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	Background	 Ovarian cancer causes more than 15 000 deaths per year in the United States. The survival of patients is quite 
heterogeneous, and accurate prognostic tools would help with the clinical management of these patients.

	 Methods	 We developed and validated two gene expression signatures, the first for predicting survival in advanced-stage, 
serous ovarian cancer and the second for predicting debulking status. We integrated 13 publicly available datasets 
totaling 1525 subjects. We trained prediction models using a meta-analysis variation on the compound covariable 
method, tested models by a “leave-one-dataset-out” procedure, and validated models in additional independent 
datasets. Selected genes from the debulking signature were validated by immunohistochemistry and quantita-
tive reverse-transcription polymerase chain reaction (qRT-PCR) in two further independent cohorts of 179 and 78 
patients, respectively. All statistical tests were two-sided.

	 Results	 The survival signature stratified patients into high- and low-risk groups (hazard ratio = 2.19; 95% confidence interval 
[CI] = 1.84 to 2.61) statistically significantly better than the TCGA signature (P = .04). POSTN, CXCL14, FAP, NUAK1, 
PTCH1, and TGFBR2 were validated by qRT-PCR (P < .05) and POSTN, CXCL14, and phosphorylated Smad2/3 were 
validated by immunohistochemistry (P < .001) as independent predictors of debulking status. The sum of immu-
nohistochemistry intensities for these three proteins provided a tool that classified 92.8% of samples correctly in 
high- and low-risk groups for suboptimal debulking (area under the curve = 0.89; 95% CI = 0.84 to 0.93).

	Conclusions	 Our survival signature provides the most accurate and validated prognostic model for early- and advanced-stage 
high-grade, serous ovarian cancer. The debulking signature accurately predicts the outcome of cytoreductive 
surgery, potentially allowing for stratification of patients for primary vs secondary cytoreduction.
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Ovarian cancer is the most lethal gynecologic malignancy, causing 
more than 15 000 deaths per year in the United States (1). Advanced 
ovarian cancer (stages III and IV) accounted for the majority of the 
estimated 22 000 new cases of epithelial ovarian cancer in 2012 in 
the United States (1). Improvements in the treatment of patients 
with advanced-stage ovarian cancers have extended women’s 
median survival, but overall survival has not substantially changed. 
This results from effective upfront treatment of the disease but 
with subsequent recurrence and the development of drug-resistant 
disease.

The initial treatment for all patients with advanced-stage ovar-
ian cancer is extensive debulking surgery, with the goal being 
removal of tumor to less than 1 cm. Patients who are optimally 
debulked (<1 cm residual disease) have a substantially improved 
survival compared with patients who are left with bulky residual 
disease (>1 cm; suboptimally debulked). Suboptimally debulked 
patients do not benefit from this extensive surgery (2,3). After 
surgery, all patients undergo combination chemotherapy that is 

effective in approximately 75% of patients (4). Thus, developing 
tools to stratify patients according to ability to be cytoreduced 
or response to primary chemotherapy may help improve patient 
survival and minimize therapeutic toxicity. It is important to note, 
however, that most patients with advanced-stage ovarian cancer 
ultimately suffer recurrence and eventually develop drug-resistant 
tumors. Thus the development of new and novel therapies for this 
disease is absolutely critical.

Our laboratory has developed the largest collection of ovarian 
cancer gene expression data to date (5), allowing us to systemati-
cally evaluate a range of previously published prognostic signa-
tures (6–16). We identified the signature developed by The Cancer 
Genome Atlas (TCGA) consortium as the best available prognostic 
model (17). The TCGA consortium recently proposed an updated 
survival signature, trained on twice as many samples and incor-
porating subtype information and clinicopathologic factors (18). 
However, it remains unclear whether prognostic accuracy can be 
improved with additional data.
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Here, we use a meta-analytic signature development approach 
to leverage more than 1500 publicly available, clinically annotated 
microarray assays of high-grade, primary serous tumors to compre-
hensively address two objectives for patients with ovarian cancer. 
These are 1) to develop a prognostic gene signature for overall sur-
vival of early- and late-stage patients and 2) to predict suboptimal 
cytoreductive surgery. We performed extensive signature evalua-
tion demonstrating significant improvement over existing survival 
signatures. Furthermore, this work establishes the existence of a 
signature predictive for suboptimal cytoreduction, providing the 
possibility that unsuccessful surgery can be avoided through a 
genomic or immunohistochemical test at diagnosis.

Methods
Dataset and Patient Eligibility Criteria
Gene expression data on tumors, with carefully curated clinical 
annotations, are available in the curatedOvarianData database (5). 
Criteria for inclusion of studies in this database, the correspond-
ing literature reviews, and the data-processing protocols have been 
described previously (5). We restricted our meta-analysis to pri-
mary, late-stage, high-grade, serous tumors with available overall 
survival time-to-event data (Table 1). For prediction model train-
ing, we required a minimum study sample size of 75. Only data-
sets published before March 2012 were considered in the training 
phase. Datasets that did not satisfy these two criteria were set aside 
as independent validation data for the final model. This led to six 
training datasets and seven validation datasets. We also tested our 
final model on the 27 early-stage, high-grade samples from TCGA; 
these samples contained eight patients with events. Datasets were 
systematically screened for duplicated samples, as described previ-
ously (17).

Clinical Endpoints
For the survival signature, the primary endpoint was overall sur-
vival from initial diagnosis to death. For the debulking signature, 
suboptimal debulking was defined as residual tumor mass greater 
than 1 cm, except for datasets (9,19) where we used presence of 
macroscopic residual tumor.

Statistical Analysis
Overall Strategy.  We trained the overall survival signature on the 
6 training datasets (see Figure 1). We then evaluated the perfor-
mance in three ways: 1) a leave-one-dataset-out validation within 
the six training datasets (see Figure 2): here each dataset in turn 
is set aside for cross-study validation, and the model is trained 
on the remaining five datasets to assess cross-study consistency 
(Supplementary Figure 1, available online); results of this step are 
not subject to optimistic bias. At the end of this phase a single model 
is trained on all six training datasets; 2) independent validation on 
the seven validation datasets (see Figure 3): none of the samples 
from the six training datasets are used in this step; and 3) joint visu-
alization of the first two methods to provide a summary view of 
both leave-one-study-out and independent validation performance 
(see Figure 4). The third method has no effect on the training. In 
addition to cross-validation in public datasets (see Supplementary 
Figure 10, available online), the debulking signature was validated 

in two independent cohorts by quantitative reverse-transcription 
polymerase chain reaction (qRT-PCR) and immunohistochemistry 
(see Figures 6 and 7).

Model Training.  We aimed to identify robust prognosis genes 
for which variation in expression was consistently associated with 
survival. We first calculated the univariable Cox regression coef-
ficients and their standard errors for each gene in each training 
dataset. We then summarized the Cox coefficients of gene i across 
training datasets into a single coefficient βi by a fixed effects meta-
analysis (20) with coefficients weighted by the inverse of their 
squared standard errors. We then ranked genes by P value against 
the null hypothesis that the pooled coefficient is 0. We also com-
pared our results to pooling using a random-effects meta-analysis 
(21) (Supplementary Figure 2, available online).

We chose a signature size m of 200 genes for all models, a size 
sufficiently small to be practically useful in a clinical test and suf-
ficiently large to provide robustness in prediction accuracy across 
technologies. In general, the size of the gene signature had only 
a modest impact on the prediction accuracy in our algorithm as 
long as the signature included at least 100 genes (Supplementary 
Figure 3, available online). The m top-ranked genes were used to 
calculate a risk score for patient j, rj, using our multistudy variant of 
the compound covariable score (22). In this approach, the expres-
sion of gene i in subject j, xij, is weighted by the pooled Cox coef-
ficient of gene i (βi) to calculate the risk score rj:

r xj i ij
i

m

=
=
∑β

1

To ensure that gene expression measurements are on the same scale 
across studies, all gene-specific expression vectors were centered to 
zero mean and scaled to unit variance within datasets. For binary 
classification (optimal vs suboptimal debulking), we proceeded 
analogously, pooling coefficients of a univariable logistic regres-
sion model for each gene.

Validation Metrics. Gene signatures were evaluated by hazard 
ratio (HR) of dichotomized patient risk scores. Dichotomization 
cutoffs were the medians of these risk scores in the combined 
training cohorts. Significance of hazard ratio differences between 
signatures was estimated by bootstrap. Binary outcome classifiers 
were evaluated by area under the receiver operating characteristic 
(ROC) curve (or C-index) and the DeLong test (23). The C-index 
for censored data was calculated with the survC1 package (24), as 
previously described (17).

Multivariable Models. To separately assess the added value of 
clinical variables, we used multivariable models incorporating the 
gene signature risk group as a categorical covariable (high vs low 
risk). These only were evaluated by fivefold cross-validation for a 
Kaplan–Meier analysis. We further assessed the improvement by a 
likelihood ratio test.

Details of our implementations of published models (9,18,25) 
are given in the Supplementary Methods (available online). P val-
ues less than .05 were considered significant. All statistical tests 
were two-sided.
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Quantitative RT-PCR
Quantitative RT-PCR was performed as previously described (13) 
on 20-ng amplified RNA from 39 suboptimally and 39 optimally 
debulked specimens selected randomly from the Bonome et  al. 
cohort (8) that had not been used in model training. Because tumor 
stage is associated with debulking status (26), numbers of stage III 
and IV patients (n = 31 and 8, respectively) in the optimal and sub-
optimal groups were balanced to disassociate stage and debulking 
status in the qRT-PCR validation cohort. Primer sets were selected 
(Supplementary Table 1, available online) for housekeeping genes 
GAPDH, GUSB, and ACTB and seven genes showing highly dif-
ferentiated expression levels through the meta-analysis.

Immunohistochemistry
Immunohistochemical staining of POSTN (1.25  μg/mL; 
BioVendor R&D, Asheville, NC), CXCL14 (ab46010, 2.5 μg/mL; 
Abcam, Cambridge, UK) and pSmad2/3 (No. 3101, recognizing 
only phosphorylated Smad2 or Smad3 by transforming growth 
factor β (TGF-β) receptor, 1:200; Cell Signaling, Danvers, MA) 
was done on an independent validation tissue microarray consist-
ing of 216 stage III/IV, high-grade, serous ovarian cancers obtained 
from patients with informed consent at the Massachusetts General 
Hospital (between 1993 and 2009. Debulking status was available 
for 179 cancers (n = 136 optimal and 43 suboptimal). Deparaffinized 
sections were subjected to antigen retrieval (citrate buffer, pH = 6.1, 
95 °C for 30 minutes), incubated with each primary antibody at room 
temperature for 45 minutes, visualized with ImmPRESS Peroxidase 
Polymer Detection Reagents (Vector Laboratories, Burlingame, 
CA) and 3,3’-diaminobenzidine, and counterstained with Mayer’s 
hematoxylin. Intensity scores were calculated as the average differ-
ence in staining intensity between the tumor and stroma areas (27).

Results
We applied a meta-analytic signature development approach to 
publicly available high-grade, advanced-stage, serous ovarian can-
cer microarray gene expression profiles (Table 1) (5). This included 
the training and validation of two separate prognostic signatures: 
the first to identify long- and short-term survivors among patients 
with early-stage and late-stage, serous ovarian cancer; the second 
to identify advanced-stage, serous tumors that cannot be optimally 
debulked to 1 cm or less of residual tumor.

Development of an Overall Survival Gene Signature
We created a new gene signature consisting of genes whose 
expression displayed the most statistically significant associa-
tion with overall survival across major public datasets (Figure 1). 
We first used a cross-study validation approach (Supplementary 
Figure  1, available online) to quantify the extent to which our 
training approach would generate a signature that is consistent 
across studies. After applying our leave-one-dataset-out cross-
validation to the training datasets, we found patients classified as 
high risk to consistently have significantly shorter survival than 
low-risk patients (Figure 2).

We then retrained the signature (Supplementary Table 1, availa-
ble online) using all six training datasets and performed an external 
validation in seven additional independent datasets. These included 
a qRT-PCR dataset (28), three datasets not passing our minimum 
training sample size of 75 (13,29,30), a dataset that became avail-
able after the model was finalized (16), the TCGA early-stage, 
high-grade samples (9), and a dataset for which survival was anno-
tated with a binary label rather than time to death (19). Our model 
continued to discriminate short-term from long-term survivors in 

Database of curated gene expression 
23 studies, n = 2970 

13 studies, n = 1525

Overall survival signature

Leave-one-dataset-out cross-validation
(Supplementary Figure 10, available online)

Validation of selected genes by qRT-PCR in an 
independent cohort of 78 patients (Figure 6)

Pathway analysis (Figure 5)

Validation of 3 genes by immunohistochemistry in an 
independent cohort of 179 patients  (Figure 7)

Datasets with available debulking information 
8 studies, n = 1061 

Debulking signature

Inclusion criteria
- primary tumors (n = 2928)
- serous histology (n = 2668)
- late stage, high grade* (n = 2070)
- survival information (n = 1760) 
- sample size > 40* (n = 1691)
- events (deaths) > 15* (n = 1629)

Split datasets into 6  training (n = 1,218) and 7 test
(n = 307) datasets  (see Methods for criteria) 

Leave-one-dataset-out cross-validation (Figure 2)

Validation in 7 independent datasets (Figure 3)

Pathway analysis (Supplementary Figure 8, available online)

(n = 1525)

Figure 1.  Flowchart of the study. This outlines the steps for training and validating the prognostic models presented in this study. * Including 27 
TCGA early stage samples.†Samples that were included in multiple studies were identified and removed (see Supplementary Table 1, available 
online). qRT-PCR = quantitative reverse-transcription polymerase chain reaction.
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all of these datasets, as shown by Kaplan–Meier analysis and ROC 
plots (Figure 3).

Comparison of the Survival Signature With Existing 
Prognostic Factors and Gene Signatures
We compared Kaplan–Meier stratifications based on our signature 
to those based on clinical prognostic factors, the original TCGA 
gene signature (Supplementary Figure  4, available online) (9), 
which we recently identified as the best performing signature pub-
lished before July 2012 (6), and a more recent TCGA signature 
developed by the same investigators (Supplementary Figures 5 and 
6, available online) (18). Clinical prognostic factors include optimal 
debulking (8), age, and tumor stage at diagnosis. Only four datasets 
provided all three factors; however, seven provided both stage and 
debulking status (Table 1; Supplementary Table 2, available online). 
We thus focused on these two factors.

When combining the results of cross-study validation and inde-
pendent validation into a single summary (Figure 4), patient strati-
fication using our signature was superior to clinical factors, as well 
as to both of the TCGA gene signatures. Over all cohorts exclud-
ing TCGA (n  =  1031 patients where direct comparison with the 
TCGA signatures could be made), patients classified as high risk 

by our signature had a median survival of 29.6 months (95% con-
fidence interval [CI] = 27.5 to 32.6) compared with 60.1 months 
(95% CI  =  53.2 to 68.0) for the low-risk patients. Our signature 
(HR = 2.19; 95% CI = 1.84 to 2.61) (Figure 4A) provided an overall 
increase in hazard ratio of 0.36 (95% CI = −0.04 to 0.81; P = .04) 
compared with the original TCGA signature (HR  =  1.83, 95% 
CI = 1.54 to 2.17) (Figure 4D). Including stage and debulking status 
in the prediction model provided only a small improvement over 
our gene signature alone (P = .02, likelihood ratio test) (Figure 4B). 
The two signatures proposed by the TCGA consortium performed 
very similarly compared with each other (HR difference = 0.00; 95% 
CI = −0.33 to 0.34) (Figure 4, D and E; Supplementary Figure 7, 
available online). The C-index of our signature improved moder-
ately (0.011; 95% CI = −0.015 to 0.037) to 0.62 compared with the 
TCGA signature. By simulation, we estimated that an additional 
hazard ratio improvement of 0.27 would be needed to reach statisti-
cal significance on the C-index scale as well (Supplementary Results, 
available online). Pathway analysis of our signature showed enrich-
ment of TGF-β and PDGF signaling in poor-prognosis patients 
(Supplementary Figure 8, available online). We finally verified that 
our meta-analysis training method is superior to single-study train-
ing (Supplementary Figure 9, available online).
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Figure  2.  Leave-one-dataset-out validation of performance of the new 
gene signature in predicting overall survival in late-stage ovarian cancer. 
We used our database of the ovarian transcriptome (5) for developing a 
novel overall survival gene signature by a meta-analytic signature devel-
opment method. In total, six large datasets passed our training criteria 
(see Methods). To first test our methodology on the six large datasets 
we used for training (6,8,9,10,15,63), we applied a leave-one-dataset-out 

approach (Supplementary Figure  1, available online). Specifically, for 
each of the six datasets, we trained a prediction model using the remain-
ing five datasets only and then stratified the patients of the dataset not 
used for training into high- and low-risk groups. P values were calculated 
with the log-rank test, and cutoffs for patient stratification were the medi-
ans of predicted risk scores in the combined training cohorts. All statisti-
cal tests were two-sided. TCGA = The Cancer Genome Atlas.
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Development of a Gene Signature for Predicting 
Suboptimal Debulking Surgery
Using the same meta-analytic signature development approach, we 
developed a gene signature for predicting unsuccessful debulking 
surgery (Supplementary Table  1, available online). We expected 
this signature to differ from the survival signature because the 
biological basis for optimal surgical removal of tumor tissue is not 

necessarily the same as that for patient survival. We used all eight 
late-stage microarray datasets with available debulking information 
(Table 1), excluding half of the Bonome et al. samples (n = 78) for 
validation by qRT-PCR.

We first tested our training datasets approach by leave-one-data-
set-out validation. Accurate prediction of debulking status proved 
to be difficult, with an overall area under the curve of 0.59 (95% 
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Figure  3.  Validation of the survival signature in independent data 
(9,13,16,19,28–30). A–E) Risk stratification in five validation microarray 
datasets of late-stage, high-grade, serous ovarian cancer by a model 
trained on all six training datasets (Figure 2). The Gillet et al. reverse-
transcription polymerase chain reaction validation dataset (28) assayed 
only 12 of the 200 genes in the signature, which included, however, 
well-characterized cancer genes such as APC, RB1, and PDGFRB. The 
remaining four datasets had less than the 75 samples we required for 
training (13,29,30) or were published after our model was finalized 
(16). Cutoffs for high and low risk were again determined by calculat-
ing the median of the combined patient risk scores in training data. F) 

Performance in all early-stage, high-grade, serous samples from The 
Cancer Genome Atlas (TCGA) data. P values were calculated with the 
log-rank test. All statistical tests were two-sided. G) We further tested 
the model in a dataset in which survival information was only available 
as binary outcome (long-term vs short-term survivors) (19). The predic-
tion model here estimated the probability of short term survival and its 
accuracy is shown with a receiver operating characteristic curve. This 
curve shows the true- and the false-positive rates for all possible cutoffs 
of the continuous prediction score. True positives are correctly classified 
short-term survivors. *Area under the curve (AUC) statistically signifi-
cantly greater than 0.5 [DeLong test (23)].
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CI = 0.55 to 0.63) (Supplementary Figure 10, available online). In the 
same data, the signature published by Berchuck et al. (25) achieved an 
area under the curve of 0.54 (95% CI = 0.49 to 0.58) (Supplementary 
Figure 11 and Supplementary Table 3, available online). Expression 
of the top-ranked hit POSTN alone achieved prediction accuracies 
very similar to our signature (Supplementary Figure  12, available 
online). In the 1109 microarray samples with both debulking and 
survival information, high POSTN levels were prognostic of survival 
after adjusting for debulking status (P =  .04; unadjusted P < .001). 
The prediction accuracy was robust to the choice of model training 
parameters (Supplementary Figures 13 and 14, available online).

Analysis of Pathways Contributing to Suboptimal 
Cytoreductive Surgery
To explore the molecular basis underlying our debulking signature, 
we analyzed the gene signature to identify biological pathways rel-
evant to suboptimal disease. Application of pathway identification 
software (Pathway studio 7.1; Ariadne Genomics, Rockville, MD) 
identified the hyperactivation of TGF-β/Smad signaling (pathway 
enrichment analysis, P = .004) and the potential activation of RTK/
Ras/MAPK/Egr-1, AMPK/Egr-1, and Hedgehog/Gli signaling in 
suboptimally debulked tumors (Figure 5). The resultant transcrip-
tional network leads to upregulation of genes that support tumor 
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Figure  4.  Combined comparison of our novel meta-analysis gene sig-
nature with existing prognostic factors and signatures proposed by The 
Cancer Genome Atlas (TCGA). This figure provides a summary view of 
both leave-one-study-out cross-validation and independent validation 
performance shown in Figures 2 and 3. A) Summary of the risk stratifica-
tions in Figures 2 and 3 in a single Kaplan–Meier plot [all studies (Table 
1), excluding the TCGA cohort so comparison with the TCGA signatures 
could be made (6,8,10,13,15,16,28–30)]. This plot compares the survival of 
all patients classified as high risk in this meta-analysis with all low-risk 
patients. B) Risk stratification based on a fivefold cross-validated multi-
variable model using the gene signature risk group (high vs low risk) and 
the categorical covariables tumor stage (III vs IV) and debulking status 
(optimal vs suboptimal). The smaller sample sizes arise because of miss-
ing clinical annotations. C) Risk stratification based on a fivefold cross-val-
idated multivariable model using tumor stage and debulking status only. 
D) Summary of risk stratifications by the TCGA gene signature (9) over all 

cohorts excluding TCGA, as in panel A. E) Summary of risk stratifications 
by the Verhaak et al. survival signature (18), as in panel A. F) Summary of 
risk stratifications by the multivariable model proposed by Verhaak et al. 
using their survival signature, continuous TCGA subtype scores, as well 
as categorical debulking status and tumor stage. P values were calculated 
with the log-rank test. G) Forest plot providing an alternative visualization 
of the hazard ratios (HRs) shown in the Kaplan–Meier plots in Figures 2 and 
3 and including a comparison with the corresponding hazard ratios of the 
TCGA and Verhaak et al. models in all datasets separately. Squares show 
hazard ratio point estimates, with size corresponding to their weighting in 
the fixed-effects meta-analysis summaries (inverse of squared standard 
error); horizontal lines show 95% confidence intervals (CIs); and diamonds 
at the bottom show fixed-effects summaries of the hazard ratios over all 
shown datasets. Note that this fixed-effects summary corresponds to the 
hazard ratios shown in the summary Kaplan–Meier plots in panels A, D, 
and E. All statistical tests were two-sided.
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dissemination, which decrease the chance of total surgical removal, 
reducing the possibility of optimal debulking. Potential molecular 
events responsible for suboptimal surgical outcome involve migra-
tion and invasion (MMP2, PLAU, SERPINE1, TIMP3, POSTN, 
VCAN, FN1, TGFBI, SPARC, and CYR61) (31–38), angiogenesis 
(EGR1, SMADs, GLIs, VCAN, POSTN, CNY61, and LOX) (39–45), 
metastatic colonization (POSTN, VCAN, and LOX) (46–48), and 
the activation of tumor-associated fibroblasts (ACTA2 and FAP), 
which play important roles in modulating the tumor microenvi-
ronment through the secretion of growth factors and extracellular 
matrix remodeling to support tumor dissemination through metas-
tasis and angiogenesis (49,50).

Validation of the Debulking Signature by qRT-PCR and 
Immunohistochemistry in Two Independent Cohorts
Within our debulking signature, we selected seven highly dif-
ferentially expressed genes with known biological role in ovar-
ian tumorigenesis (six genes enriched in the pathway shown in 
Figure 5) and validated their expression level by qRT-PCR in an 
independent cohort of stage III and IV tumors consisting of 78 
samples from Bonome et al. (8), which we had excluded from the 

meta-analysis for this purpose. Of the seven genes tested, six were 
statistically significantly associated with surgery outcome (POSTN: 
P = .03; CXCL14: P = .03; FAP: P = .01; NUAK1: P = .03; PTCH1: 
P = .004; TGFBR2: P = .005; TNFAIP6: P = .95; all Student t test) 
(Figure 6A). A model using all genes classified 76.9% of all sam-
ples correctly, with an area under the curve of 0.76 (95% CI = 0.66 
to 0.87) (Figure  6B). Using normalized microarray data for the 
same set of patients, however, only achieved an area under the 
curve of 0.65 (95% CI = 0.53 to 0.77) through the same model, 
possibly because of the higher quantitative accuracy of qRT-PCR 
over microarray. The area under the curve for POSTN qRT-
PCR–measured expression level alone was 0.65 (95% CI = 0.53 to 
0.77). Furthermore protein expression of three of these proteins, 
POSTN, CXCL14 (signature genes), and pSmad2/3 (a surrogate 
marker of TGF-β pathway activation, a signature pathway), was 
validated by immunohistochemistry in an independent cohort of 
179 patients. This analysis confirmed strong association of their 
expression with debulking status (Figure 7; Supplementary Table 4, 
available online). The sum of immunohistochemistry intensities 
for these three proteins provided a tool that classified 92.8% of 
samples in the high- and low-risk groups for suboptimal debulking 

Figure  5.  Pathway analysis of the debulking signature. Using the 
Pathway Studio 7.1 (Ariadne Genomics) software and a novel signa-
ture of 200 debulking-associated genes, we identified pathways sta-
tistically significantly associated with suboptimal debulking surgery. 
A gene is labeled in red when it is overexpressed in tumors that were 
subsequently suboptimally debulked. Conversely, genes overexpressed 
in tumors with optimal cytoreduction are labeled in blue. Genes with 

predictive power toward poor prognosis based on the meta-analysis are 
highlighted with pink borders. Red broken arrows indicate direct stimu-
latory modification. Green arrows indicate EGR-1–based transcriptional 
regulations. Orange arrows indicate TGF-β/Smad–based transcriptional 
regulations. Blue solid arrows indicate other direct regulations. Blue 
broken arrows indicate other indirect regulations. Purple sticks indicate 
binding.
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correctly, with an area under the curve of 0.89 (95% CI = 0.84 to 
0.93) (Figure 7G).

Discussion
We derived gene expression signatures to predict overall patient 
survival in early- and late-stage, high-grade, serous ovarian can-
cer and separately to predict suboptimal debulking surgery. These 
signatures were developed using the largest gene expression meta-
analysis to date for ovarian cancer, incorporating 1525 samples 
(Figure 1). This analysis triples the sample size of the largest previ-
ous study (9). Novel signatures were validated (Figures 2–7) and 
shown to provide added value compared with known clinical fac-
tors, and they consistently outperformed available gene signatures 
(9,18,25).

Developing outcome predictors for late-stage cancers has been 
difficult, in part because of methodologic problems. These include: 
1)  signatures generated on relatively small sample sizes (51–55); 
2) a lack of independent validation (53,55); 3) unaudited and unre-
liable clinical annotation (53,56,57); 4)  laboratory-specific biases 
such as batch effects (57,58); and 5)  training performed on non-
representative patient cohorts (59). Our comprehensive meta-anal-
ysis moves in the direction of addressing these previously missing 
elements. We trained and validated our models on a large num-
ber of carefully curated datasets and used a robust meta-analysis 
framework that limited the impact of laboratory or cohort-specific 
biases. Further gains in accuracy will be necessary, and we propose 
two ways these gains may be made: 1) larger sample size studies and 
2) increased standardization and rigor of study design and clinical 
annotations. Prediction accuracy in validation datasets often shows 
an increasing trend with training sample size, even up to 1250 sam-
ples (Supplementary Figure  9, available online). This continual 

increase is striking, considering the heterogeneous surgical and 
medical management used by the different hospitals represented 
in this meta-analysis. Such heterogeneity highlights the limitations 
of signatures developed from any single institution and the need 
for specimens from clinical trials with precisely specified inclusion 
criteria.

Successful outcome predictors for ovarian cancer are par-
ticularly challenging because of the current gap between dis-
crimination ability and clinical utility. Clinical utility is defined 
on whether the results provide substantial prognostic or predic-
tive information as to alter patient management or behavior in 
ways that ultimately improve outcomes. It is important to note 
that the vast majority of advanced-stage ovarian cancer patients 
initially respond to standard treatment but then suffer recurrence 
and ultimately die of their disease. As such, we estimate that for 
a survival signature to be clinically relevant in this patient popu-
lation, it would have to identify patients with refractory disease 
(progressive or persistent disease during primary therapy). These 
patients have a median survival of 9 months. If such a sufficiently 
accurate signature were identified, one could triage the poor-
prognosis patients to phase II trials to attempt to identify active 
agents against these tumors at the first attempt. The survival sig-
nature we generated here, although significantly improved over 
published signatures, does not meet this standard [for a discussion 
of the relatively low C-indices of our and published signatures, 
see (17)]. Although the poor-prognostic patients have a shorter 
survival, most clearly respond to and benefit from standard com-
bination chemotherapy. Thus, this signature would not alter clini-
cal management of advanced-stage patients. Of interest, although 
our survival signature was established entirely from late-stage, 
serous tumors, it demonstrated considerable promise for strati-
fying early-stage, high-grade, serous tumors. This finding may 
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Figure 6.  Validation of selected genes associated with debulking status 
by quantitative reverse-transcription polymerase chain reaction (qRT-
PCR) in the Bonome et al. validation data (n = 78). A) Observed fold-
changes in suboptimal vs optimal tumors and their standard deviations 
of the genes with statistically significantly (P < .05, two-sided Student 
t test) different expression between the two groups. B) The prediction 
accuracy of a multivariable model in which the qRT-PCR–validated 
genes were equally weighted. We stratified the samples into groups of 

high and low risk for suboptimal surgery based on the tertiles of the 
multivariable risk score: the 33% of patients with highest risk score were 
classified as high risk, the 33% with lowest risk score were classified 
as low risk, and all others were classified as medium risk. Between the 
high- and low-risk groups, 76.9% of samples were classified correctly. 
The accuracy of the multivariable risk prediction is further shown with 
a receiver operating characteristic curve. *Area under the curve (AUC) 
significantly greater than 0.5 [DeLong test (23)].
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Figure  7.  Validation of POSTN, pSmad2/3, and CXCL14 in an inde-
pendent cohort by immunohistochemistry (IHC). A–C) IHC staining of 
POSTN, pSmad2/3, and CXCL14. The four IHC classes are categorized 
by IHC intensity scores as described in the Supplementary Information 
(available online) and previously (27). Scale bar = 100 μm. D) Histogram 
visualizing the frequency of optimal and suboptimal tumors stratified 
by POSTN IHC class (A) in an independent cohort of 177 samples. The 

true- and false-positive rates of POSTN IHC intensity scores (27) used 
for classification are further shown with a receiver operating character-
istic curve. E and F) Corresponding figures for pSmad2/3 and CXCL14. 
G) The prediction accuracy of the multivariable model in which the three 
IHC validated genes were equally weighted (as in Figure  6B). * Area 
under the curve (AUC) statistically significantly greater than 0.5 [DeLong 
test (23)].
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reflect the underlying biology of recurrent early-stage ovarian 
cancer because these tumors have gene expression profiles similar 
to poor-prognosis, advanced-stage cancers. A reliable stratification 
of early-stage patients could spare low-risk patients unnecessary 
adjuvant chemotherapy. Unfortunately, our signature is prelimi-
nary in this patient group and will require validation in a much 
larger set of specimens. Our results suggest that meta-analyses 
like ours can help in achieving adequate sample sizes to establish 
genomic signatures with clinical utility.

In contrast, the debulking signature will have clinical utility if 
the 93% accuracy of the immunohistochemistry tool observed in 
our 179-patient validation cohort is confirmed in prospective vali-
dation. Cytoreductive surgery remains an important component of 
treatment for women with epithelial ovarian cancer (8). Whether 
this fact is due to 1) the smaller residual tumor mass or 2) an intrin-
sic biological element of tumors, providing less aggressive and 
invasive tumors an advantage in surgery, remains unresolved (26). 
We present the strongest evidence to date for the existence of a 
biologic basis and a predictive gene signature for debulking abil-
ity of ovarian tumors. The immunohistochemistry staining showed 
high predictive values of our identified biomarkers. It is interesting 
to note that of the top five misclassified optimal cases (high protein 
expression for all three biomarkers), two were wrongly annotated 
and had 1-cm residual disease. This suggests that the signature may 
be even more accurate than we report, and its limitation is depend-
ent in part on the clinical classification of degree of debulking. The 
clinical utility in this case results from the identification of those 
patients who will not benefit from primary debulking surgery, 
sparing them the toxicity of extensive surgery and the delay until 
the initiation of chemotherapy. These patients can be triaged to 
neoadjuvant chemotherapy with interval debulking. An European 
Organisation for Research and Treatment of Cancer study has 
recently demonstrated that neoadjuvant therapy with interval 
debulking is equivalent to primary debulking and adjuvant chemo-
therapy (60). A genomic tool of this nature will assist surgeons in 
stratifying patients for these alternative approaches.

The debulking signature also provides biologic insight into 
ovarian cancer dissemination. TGF-β pathway activation has been 
documented in ovarian cancer with tumors becoming resistant to 
the growth inhibitory effects of the ligand (61,62). These data sug-
gest that in a subset of tumors, the TGF-β activated pathway stim-
ulates epithelial-mesenchymal transition, the activation of tumor 
associated fibroblasts, and other biologic processes that contribute 
to spread of the tumor with resultant difficulty in surgical debulk-
ing. These pathways may also provide therapeutic targets to con-
vert tumors that are not resectable in the neoadjuvant setting to 
ones that are at interval debulking.
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