절이 일어난다
${ }^{35336)}$ 고 하였다. 그러나, 윤과 이 ${ }^{37}$ 에 의하면 Transbond ${ }^{(\mathbb{}}$ 로 접착한 ceramic bracket의 접착파절은 접착 제와 bracket 사이에서 발생한다고 하였고, 유와 황 ${ }^{38)}$ 은 반대로 역시 치아와 bracket 사이라고 하였다. $\mathrm{Lopez}{ }^{39}$ 에 의하면 bracket 탈락실험과 임상적인 상황 은 다르며, 실제 임상에선 완전한 수분조절이 어렵기 때문에 주로 법랑질 표면에서 bracket이 탈락한다고 하였고, 이는 bracket 제거시 시간을 절약해 줄 수 있 다고 하였다. 본 연구에서 plasma arc light를 이용한 광중합시 각 bracket의 접착파절양상은 metal bracket과 resin bracket의 경우 bracket기저면과 접착제 사이에서의 파절이 흔했으며 ceramic bracket의 경우 치아면과 접착제사이에서의 파절양상이 혼했다. $\mathrm{Vi}-$ sible light를 이용한 metal bracket의 광중합시 Owens 등 ${ }^{40)}$ 은 파절양상이 bracket기저면과 접착제 사이 에서 흔했다고 하였으며, 본 연구에서도 유사한 결과 를 볼 수 있었다.

각 광중합기의 비교를 위해 plasma arc light의 경 우 2초이상, visible light의 경우 10 초이상 metal bracket의 광중합시 안정된 결합강도를 보이는 것에 착 안하여 plasma arc light 2초, visible light 10 초 광조 사시의 결합강도와 접착파절양상을 비교해 본 결과 통계적으로 유의한 차이가 없었다. 이 결과에 비추어 볼 때 plasma arc light의 짧은 광조사 시간에 의한 접착강도의 저하를 걱정하지 않아도 될 것이다.

Plasma arc light의 이용시 light tip을 치아에서 1 cm 정도 떨어져서 광조사를 해도 임상적으로 충분한 결합강도를 얻을 수 있었다. 이는 광원을 bracket에 근접시키려는 술자의 수고를 덜어줄 수 있을 것이다.

본 연구 결과 plasma arc light는 전단 결합 강도의 감소 없이 광조사시간을 획기적으로 감소시켜 환자 와 술자 모두 이득을 언을 수 있을 것이라 사료된다. 한편 본 실험의 환경이 실제 구강환경과는 다른 점이 있으므로 앞으로 이러한 점을 고려한 연구가 필요하 며 실험적으로 plasma arc light를 이용한 실험에서만 다양한 bracket을 가지고 실험하였는데 앞으로 visible light에서도 다양한 bracket을 여러 가지 조건에 서 광중합하여 비교한 연구가 수행되어야 할 것이라 고 생각되며, 최근 활발히 연구중이며 임상에 소개중 인 레진계 글래스아이오노머 접착제등 다른 접착제 를 사용했을 때에 대한 연구도 필요하리라 사료된다.

V. 결론 및 요약

사람의 상하악 소구치를 포매하여 만든 레진블럭 시편에 광중합 접착제인 Transbond ${ }^{(8)}$ 를 사용하여 수 종의 bracket을 plasma arc light와 기존의 visible light를 이용하여 부착한 후 만능 물성시험기를 이용 하여 전단결합강도를 측정하고, 파절양상을 stereoscope을 이용하여 관찰하여 다음과 같은 결과를 얻었 다.

1. Plasma arc light를 이용한 수종의 bracket 접착시 metal bracket과 ceramic bracket의 전단결합강도 는 임상적으로 사용하기에 충분한 값을 나타내었 으며, resin bracket의 경우 다른 bracket에 비해 전 단결합강도가 현저히 작은 값을 나타내었지만 임 상적으로 사용이 가능한 값을 나타내었다.
2. Visible light를 이용한 metal bracket의 광중합시 광조사시간에 따른 전단결합강도는 광조사 시간에 따른 유의한 차이를 보이지 않았으며, 임상적으로 사용하기에 충분한 강도를 나타내었다.
3. Plasma arc light를 이용한 수종의 bracket 접착시 접착제 잔류지수를 통해 접착파절양상을 관찰한 결과, metal bracket과 resin bracket의 경우 bracket 기저면에 접착제가 반 이상 남아 있지 않은 경 우가 많았으며, ceramic bracket의 경우 bracket 기 저면에 접착제가 반 이상 남아 있는 경우가 많았 다.
4. Metal bracket의 부착시 plasma arc light를 2초간 광조사한 군과 visible light를 10 초간 광조사한 군 의 전단결합강도와 접착파절양상을 비교시 유의한 차이를 보이지 않았다.
5. Plasma arc light를 이용한 광중합시 광조사 거리 에 따른 전단결합강도는 거리가 증가할 수록 감소 하였다.

이상의 실험 결과는 plasma arc light를 이용한 bracket의 접착시 전단결합강도 저하의 우려 없이 임 상적으로 사용 가능함을 시사한다.

참 고 문 헌

[^0]3. Moin K, Dogon IL. An evaluation of shear strength measurements of unfilled and filled resin combinations. Am J Orthod 1978:74:531-6.
4. Andrews LF. Straight wire the concept and appliance. San Diego : LA Wells, 1989.
5. Buonocore M. Adhesive sealing of pits and fissures for caries prevention, with use of ultraviolet light. J Am Dent Assoc 1970: $80: 324-30$.
6. Buonocore MG, Davila J. Restoration of fractured anterior teeth with ultraviolet-light-polymerized bonding material : a new technique. J Am Dent Assoc 1973: $86: 349-54$.
7. Silverman E, Cohen M, Gianelly AA et. al. A universal direct bonding system for both metal and plastic brackets. Am J Orthod 1972:62: 236-44.
8. Tirtha R, Fan PL, Dennison JB, Powers JM. In vitro depth of cure of photo-activated composites. J Dent Res 1982:61:1184-7.
9. Blankenau RJ, Kelsey WP, Powell GL et. al. Degree of composite resin polymerization with visible light and argon laser. Am J Dent 1991 : 4 : 40-2.
10. Peutzfeldt A, Sahafi A, Asmussen E. Characterization of resin composites polymerized with plasma arc curing units. Dent Mater 2000: 16 : 330-6.
11. Sfondrini MF, Cacciafesta V, Pistorio A, Sfondrini G. Effects of conventional and high-intensity light-curing on enamel shear bond strength of composite resin and resin-modified glass-ionomer. Am J Orthod Dentofac Orthop $2001: 119: 30-5$.
12. Talbot TQ, Blankenau RJ, Zobitz ME et. al. Effect of argon laser irradiation on shear bond strength of orthodontic brackets: An in vitro study. Am J Orthod Dentofac Orthop 2000: 118: 274-9.
13. Lalani N, Foley TF, Voth R, Banting D, Mamandras A. Polymerization with the argon laser: Curing time and shear bond strength. Angle Orthod 2000:70:28-33.
14. Hofmann N, Hugo B, Schubert K, Klaiber B. Comparison between a plasma arc light source and conventional halogen curing units regarding flexural strength, modulus, and hardness of photoactivated resin composites. Clin Oral Investig 2000: 4:140-7.
15. Cacciafesta V, Sfondrini MF, Sfondrini G. A xenon arc light-curing unit for bonding and bleaching. J Clin Orthod 2000:34:94-6.
16. Nigel AF, John FM, John GB. A critique of bond strength testing in orthodontics. Br J Orthod $1994: 21: 33-43$.
17. Årtun J, Bergland S. Clinical trials with crystal growth conditioning as an alternative to acid-etching enamel pretreatment. Am J Orthod 1984:85:333-40.
18. Blankenau RJ, Powell GL, Pace SW, Wilwerding T. Evaluation of resin properties using xenon, argon and VLC system. J Dent Res 1996 : 75: 47.
19. Sakaguchi RL, Douglas WH, Peters MC. Curing light performance and polymerization of composite restorative materials. J Dent 1992:20: 183-8.
20. Hannig M , Bott B . $\mathrm{In}^{-v i t r o ~ p u l p ~ c h a m b e r ~ t e m p e r a t u r e ~ r i s e ~ d u r i n g ~}$ composite resin polymerization with various light-curing sources. Dent Mater 1999: 15:275-81.
21. Jost-Brinkmann PG, Schiffer A, Miethke RR. The effect of adhesive
layer thickness on bond strength. J Clin Orthod 1992: 26:718-20.
22. Reynolds IE, Von Fraunhofer JA. Direct bonding of orthodontic mesh size. Br J Orthod 1976:3:91-5.
23. MacColl GA, Rossouw PE, Titley KC, Yamin C. The relationship between bond strength and orthodontic bracket base surface area with conventional and microetched foil-mesh bases. Am J Orthod Dentofac Orthop 1998: $113: 276$-81.
24. Proffit WR, Field HW, Nixon WL. Occlusal forces in normal and long faced adults. J Dent Res $1983: 62: 566-70$.
25. McCarthy MF, Hondrum SO. Mechanical and bond strength properties of light-cured and chemically cured glassionomer cements. Am J Orthod Dentofac Orthop 1994:105:135-41.
26. Guan G, Takano-Yamamoto T, Miyamoto M et. al. Shear bond strengths of orthodontic plastic brackets. Am J Orthod Dentofac Orthop 2000: 117: 438-43.
27. Akin-Nergiz N, Nergiz I, Behlfelt K, Platzer U. Shear bond strength of a new polycarbonate bracket-an in vitro study with 14 adhesives. Europ J Orthod 1996: 18:295-301.
28. Keizer S, Ten Cate JM, Arends J. Direct bond of orthodontic brackets. Am J Orthod 1976: 69:318-27.
29. O'Brien KD, Watts DC, Read MJF. Residual debris and bond strength -Is there a relationship? Am J Orthod Dentofac Orthop 1988:94: 222-30.
30. Harris AMP, Joseph VP, Rossouw PE. Shear peel bond strength of esthetic orthodontic brackets. Am J Orthod Dentofac Orthop 1992 : 102 : 215-9.
31. Odegaard J, Segner D. Shear bond strength of metal brackets compared with a new ceramic bracket. Am J Orthod Dentofac Orthop 1988: 94: 201-6.
32. Gwinnett AJ. A comparison of shear bond strength of metal and ceramic brackets. Am J Orthod Dentofac Orthop 1988:93:346-8.
33. Harris AMP, Joseph VP, Rossouw E. Comparison of shear bond strengths of orthodontic resins to ceramic and metal brackets. J Clin Orthod 1990: 24 : 725-8.
34. Viazis AD, Nakajima H, Kleven JS. Shear bond strengths of three new ceramic brackets. J Clin Orthod 1993: 27:539-42.
35. Joseph VP, Rossouw PE. The shear bond strength of stainless steel orthodontic brackets bonded to teeth with orthodontic composite resin and various fissure sealants. Am J Orthod Dentofac Orthop 1990:99 : 66-71.
36. Siomka LV, Powers JM. In vitro bond strength of treated direct bonding metal bases. Am J Orthod 1985:88:133-6.
37. 윤덕상, 이기수. 화학중합형 및 광중합형 레진 접착제가 금속 및 도재 bracket의 전단결합강도에 미치는 영향. 대치교정지 $1994: 24: 125-34$.
38. 유미희, 황충주. 수종 교정용 접착제의 전단 접착강도비교. 대치교정지 1994: 24 : 433-45.
39. Lopez JI. Retentive shear strengths of various bonding attachment bases. Am J Orthod 1980:77: 669-78.
40. Owens SE, Miller BH. A comparison of shear bond strengths of three visible light-cured orthodontic adhesives. Angle Orthod 2000:70: 352-6.

Shear bond strength and adhesive failure pattern in bracket bonding with plasma arc light

Young-Chel Park, Hyung-Seok Yoo, Young-Geun Oh, Seung-Yeon Lee
Department. of Orthodontics, College of Dentistry, Yonsei University, Seoul, Korea

The purpose of this study was to evaluate the clinical usefulness of plasma arc light which can reduce the curing time dramatically compared by shear bond strengths and failure patterns of the brackets bonded with visible light in direct bracket bonding.
Some kinds of brackets were bonded with the Transbond ${ }^{\mathbb{8}}$ to the human premolars which were embedded in the resin blocks according to the various conditions. After bonding, the shear bond strength was tested by Instron universal testing machine and in addition, the amount of residual adhesive remaining on the tooth after debonding was measured by the stereoscope and assessed with adhesive remnant index(ARI).

The results were as follows :

1. When plasma arc light was used for bonding the brackets, the shear bond strength was clinically sufficient in both metal and ceramic brackets, but resin brackets showed significantly lower bond strength but which was clinically useful.
2. When metal brackets were bonded using visible light, there was no significant difference in shear bond strength due to the light-curing time and the bond strength was clinically sufficient.
3. When the adhesive failure patterns of brackets bonded with plasma arc light were observed by using the adhesive remnant index, the bond failure of the metal and resin bracket occurred more frequently at bracket-achesive interface but the failure of the ceramic bracket occurred more frequently at enamel-adhesive interface.
4. There was no statistically significant difference of the shear bond strength and adhesive failure pattern between metal bracket bonded for 2 seconds by curing with plasma arc light and 10 seconds by curing with visible light.
5. When metal brackets were bonded using plasma arc light, the shear bond strength decreased as the distance from the light source increased.

The above results suggest that plasma arc light can be clinically useful for bonding the brackets without fear of the decrease of the shear bond strength.

KOREA. J. ORTHOD. 2001: 31(2): 261-70

* Key words : Plasma arc light, Visible light, Shear bond strength, Adhesive remnant index(ARI)

[^0]: 1. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res $1955: 43: 849-53$.
 2. Newman GV. Epoxy adhesives for orthodontic attachments-progress report. Am J Orthod 1965:51:901-12.
