: TGF- 1

Matrix Synthesis of Human Intervertebral Disc Cells According to Grade of Degeneration: Under the Basal State and TGF- 1 Stimulation

Seong-Hwan Moon, M.D., Moon-Soo Park, M.D., Jin-Oh Park, M.D. Jae-Hoon Jun, M.D., Hak-Sun Kim, M.D., Hyang Kim, B.A. Hwan-Mo Lee, M.D., Eung-Shick Kang, M.D., Nam-Hyun Kim, M.D.

Department of Orthopedic Surgery, Yonsei University College of Medicine, Seoul, Korea

- Abstract -

Study Design: *In vitro* experiment to determine the matrix synthesis of human intervertebral disc (IVD) cell according to grade of degeneration.

Objectives: To quantify proteoglycan synthesis of human IVD cells in various grade of degeneration under the stimulation of TGF- 1.

Summary of Literature Review: Sophisticated method to delivery of growth factors, in continuous manner, is the genetic modification of disc cells through gene transfer. Poor responsiveness of degenerated disc to anabolic stimuli can mitigate potential application of growth factor or therapeutic gene transfer in the management of degenerative disc disease

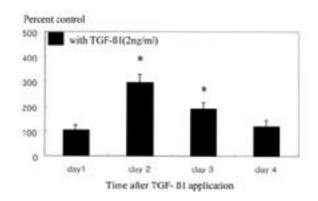
Materials and Methods: IVD tissue was obtained from nineteen patients during surgical disc procedure. Grade of degeneration was confirmed by preoperative MRI. Isolation and three dimensional culture of disc cells were performed. Disc cells were treated with exogenous TGF- 1. Newly synthesized proteoglycans were assessed by ³⁵S-sulfate incorporation using chromatography on Sepadex G-25 in PD-10 columns. One-way analysis of variance with Fishers protected LSD post-hoc test was performed to compare amount of newly synthesized proteoglycans and power analysis was also conducted. Significance level was set p<0.05.

Results: Difference between cultures of control (grade I) and degenerated (grade II-V) discs in proteoglycan synthesis in basal condition was statistically insignificant (p=0.35, power=0.21-0.63). Difference between cultures of control and degenerated disc in proteoglycan synthesis under the stimulated condition with TGF- 1 was also statistically insignificant (p=0.54, power=0.24-0.47). However cultures in stimulated condition showed increased amount of newly synthesized proteoglycans compared to those of basal condition regardless of the grade of degeneration (p=0.05).

Conclusion: Anabolic response of human intervertebral disc cells is relatively insensitive to grade of disc degeneration, which facilitate application of gene therapy in various conditions of disc degeneration.

Key Words: Disc degeneration, TGF- 1, Proteoglycan

Address reprint requests to


Seong-Hwan Moon, M.D.

Department of Orthopaedic Surgery, Yonsei University College of Medicine #134 Shinchon-Dong, Soedaemun-ku, Seoul, 120-752, Korea Tel: 82-2-361-5649, Fax: 82-2-363-1139, E-mail: shmoon@yumc.yonsei.ac.kr

	(TGF- 1)	
	가	
가 1.4).		
2		
5,13,15)		
	1.	
6).		
·•	, ,	. 1
	19 (3	31
71	~50)	
가		
•		
(transforming growth factor- 1, osteogenic protein-		
1, insulin like growth factor-1)	10)	
	. Grade I (
11,22-24)) 3 , Grade II 3 , Grade	e III
가	6 , Grade IV, 3 , Grade V 4 .	
	Geys balanced salt solution (GBSS, GIBCO-BRL, Gr	and
	Island, NY) 20	
	7).	
9)	, , , , , , , , , , , , , , , , , , ,	D.C
·	5% heat-inactivated fetal bovine serum (F)	
0.	GIBCO-BRL, Grand Island, NY), 0.2% pronase (C	
9).	biochem, La Jolla, CA), 0.004% deoxyribonuclease II t	
	IV (DNAse, Sigma, St. Louis, MO) Hams F	
가	medium and Dulbeccos Modified Eagle Medi	ium
transforming growth factor- 1 (TGF- 1)	(F12/DMEM, GIBCO-BRL, Grand Island, NY)	
	37 _o C 60 . F12/DMEM	
TGF- 1	pronase 0.02% collager	nase
가가 20).	type II (Sigma, St. Louis, MO) 2	
	37 _° C 12 .	
	F12/DMEM nylon	
18,19)	(pore size 75 um)	
·	(pole size 75 diff) 5×10^5	
가 . , 가	3 x 10	I)
, , , , , , , , , , , , , , , , , , ,	/ml 24 well plate (Falcon, Franklin Lakes, N.	
71	. 10% FBS, 1% v/v pe	
, , , , , , , , ,	cillin, streptomycin, nystatin (all antibiotics from GIBC	CO-
, 가	BRL, Grand Island, NY) F12/DMEM	
	. 3 37°C 5% CO ⁵	

- 108 -

Unin Pharmacia Biotech, Uppsala, Sweden Schridtlation mixture (Ultima Gold, Packard, Meriden, CT) 7 PD-10 column 2, 3, 4 scintillation 3, 3, 4 scintillation 3	2. 3	3					PD-10 col-	
(Kelco, Chicago, IL)	0.15M.NCl	1 20/	1	1 1				
Militier 102 mM CaCl 22 gauge 102 mM CaCl 10			low viscosity a	_				.rd,
alginate gel	(Kelco, Chicago, IL)		*1*1*.	Trypsin	Meriden, CT)			
102 mM CaCl; alginate gel alginate						2, 3, 4	scintillation	
Second CaCl 10	= =							2).
gel-	102 mM CaCl ₂	algina	ite gel					
polymerization			•	algiante	TGF- 1	(Grade I	(
F12/DMEM 3 . Alginate bead 24well culture plate well 10 . 1% v/v penicillin, streptomycin, nystatin Scrumless medium (Newman-Tytell)	· ·	Cl_2)			
24well culture plate well 10 1% v/v penicillin, streptomycin, nystatin Serumless medium (Newman-Tytell) 48	= -							
1% v/v penicillin, streptomycin, nystatin Serumless medium (Newman-Tytell) 48	F12/DMEM		3 . Al	ginate bead				
1% v/v penicillin, streptomycin, nystatin Serumless medium (Newman-Tytell) 48	24well culture pla	te wel	1 10		6			
37. C 5% CO₂	1% v/v penicilli	n, strep	tomycin, nystatin	ı	0.			
Analysis of variance test, power analysis p<0.05 TGF- 1 7	Serumless medium (Newman	n-Tytell)	48	±		SPSS (SP	SS
3. TGF- 1	37°C 5% CO ₂		8)		Inc. Chicago IL)	. One-w	ay
3. TGF- 1 TGF- 1 7 1 1. 1. 1. 1. 1. 1. 1. 1. 1.					Analysis of varian	nce Fisher 's 1	protected LSD post-h	10C
TGF- 1 7† 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3 TGF_ 1				test, power analysi	_		
TGF- 1 3 1, 2, 3, 4 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3. TGI - T							
7} 1. 3 1, 2, 3, 4 1. 1. 10//g 10//ml 3 4. Trypan blue exclusion test 95~100% 3 90~ 95% TGF- 1 Grade II-V 7 3 TGF- 1 (2 7 3) TGF- 1 1 TGF- 1 1 1 TGF- 1 1 TGF- 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1			
7} 1. 3 1, 2, 3, 4 1. 1. 10//g 10//ml 3 4. Trypan blue exclusion test 95~100% 3 90~ 95% TGF- 1 Grade II-V 7 3 TGF- 1 (2 7 3) TGF- 1 1 TGF- 1 1 1 TGF- 1 1 TGF- 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 1 TGF- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TGF- 1							
1. 2, 3, 4 1. 2, 3, 4 1. 3 4. 10//g 10//ml 3 4. Trypan blue exclusion test 3 95~100% 3 90~ 95% 3 90~				가				
1, 2, 3, 4 1. 1, 2, 3, 4 1. 10/g 10/ml 3 4. Trypan blue exclusion test 3				·				
1, 2, 3, 4 1. 1, 2, 3, 4 1. 10/g 10/ml 3 4. Trypan blue exclusion test 3	3							
4 x 10%g 10%ml 3 4.	_				1.			
$10\% \qquad 10\% \qquad 10\% \qquad 10\% \qquad 3$ 4.	1, 2, 3, 1						,	1 🗸
4.			•		106/~	106/1	-	
Trypan blue exclusion test 3					107g	107/m1		3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4.					Т	1.1 1	
TGF- 1 95% Grade II-V . Grade I-V . TGF- 1 (2 2. TGF- 1 3 7) . TGF- 1 1 7 7) 3) . TGF- 1 1 7 7) . TGF- 1 1 7 7) . TGF- 1 3 7) . TGF- 1 5 7) . TGF- 1 1 70 7) . TGF- 1	2				05 1000/ 2	Tryp		
Grade II-V . Grade I-V . Grade I-V . TGF- 1 (2 2. TGF- 1 3 7) 3) . TGF- 1 1 1 7) . TGF- 1 1 1 7) . TGF- 1 1 5 2 (3) . (Fig. 1). 5. 4 7 8M guanidine hydrochloride, 20							9	<i>)</i> ()~
Oracle I-V		T T T			95%	•		
7	Grade I	1-V						
TGF- 1 (2) ng/ml) . TGF- 1 (2) 3) . TGF- 1 (1) 2 (3) 4 7! 8M guanidine hydrochloride, 20 Grade I (100%) mM EDTA Forade II (100%) Grade II (100%) Grade III (100%) Grade II (100%) Grade III (100%) Grade II (100%) Grade III (100%)			. Grade I-V		2. TGF- 1			
. TGF-1				TGF- 1 (2				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ng/ml)							
$. \\ (Fig. 1).$ 5. $. \\ 3. \\ TGF-1 \\ 4 7^{\dagger} 8M \text{ guanidine hydrochloride, 20} \\ mM EDTA \qquad \text{proteinase inhibitors} \qquad Grade II 95.1 \pm 8.3\%, Grade III 91.1 \pm 16.1\% \text{ Grade}$. TGF- 1		TGF- 1	1	가	
5. $ (Fig. 1). $ $ 3. $ $ 3. $ $ TGF- 1 $ $ 4 7 8M guanidine hydrochloride, 20 Grade I 100% $ $ mM EDTA proteinase inhibitors Grade II 95.1 \pm 8.3%, Grade III 91.1 \pm 16.1% Grade$	3)				2	(3)	
5. $3. \\ TGF-1 \\ 4 7 \\ TM \\ MEDTA \\ TGF-1 \\ SM \\ guanidine \\ hydrochloride, 20 \\ TGF-1 \\ Grade \\ I \\ 95.1 \pm 8.3\%, \\ Grade \\ III \\ 91.1 \pm 16.1\% \\ Grade \\ Grade \\ III \\ STAN \\ Grade \\ STAN \\ S$								2
3. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$					(Fi	g. 1).		
3. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	5							
TGF- 1 4 7 8M guanidine hydrochloride, 20 Grade I 100% mM EDTA proteinase inhibitors Grade II 95.1 ± 8.3%, Grade III 91.1 ± 16.1% Grade	0.				3			
4 7 8M guanidine hydrochloride, 20 Grade I 100% mM EDTA proteinase inhibitors Grade II 95.1 ± 8.3%, Grade III 91.1 ± 16.1% Grade					J.			
4 7 8M guanidine hydrochloride, 20 Grade I 100% mM EDTA proteinase inhibitors Grade II 95.1 ± 8.3%, Grade III 91.1 ± 16.1% Grade		35 S			TGF- 1			
mM EDTA proteinase inhibitors Grade II $95.1 \pm 8.3\%$, Grade III $91.1 \pm 16.1\%$ Grade	4 가	8M	guanidine hydroc	hloride, 20		Grade I	100%	
			-	•	Grade II 95.1 +			ade
	-		48					

Fig. 1. Content of newly synthesized proteoglycan over duration of culture as assayed by incorporation of ³⁵S-sulfate. Human intervertebral disc cells cultured in alginate beads, treated by TGF- 1 (2ng/ml) showed no effect at day 1, 3 fold increase at day 2, and 2 fold increase at day 3. and 1.2 fold increase at day 4. *: p<0.05.

(p=0.35, power 0.21~0.63)(Fig. 2).

4. TGF-1

TGF- 1 (2 ng/ml)

TGF- 1 100% Grade $304.0 \pm 47.3\%$, Grade II $297.6 \pm 55.4\%$, Grade III $310.2 \pm 50.4\%$, Grade IV $280.2 \pm 86.2\%$ Grade V $270.3 \pm 88.7\%$ 가가 TGF-1 Grade V Grade I 가 가 Grade

(p=0.54, power 0.24-0.47)(Fig. 2).

13)

가

Percent control

with TGF-81 with saline

500

NS

NS

100

1 2 3 4 5

Grade of disc degeneration

Fig. 2. Content of newly synthesized proteoglycan over grade of degeneration as assayed by incorporation of ³⁵S-sulfate. Human intervertebral disc cells cultured in alginate beads, treated by TGF- 1 (2ng/ml) showed 3 fold increase in newly synthesized proteoglycan compared to those treated with normal saline, while degeneration grade failed to affect proteoglycan synthesis (p=0.54, power 0.24-0.47 in TGF- 1 treated group, p=0.35, power 0.21-0.63 in basal group). *: p<0.05) NS: statistically non-significant.

가 가 . 가 가 . TGF- 1

가 .

가 .

가 가 . . 가

14)

.

3)

19,20, 22-24)

가 16) 가 statistical power 0.21~0.64 (0.8)31 50 가 가 가 가

REFERENCES

1) Anderson JAD: Back pain and occupation. The lumbar Spine and Back Pain. Third Edition, Edited by MIV Jayson. London. Churchill Livingstone. PP2-36, 1987

가

2) Aydelotte MB, Greenhill RR and Kuettner KE: Differ - ences between sub-populations of cultured bovine articu -

- lar chondrocytes. II. Proteoglycan metabolism. Connect Tiss Res, 18:223-234, 1988.
- 3) Bayliss MT, Johnstone B and O'Brien JP: Proteogly can synthesis in the human intervertebral disc: Variation with age, region and pathology. Spine13:972-981, 1988.
- 4) **Borenstein D**: Epidemiology, etiology, diagnostic evaluation, and treatment of low back pain. Curr Opin Rheumatol, 4:226-232, 1992.
- 5) **Buckwalter JA**: Aging and degeneration of the human intervertebral disc. Spine, 20:1307-1314, 1995.
- 6) Butler D, Trafimow JH, Andersson GB, et al: Discs degenerate before facets. Spine, 15:111-113, 1990.
- 7) Chelberg MK, Banks GM, Geiger DF, et al: Identification of heterogenous cell populations in normal human intervertebral disc. J Anat, 186:43-53, 1995.
- 8) Chiba K, Andersson GBJ, Masuda K, et al: Metabo-lism of the extracellular matrix formed by intervertebral disc cells cultured in alginate. Spine, 22:2885-2893, 1997.
- 9) Evans CH and Robbins PD: Possible orthopaedic applications of gene therapy. J Bone Joint Surg (Am), 77:1103-1113, 1995.
- 10) Eyre D, Benya P, Buckwalter J, et al: Intervertebral disc: Part B. Basic science perspective. In New Perspectives in Low Back Pain. Park Ridge, IL: American Academy of Orthopaedic Surgeons, 147-207, 1989.
- 11) **Gruber HE, Fisher EC, Desani B, et al**: Human intervertebral disc cells from the annulus: three dimensional culture in agarose or alginate and responsiveness to TGF-b1. Exp Cell Res, 235:13-21, 1997.
- 12) **Gruber HE and Hanley EN**: Analysis of aging and degeneration of the human intervertebral disc. Spine 23:751-757, 1988.
- 13) **Hutton WC, Toribatake Y, Elmer WA, et al**: The effect of compressive force applied to the intervertebral disc in vivo. Spine, 23:2524-2537, 1998.
- 14) **Johnstone B and Bayliss MT**: The large proteoglycans of the human interverterbal disc. Spine 20:674-684, 1995.
- 15) **Lipson SJ and Muir H**: Proteoglycans in experimental intervertebral disc degeneration. Spine, 6:194-210, 1981.
- 16) Maeda S and Kokubun S: Changes with age in proteoglycan synthesis in cells cultured in vitro from the inner and outer rabbit annulus fibrosus. Spine 25:166-169, 2000.
- 17) Maldonado BA and Oegema TR: Initial characteriza tion of the metabolism of intervertebral disc cells encapsu lated in microspheres. J Orthop Res, 10:677-690, 1992.

- 18) Moon S-H, Gilbertson LG, Nishida K, et al: Human intervertebral disc cells are genetically modifiable by ade novirus-mediated gene transfer: Implications for the clinical management of intervertebral disc disorder. Spine 25:2573-2579, 2000
- 19) Moon S-H, Kang JD, Nishida K, et al: Human cervical intervertebral disc cells are susceptible to adenovirus-mediated gene therapy. Proceedings of Cervical Spine Research Society, 1999.
- 20) Nishida K, Kang JD, Gilbertson LG, et al: Modulation of biologic activity of the rabbit intervertebral disc by gene therapy: An in vivo study of adenovirus-mediated transfer of the human transforming growth factors 1 encoding gene. Spine, 24:2419-2425, 1999.
- 21) Nishida K, Kang JD, Suh J-K, et al: Adenovirus-mediated gene transfer to nucleus pulposus cells: Implication

- for the treatment of intervertebral disc degeneration. Spine, 23:2437-2443, 1998.
- 22) Osada R, Oshima H, Ishihara H, et al: Autocrine/paracrine mechanism of insulin-like growth factor-1 secretion, and the effect of insuline-like growth factors-1 on proteoglycan synthesis in bovine intervertebral discs. J Orhtop Res, 14:690-699, 1996.
- 23) Takemi K, Kumano F, An H, et al: Osteogenic protein-1 is most effective in stimulating nucleus pulposus and annulus fibrosus cells to repair their matrix after chondroitinase ABC-induced chemonucleolysis. Tranc Orthop Res Soc, 201, 1999.
- 24) **Thompson JP, Oegema TR Jr and Bradford DS**: Stimulation of mature cannine intervertebral disc by growth factors. Spine, 16:253-260, 1991.

	:							
	:	가	TGF- 1					
	· :							
	:		19			•		
		. 3			TGF-	1(2 ng/ml),		
grade I						³⁵ S		가
	Sephadex G-25M		PD-10 column					
:			(grade II-V)				(p=0.35, po	ower=0.21-0.63).
TGF- 1			(grade II-V))			(p=0.	54, power=0.24-
0.47).	TGF- 1				3		가가	(p<0.05).
:								
가				가				
	: , TGF	₹- 1,						

Tel: 82-2-361-5649, Fax: 82-363-1139, E-mail: shmoon@yumc.yonsei.ac.kr

134