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ABSTRACT 

IL-1β and TNF-α induce MUC5AC 
overexpression through a mechanism 
involving a sequential activation of 

ERK/p38 MAP kinases-MSK1-CREB  
in human airway epithelial cells 

 

Kyoung Seob Song 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by professor Joo-Heon Yoon)  

 

Mucin hypersecretion is commonly observed in many inflammatory diseases of 

the respiratory tract. MUC5AC is generally recognized to be a major airway 

mucin because MUC5AC is highly expressed in the goblet cells of human 

airway epithelium. Moreover, it is regulated by various inflammatory cytokines. 
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However, the mechanisms by which the interleukin (IL)-1β and tumor necrosis 

factor (TNF)-α induce MUC5AC gene expression in normal nasal epithelial 

cells, and the signal molecules involved, especially in the downstream signaling 

of mitogen-activated protein (MAP) kinases, remain unclear. Here we show that 

pharmacologic or genetic inhibition of either ERK or p38 MAP kinase pathway 

abolished IL-1β- and TNF-α-induced MUC5AC gene expression in normal 

human nasal epithelial cells. Our results also indicate that the activation of 

mitogen- and stress-activated protein kinase 1 (MSK1) and cAMP response 

element-binding protein (CREB) and CRE signaling cascades via ERK and p38 

MAP kinases are crucial aspects of the intracellular mechanisms that mediate 

MUC5AC gene expression. Taken together, these studies give additional 

insights into the molecular mechanism of IL-1β- and TNF-α-induced MUC5AC 

gene expression and will enhance our understanding on mucin hypersecretion 

during inflammation. 

 

Key words: CRE, CREB, ERK, MSK1, MUC5AC, p38.  
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IL-1β and TNF-α induce MUC5AC 
overexpression through a mechanism 
involving a sequential activation of 

ERK/p38 MAP kinases-MSK1-CREB  
in human airway epithelial cells 

 

Kyoung Seob Song 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by professor Joo-Heon Yoon)  

 

I. INTRODUCTION 

Mucin hypersecretion is commonly observed in many respiratory 

diseases, such as, rhinitis, sinusitis, otitis media, nasal allergy, chronic 

bronchitis and cystic fibrosis.1-4 Eighteen types of mucin genes have been 
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discovered to date: MUC1, 5 MUC2, 6 MUC3, 7 MUC4, 8 MUC5AC, 9 MUC5B, 

10 MUC6, 11 MUC7, 12 MUC8, 13 MUC9, 14 MUC10, 15 MUC11, 16 MUC12, 16 

MUC13, 17 MUC15, 18 MUC16, 19 MUC17, 20 and MUC18.21 Of these, 

MUC5AC and MUC5B are generally recognized to be the major airway mucin 

because MUC5AC is highly expressed in the goblet cells of the human airway 

epithelium.22-24 Moreover, MUC5AC gene expression is known to be regulated 

by oxidative stress 25 and retinoic acid.26 In addition, MUC5AC is regulated by 

various inflammatory cytokines such as neutrophil elastase, 27 IL-9, 28 and IL-

4.29 Given that mucin hypersecretion is an uncontrolled mucin expression 

during inflammation, unveiling of signal transduction pathway for inflammatory 

cytokine-induced MUC5AC gene expression would give an important clue to 

the understand of airway mucus hypersecretion. 

 It is well documented that mitogen-activated protein (MAP) kinase 

pathways are thought to be most important in transmitting inflammatory signals 

from the cell surface to the nucleus.30 After being triggered by growth factors, 

cytokines, UV rays, or other stress-inducing agents, a signal is delivered down 

the MAPKKK → MAPKK (in the cases of ERK, JNK, and p38, the signal is 

delivered through MEK1/2, MKK4/7, and MKK3/6, respectively) → to the 

MAP kinase cascade. The MAP kinases play a role in cell proliferation, 

differentiation, apoptosis, cytoskeletal remodeling, and the cell cycle.31-36 
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Mitogen- and stress-activated protein kinase 1 (MSK1) is a recently identified 

enzyme that is widely distributed in mammalian cells.37-39 MSK1 is activated in 

vitro and in vivo by two different classes of MAP kinase, ERK and p38 MAP 

kinases.37 Moreover, MSK1 is localized in the nuclei of stimulated or 

unstimulated cells 39 and two potential in vivo substrates are the cAMP response 

element binding protein (CREB) and the closely related activating transcription 

factor 1 (ATF1).39   

Recently, reactive oxygen species are reported to increase the expression of 

the MUC5AC gene, by activating the ERK MAP kinase pathway, 25 and 

nontypeable Haemophilus influenzae (NTHi) was reported to regulate MUC5AC 

transcription via p38 MAP kinase in human epithelial cells.40 In a study of 

MUC2, Pseudomonas aeruginosa was found to activate NF-κB through Ras-

MAPK-pp90rsk, which led to the increased expression of MUC2, but p38 was 

not involved in this pathway.41 However, the mechanism of MUC5AC gene 

expression during inflammation in normal airway epithelial cells, and the signal 

molecules involved, especially in the downstream signaling of MAP kinases 

have not yet been demonstrated. 

Because MUC5AC hypersecretion during inflammation plays an important 

role in the pathogenesis of airway diseases, we hypothesized that major 

inflammatory cytokines, IL-1β and TNF-α up-regulate MUC5AC gene 
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expression by activating specific signal transduction pathways in airway 

epithelial cells. Here we show that two different MAP kinases, ERK and p38 

MAP kinases, are essential for IL-1β- and TNF-α-induced MUC5AC gene 

expression in normal human nasal epithelial (NHNE) cells. We also show that 

MSK1 mediates the IL-1β- and TNF-α-induced phosphorylation of CREB and 

the transcription of MUC5AC. Furthermore, the cAMP response element (CRE) 

in MUC5AC promoter appears to be important for IL-1β- and TNF-α-induced 

MUC5AC gene expression in NCI-H292 cells. These pathways provide new 

insights into molecular mucus hypersecretion and may open up novel targets for 

therapeutic intervention. 
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II. MATERIALS AND METHODS 

1. Materials  

PD98059, SB203580 and anti-α-tubulin antibody were purchased from 

Calbiochem (San Diego, CA). Anti-phospho-p44/42 MAP kinase 

(Thr202/Tyr204) antibody, anti-phospho-p38 MAP kinase (Thr180/Tyr182) 

antibody, anti-phospho-SAPK/JNK MAP kinase (Thr183/Tyr185) antibody, 

anti-phospho-MSK1 (Thr581) antibody, and anti-phospho-CREB (Ser133) 

antibody were purchased from Cell Signaling (Beverly, MA). Plasmid encoding 

kinase-deficient MEK1 mutant (pcDNA5-MEK1DN) and p38 mutant (pcDNA3-

p38AGF) were kindly provided by Dr. Jian-Dong Li (House Ear Institute, Los 

Angeles, CA) and Dr. Yoshiyuki Kuchino (National Cancer Center Research 

Institute, Saitama, Japan), respectively. Wide-type MSK1, N-and C-terminal 

kinase dead MSK1 mutant constructs were kindly provided by Dr. Dario Alessi 

(University of Dundee, Dundee, UK). Reporter construct, the 3.8-kb MUC5AC 

5’-flanking region fused to a luciferase reporter gene, was kindly provided by 

Dr. Carol Basbaum (University of California, San Francisco, CA).   

 

2. Cell Cultures.  

The culture system used for the normal human nasal epithelial (NHNE) cells 

was as described previously.42 The human lung mucoepidermoid carcinoma cell 

line (NCI-H292) was purchased from the American Type Culture Collection 

(CRL-1848; Manassas, VA) and cultured in RPMI-1640 (Invitrogen) 
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supplemented with 10% fetal bovine serum (FBS) in the presence of penicillin-

streptomycin at 37 ℃ in a humidified chamber with 5% CO2. For serum 

deprivation, confluent cells were washed twice with phosphate-buffered saline 

and recultured in RPMI-1640 with 0.2% FBS.  

  

3. RT-PCR  

Total RNA was isolated using TRIzol (Invitrogen) from NCI-H292 cells 

treated with IL-1β (10 ng/ml) or TNF-α (10 ng/ml). cDNA was synthesized 

with random hexamers (Perkin Elmer Life Sciences and Roche Applied 

Science) using Moloney murine leukemia virus-reverse transcriptase 

(PerkinElmer Life Science). Oligonucleotide primers for PCR were designed 

based on the GenbankTM sequence of MUC5AC (GenbankTM accession number 

AJ001402, 5' primer CGACAACTACTTCTGCGGTGC; 3' primer GCACTCA- 

TCCTTCCTGTCGTT). The following PCR conditions used involved 35 

cycles: denaturation at 94 ℃ for 30 sec, annealing at 60 ℃ for 30 sec, and 

polymerization at 72 ℃ for 30 sec. The oligonucleotide primers for β2-

microglobulin (used as a control gene for the RT-PCR) were designed based on 

the GenbankTM human sequence (GenbankTM accession number XM007650, 5' 

primer CTCGCGCTACTCTCTCTTTCTGG; 3' primer GCTTACATGTCTCG- 

ATCCCACTTAA). PCR parameters used involved 23 cycles as follows: 

denaturation at 94 ℃ for 30 sec, annealing at 55 ℃ for 30 sec, and 

polymerization at 72 ℃ for 30 sec. The PCR products were run in a 1.5% 



 

9 

agarose gel and visualized with ethidium bromide under a transilluminator. 

 

4. Real-time Quantitative PCR  

Primers and probes were designed with PerkinElmer Life Sciences Primer 

Express® software and purchased from PE Biosystems. Commercial reagents 

(TaqMan PCR Universal PCR Master Mix, PerkinElmer Life Sciences) and 

conditions according to the manufacturer's protocol were applied. An amount of 

1 µg of cDNA (reverse transcription mixture) and oligonucleotides at a final 

concentration of 800 nM of primers and 200 nM of TaqMan hybridization probe 

were analyzed in a 25 µl volume. The following primers and TaqMan probes 

were used: MUC5AC, forward 5'-CAGCCACGTCCCCTTCAATA-3' and 

reverse 5' ACCGCATTTGGGCATCC-3' and Taqman probe 6FAM-

CCACCTCCGAGCCCGTCAC- TGAG-TAMRA. β2M, forward 5’-CGCTCC- 

GTGGCCTTAGC-3’ and reverse 5’-GAGTACGCTGGATAGCCTCCA-3’ and 

Taqman probe 6FAM-TGCTCGCGCTACTCTCTCTTTCTGGC-TAMRA. 

Real-time RT-PCR was performed on a PerkinElmer Life Sciences ABI 

PRISM® 7700 Sequence Detection System (Foster City, CA). The thermocycler 

(ABI PRISM® 7700 Sequence Detection System) parameters were 50 ℃ for 2 

min, 95 ℃ for 10 min, followed by 40 cycles of 95 ℃ for 15 sec and 60 ℃ 

for 1 min. All reactions were performed in triplicate. Relative quantity of 

MUC5AC mRNA was obtained using comparative CT method and was 

normalized using β2M as an endogenous control.  
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5. Western Blot Analysis 

NCI-H292 cells were grown to confluence in 6 well plates. After 15 or 45 

min treatment with IL-1β or TNF-α, respectively, the cells were lysed with 2x 

lysis buffer [250 mM Tris-Cl (pH 6.5), 2% SDS, 4% β-mercaptoethanol, 0.02% 

BPB, 10% glycerol]. Equal amounts of whole cell lysates were resolved by 10% 

SDS-PAGE and transferred to a polyvinylidene difluoride membrane (PVDF; 

Millipore, Bedford, MA). Membranes were blocked with 5% skim milk in Tris-

buffered saline [TBS; 50 mM Tris-Cl (pH 7.5), 150 mM NaCl] for 2 hr at room 

temperature. This blot was then incubated overnight with primary antibody in 

TTBS (0.5% Tween 20 in TBS). After washing with TTBS, the blot was further 

incubated for 45 min at room temperature with anti-rabbit or anti-mouse 

antibody (Cell Signaling) in TTBS, and then visualized by using the ECL 

system (Amersham Biosciences, Piscataway, NJ). 

 

6. In vitro p38 kinase assay  

p38 Kinase activity was measured using a p38 MAP kinase assay kit (Cell 

Signaling) according to the manufacturer's instructions. Briefly, confluent cells 

were rendered quiescent for 24 hr and then incubated with or without 20 µM 

SB203580 for 1 hr prior to being stimulated with IL-1β or TNF-α for 15 min. 

Cells lysates were scraped off the dish with 500 µl lysis buffer and 1 mM PMSF, 

sonicated 4 times for 5 sec each on ice and centrifuged for 10 min at 4 ℃. 

Supernatants then transferred to a new tube, and 400 µg of the cell lysates and 

20 µl of immobilized phospho-p38 MAP kinase monoclonal antibody were 
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incubated with gentle rocking overnight at 4 ℃. The pellet was washed twice 

with lysis and kinase buffer and then resuspended in kinase buffer containing 

200 µM ATP and 2 µg of activating transcription factor 2 (ATF2) fusion protein. 

It was then incubated for 30 min at 30 ℃, and immunoblotted with phospho-

ATF2 antibody. 

 

7. Preparation of Inducible Dominant-Negative Mutant Stable Cell Lines  

Plasmid encoding the kinase-deficient MEK1 mutant (pcDNA5-MEK1DN) 

was cut with BamH1, and ligated with pBluescript (Stratagene, La Jolla, CA). 

This clone was cut with HindIII, filled in with Klenow, and cut with SacII 

(Promega), and then ligated with pTRE vector (Clontech, Palo Alto, CA). 

Plasmid encoding kinase-inactive p38 mutant (pcDNA3-p38AGF) was cut with 

BamH1, filled in with Klenow, cut with XbaI (Promega, Madison, WI), and then 

ligated with pTRE vector. NCI-H292 cells were cotransfected with pTet-off 

(Clontech) regulation vector and pTRE-p38DN or pTRE-MEK1DN (1:20 ratio 

of regulation vector to expression vector) using FuGENE 6 transfection reagent 

(Roche Applied Science, Indianapolis, IN), following the procedure 

recommended by the manufacturer. Stably transfected cell lines were selected 

with 200 µg/ml G418 (Calbiochem), and the medium was replaced with G418 

and doxycycline every 3 days.  
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8. Electrophoretic Mobility Shift Analysis (EMSA) 

Cells were washed with ice-cold PBS and pelleted. Pellets were then 

resuspended in nuclear extraction buffer I [10 mM HEPES (pH 7.9), 10 mM 

KCl, 1.5 mM MgCl2, 0.5 mM DTT, 0.5% NP-40, 1 mM PMSF, 2 µg/ml 

leupeptin, and 2 µg/ml aprotinin], incubated for 15 min on ice, and vortexed 

vigorously. Nuclei were pelleted, resuspended in nuclear extraction buffer II [20 

mM HEPES (pH 7.9), 20% glycerol, 420 mM NaCl, 1 mM EDTA, 0.5 mM 

DTT, 0.1 mM PMSF, 2 µg/ml leupeptin, and 2 µg/ml aprotinin], and vigorously 

vortexed. The nuclear extracts were then centrifuged for 15 min at 4 ℃ and the 

supernatants were stored at -70 ℃. For EMSA, oligonucleotides corresponding 

to the consensus CRE sequences (5’-AGAGATTGCCTGACGTCAGAGAGC- 

TAG-3’), CRE-specific sequences in the MUC5AC promoter region -878 to -

871 (5’-AGAGATTGCCTGACTTGAAGAGCTAG-3’), and the CRE mutant 

sequence (5’-AGAGATTGCCTGACTGACAGAGCTAG-3’) were synthesized, 

annealed, and end labeled with [γ-32P]ATP using T4 polynucleotide kinase. 

Nuclear extract was incubated at room temperature for 30 min with the 32P-

labeled CRE probe in binding buffer [20% glycerol, 5 mM MgCl2, 2.5 mM 

EDTA, 2.5 mM DTT, 250 mM NaCl, 50 mM Tris-Cl (pH 7.5), and 0.25 mg/ml 

poly(dI-dC)]. DNA-nuclear protein complexes were separated from the DNA 

probe by electrophoresis through 5% nondenaturing polyacrylamide gels in 
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0.5X Tris Borate EDTA (TBE) buffer. Supershift experiments were conducted 

using 2 µl of anti-phospho-CREB antibody. The gel was dried and 

autoradiographed using an intensifying screen at –70 ℃.     

 

9. Plamids, Transient Transfection and Luciferase Assay 

 Cells were transiently transfected with plasmids containing wide-type 

MSK1, N-terminal kinase dead MSK1 mutant (D195A), C-terminal kinase dead 

MSK1 mutant (D565A), CREB DN (S133A), and reporter constructs, the 

MUC5AC 5’-flanking region fused to a luciferase reporter gene using 

FuGENE6 transfection reagent (Roche Applied Science) according to the 

manufacturer's instructions. Deletion mutants covering promoter regions of 

MUC5AC were generated by PCR using pairs of primers bearing specific 

restriction sites at their 5’ and 3’ ends (Table I) and then were constructed in 

promoterless pGL3 basic vector. Cells were incubated for 48 hr, harvested, and 

assayed for luciferase activity, using a luciferase assay system (Promega), 

according to the manufacturer's instructions. β-galactosidase activity was also 

assayed to standardize the transfection efficiency of each sample.  
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III. RESULTS 

 

1. IL-1β and TNF-α Can Induce the Gene Expression of MUC5AC through 

ERK and p38 MAP kinases Signaling in NHNE cells. 

  To determine whether IL-1β and TNF-α can induce MUC5AC gene 

expression within NHNE cells, we carried out RT-PCR after treatment with IL-

1β or TNF-α for 24 hr. The results showed that MUC5AC mRNA was 

significantly increased after treatment with IL-1β or TNF-α in NHNE cells (Fig. 

1A). No corresponding change was found in the expression of internal control, 

β2-microglobulin. As a next step, to determine which MAP kinase signal 

pathway is activated within NHNE cells stimulated by IL-1β or TNF-α, we 

performed a Western blot analysis using phospho-specific antibodies. ERK and 

p38 MAP kinases were maximally activated at 15 min, and this effect decreased 

at 45 min (Fig. 1B). However, no change was detected in the activation of JNK. 

A549 cells were used as a positive control for JNK activation. It thus appeared 

that stimulation by IL-1β and TNF-α induced the ERK and p38 MAP kinases 

pathways in NHNE cells. In order to investigate the possible involvement of 

ERK and p38 MAP kinases in IL-1β- and TNF-α-induced MUC5AC gene 

expression, 20 µM PD98059, specific MEK1/2 inhibitor, or 20 µM SB203580, 
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p38 inhibitor, were applied before treatment with IL-1β and TNF-α. The 

Western blot and in vitro kinase assays showed that PD98059 and SB203580 

clearly inhibited ERK and p38 MAP kinases, respectively, in NHNE cells (Fig. 

2A and 2B). Under this experimental condition, we checked the expression level 

of MUC5AC by performing real-time quantitative PCR analysis. These results 

showed that pretreatment with PD98059 or SB203580 for 1 hr inhibited 

MUC5AC gene expression (Fig. 2C and 2D). Interestingly, the inhibition of 

either ERK or p38 MAP kinase pathway inhibited MUC5AC mRNA in NHNE 

cells. Thus, the activation of ERK and p38 MAP kinases appeared to be closely 

related to the signaling pathways activated by IL-1β or TNF-α. We next 

examined whether there may be a cross-talk between ERK and p38 MAP 

kinases. We found that pretreatment of SB203580 suppressed the IL-1β- or 

TNF-α-induced ERK, while pretreatment of PD98059 did not affect the IL-1β- 

or TNF-α-induced p38 in NCI-H292 cells (Figs. 2E and 2F). These results 

suggest that p38 MAP kinase can mediate IL-1β- or TNF-α-induced activation 

of ERK as a cross-talker. 
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Fig. 1. Effect of IL-1β and TNF-α on MUC5AC gene expression in NHNE 

cells. Confluent cells were treated with IL-1β (10 ng/ml) or TNF-α (10 ng/ml) 

for 24 hr and cell lysates were harvested for RT-PCR (A). C, control. β2-

microglobulin was employed as an internal control. Confluent cells were treated 

with IL-1β (10 ng/ml) or TNF-α (10 ng/ml) for 15 or 45 min and cell lysates 

were harvested for Western blot analysis. Representative Western blots (B) 

using phospho-specific antibodies showed transient activation of ERK and p38 

but not of JNK, the maximum effect is at 15 min. The figures shown are 

representative of three independent experiments.  
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Fig. 2. Effect of ERK and p38 MAP kinases on MUC5AC gene expression in 

NHNE cells. Confluent cells were pretreated for 1 hr with 20 µM PD98059 or 
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20 µM SB203580, and then stimulated for 15 min with IL-1β or TNF-α prior to 

collection of total proteins for kinase assays. Representative kinase assays show 

the inhibition of phosphorylation of ERK by PD98059 (PD) (A) and ATF2 as an 

exogenous substrate (B) with p38 MAP kinase immunoprecipitated from IL-1β- 

or TNF-α-treated cells, and the inhibition of p38 MAP kinase activation by 

SB203580 (SB). Cells were pretreated and stimulated for 24 hr with IL-1β or 

TNF-α prior to collection of total RNA for real-time quantitative PCR of 

MUC5AC (C and D). C, control. The figures shown are representative of three 

independent experiments.  
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2. Both ERK and p38 MAP kinases are Essential for IL-1β- or TNF-α-

induced MUC5AC Gene Expression.  

When the same experiments (Fig. 1 and 2) were performed using NCI-H292 

cells, human lung mucoepidermoid carcinoma cell line, the results were the 

same in the NCI-H292 cells as in the normal cells (data not shown). In order to 

confirm the significance of ERK and p38 kinases upon cellular level of 

MUC5AC gene expression, cells stably expressing dominant-negative (DN) 

mutant under control of Tet-off system were generated. After removing 

doxycycline to induce MEK1DN, stimulation with IL-1β or TNF-α for 15 min, 

decreased the phosphorylation of ERK (Fig. 3A). However, no change in ERK 

expression was observed. Real-time quantitative PCR showed a decrease in 

MUC5AC mRNA after 24 hr for IL-1β and TNF-α. In a similar way, we 

investigated the role of p38 MAP kinase on IL-1β- or TNF-α-induced MUC5AC 

gene expression using p38DN. The p38 DN mutant was generated by replacing 

Thr180 and Tyr182 by Ala and Phe, respectively.43 This inactive form of p38 

MAP kinase binds endogenous substrates, thereby inhibiting signaling by the 

endogenous p38 MAP kinase pathway. An in vitro kinase assay showed that the 

activation of p38 MAP kinase in this mutant stable cell lines was decreased 

following IL-1β and TNF-α stimulation (Fig. 3B). Under this condition, 

MUC5AC mRNA was decreased 24 hr after treatment with IL-1β and TNF-α. 

These results showed that ERK and p38 MAP kinases are essential for IL-1β- 

and TNF-α-induced MUC5AC gene expression in NCI-H292 cells.  
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Fig. 3. MUC5AC gene expression in MEK1 or p38 dominant-negative 

mutant stable cell lines. Confluent, quiescent MEK1 (A) and p38 (B) 

dominant-negative mutant stable cells were preincubated for the indicated times 

to induce dominant-negative mutant protein by removed doxycycline (Dox) and 

then stimulated for 15 min with IL-1β or TNF-α prior to Western blotting and 

then for 24 hr with IL-1β or TNF-α prior to real-time quantitative PCR. The 

figures shown are representative of three independent experiments. C, control. 
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3. IL-1β- or TNF-α-induced Activation of MSK1 is Mediated by both ERK 

and p38 MAP kinases.  

To determine which molecules are involved in the downstream signaling of 

the ERK and p38 MAP kinases within the signal pathway of MUC5AC gene 

expression induced by IL-1β or TNF-α, we investigated the phosphorylation of 

MSK1 by phospho-specific antibody. MSK1 is widely distributed in 

mammalian cells and can be activated by MAPK/ERK and SAPK2a/p38.37-39 

The result showed that the phosphorylation of MSK1 by IL-1β or TNF-α 

reached a maximum at 30 min and decreased at 60 min after IL-1β and TNF-α 

stimulation (Fig. 4A and 4B). Pretreatment with 20 µM PD98059 and/or 20 µM 

SB203580 inhibited IL-1β- or TNF-α-induced MSK1 phosphorylation (Fig. 4C 

and 4D), indicating that MSK1 is regulated by ERK and/or p38 MAP kinase(s). 

Furthermore, to determine whether MSK1 influences MAP kinases, cells were 

transfected with DNA expression constructs encoding a mutant MSK1 (NT-KD) 

that the N-terminal kinase domain was inactivating by a point mutation and a 

further mutant (CT-KD) that the C-terminal kinase domain was inactivating.39 

Two MSK1 mutants did not affect IL-1β- and TNF-α-induced MAP kinases 

activation (Fig. 4E), indicating that MSK1 appears to be controlled by MAP 

kinases. These results showed that MSK1 acts as a downstream signaling 

mediator of ERK and p38 MAP kinases. 
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Fig. 4. Effect of ERK and p38 MAP kinases on IL-1β- or TNF-α-induced 

activation of MSK1. Confluent, quiescent cells were stimulated for the 

indicated times with IL-1β (A) or TNF-α (B), and then total proteins were 
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collected for Western blot analysis. In other experiments, the cells were 

pretreated for 1 hr with 20 µM PD98059 and/or 20 µM SB203580 and then the 

cells were then stimulated for 30 min with IL-1β (C) or TNF-α (D). The cells 

were transiently transfected with NT-KD or CT-KD MSK1 constructs and 

stimulated with IL-1β or TNF-α for 15 min (E) prior to Western blot analysis. C, 

control. The figures shown are representative of three independent experiments. 
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4. Effects of MSK1 and CREB on IL-1β- and TNF-α-induced MUC5AC 

Gene Expression.  

To examine the role of MSK1 on the induction of MUC5AC gene expression, 

cells were transiently transfected with DNA expression constructs encoding 

wild-type MSK1 (W/T), NT- or CT-KD MSK1 mutant. IL-1β or TNF-α-

induced MUC5AC gene expression increased in cells transfected with W/T 

MSK1, whereas overexpression of NT- or CT-KD MSK1 markedly suppressed 

IL-1β or TNF-α-induced MUC5AC gene expression (Fig. 5A and 5B). These 

results showed that MSK1 appears to be closely related in the MUC5AC gene 

expression by IL-1β and TNF-α.  

Because MSK1 is currently the best candidate for the mediation of cytokine-

induced CREB phosphorylation at Ser133, 37-39 we investigated the possible 

implication of CREB in IL-1β- or TNF-α-induced MUC5AC gene expression. 

To examine whether IL-1β or TNF-α can induce the phosphorylation of 

endogenous CREB via MAP kinases and MSK1 in airway epithelial cells, we 

performed Western blot using phospho-specific CREB (Ser133) antibody. A 

transient phosphorylation of CREB was observed upon the stimulation with IL-

1β and TNF-α, reaching the maximum peak at 30 min (Fig. 6A and 6B). In 

addition, Pretreatment with PD98059 and/or SB203580 or NT- or CT-KD 

MSK1 remarkably inhibited the phosphorylation of CREB (Fig. 6C and 6D). 
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Next, to determine whether CREB plays a role in MUC5AC gene expression, 

we used forskolin (an activator of adenylate cyclase) and 3-isobutyl-1-

methylxanthine (IBMX; an inhibitor of AMP phosphodiesterase). A transient 

phosphorylation of CREB was observed upon the stimulation with forskolin and 

IBMX, reaching the maximum peak at 10 min (Fig. 7A). The cAMP pathway-

induced CREB phosphorylation increased MUC5AC gene expression (Fig. 7B). 

Furthermore, IL-1β- and TNF-α-induced MUC5AC gene expression was 

significantly suppressed in cells transfected with plasmid encoding mutant 

CREB (pCREB S133A) (Fig. 7C). These findings suggested that the activation 

of MSK1 and CREB is essential for IL-1β- and TNF-α-induced MUC5AC gene 

expression via ERK and p38 MAP kinases.  
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Fig. 5. Effect of MSK1 on IL-1β- and TNF-α-induced MUC5AC gene 

expression. Cells were transiently transfected with DNA constructs expressing 

wide-type MSK1 (W/T), N-terminal kinase dead (NT-KD) MSK1 and C-

terminal kinase dead (CT-KD) MSK1. They were stimulated for 24 hr with IL-

1β (A) or TNF-α (B). The cells were lysed and performed real-time quantitative 

PCR. C, control. The figures shown are representative of three independent 

experiments. 
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Fig. 6. IL-1β and TNF-α can induce the activation of CREB via MAP 

kinases and MSK1. Confluent, quiescent cells were stimulated for the 

indicated times with IL-1β (A) or TNF-α (B), and then total proteins were 

collected for Western blot analysis. In other experiments, the cells pretreated for 

1 hr with 20 µM PD98059 or/and 20 µM SB203580 and the transfected cells 

with NT-KD or CT-KD MSK1 constructs were stimulated for 30 min with IL-

1β (B) or TNF-α (D) prior to Western blot analysis. C, control. The figures 

shown are representative of three independent experiments. 
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Fig. 7. Effect of CREB on IL-1β- and TNF-α-induced MUC5AC gene 

expression. Confluent, quiescent cells were stimulated for the indicated times 

with both 20 µM forskolin and 10 µM IBMX, and then total proteins were 

collected for Western blot (A). Cells were stimulated for 24 hr with IL-1β, TNF-

α, or both 20 µM forskolin and 5 µM IBMX, and the total RNA were then 

subjected to real-time quantitative PCR (B). The cells were transiently 
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transfected with mutant CREB (pCREB S133A) constructs and stimulated with 

IL-1β or TNF-α for 30 min prior to Western blot analysis (C, upper panel) and 

for 24 hr prior to real-time quantitative PCR (C, lower panel). C, control. The 

figures shown are representative of three independent experiments. 
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5. Identification of the Binding Complex between CREB and CRE in 

Response to IL-1β and TNF-α.  

To analyze the DNA binding activity of IL-1β- and TNF-α-activated CREB, 

we performed EMSA using nuclear extracts from NCI-H292 cells after IL-1β 

(A) or TNF-α (B) treatment. As shown in Fig. 8A and 8B, the activity of 

consensus CRE oligonucleotide (CREc) and MUC5AC specific CRE (CREs) 

remarkably increased in response to IL-1β or TNF-α, but not by mutant CRE of 

MUC5AC promoter (CREm) oligonucleotide. To distinguish any specific CRE-

binding complexes, competition and supershift analysis were performed using 

50-fold excesses of non-radiolabeled (cold) CREs oligonucleotide and anti-

phospho-CREB antibody, respectively. The specific band was found to be 

selectively inhibited by the specific CRE competitor and was supershifted by 

anti-phospho-CREB antibody. These results indicated that activated CREB 

binds to a cis-acting element, CRE, in the MUC5AC promoter.  
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Fig. 8. IL-1β- or TNF-α-induced nuclear binding of CRE. Confluent, 

quiescent cells were stimulated for 1 hr with IL-1β (A) or TNF-α (B). Nuclear 

protein extracts from IL-1β- or TNF-α-treated NCI-H292 cells were subjected 

to EMSA. Nuclear proteins were incubated with CREc, CREs, CREm, 50-fold 

excess of cold probe or anti-phospho-CREB antibody before EMSA. The 

labeled nuclear proteins were separated by elecrophoresis on 5% 

polyacrylamide gels, and the gels were dried and exposed to autoradiography at 
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–70 °C overnight. 

C, control; Ab, antibody; CREc, consensus CRE; CREs, MUC5AC-specific 

CRE; CREm, MUC5AC-mutant CRE; NS, non-specific. 
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6. Identification of IL-1β- and TNF-α-responsive Regions within MUC5AC 

promoter.  

Cells were then transiently transfected with the various deletion mutants and 

treated with IL-1β (40 ng/ml) or TNF-α (40 ng/ml) for 24 hr, respectively. As 

shown in Fig. 9A, IL-1β and TNF-α selectively increased luciferase activity of -

929/+4 region of MUC5AC promoter. No effect was seen on fragments covering 

-1376/+4, -776/+4 and -486/+4 regions, indicating that the -929/-776 region of 

MUC5AC promoter may be necessary to observe a response to IL-1β or TNF-α. 

To further know whether CRE within -929/-776 region of MUC5AC promoter, 

identified using the TRANSFAC 4.0 data base, critically acts as cis-element, 

cotransfection with plasmid expression construct encoding mutant CREB was 

performed to study its effect on MUC5AC transcription activity. CREB DN 

suppressed luciferase activity of -929/+4 region of MUC5AC promoter (Fig. 

9B). Moreover, we examined whether activation of CRE is required for IL-1β- 

and TNF-α-induced MUC5AC transcription by performing selective 

mutagenesis of the CREB-binding site. As a shown in Fig. 9C, mutant 

constructs M1, M2 and M3 abolished responsiveness of wild-type MUC5AC 

promoter construct (Fig. 9C). These results showed that CRE in the regulatory 

region of MUC5AC promoter was critical for the up-regulation of the 

transcriptional activity of MUC5AC induced by IL-1β or TNF-α.  
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Table I 

 

Sequence of the pairs of oligonucleotides used in PCR to produce deletion 

mutant covering MUC5AC 5’-flanking region. 

 

SacI (GAGCTC) and HindIII (AAGCTT) sites were added at the end of the 

primers to direct subcloning and were italicized and underlined. Positions of the 

DNA fragments relative to the published transcription initiation sites (Ref. 50) 

are indicated. S, sense; AS, antisense 
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Fig. 9. IL-1β- and TNF-α-induced activation of CRE-mediated MUC5AC 



 

36 

transcription via the cis-acting regulatory CRE motif. NCI-H292 cells were 

transiently transfected with various MUC5AC promoter luciferase reporter 

constructs and stimulated with IL-1β (40 ng/ml) and TNF-α (40 ng/ml) for 24 

hr. Luciferase activity was then assessed in IL-1β or TNF-α-treated and -

untreated cells (A). Cells were cotransfected with a dominant-negative mutant 

of CREB and reporter construct of -929/+4 region of MUC5AC promoter (B) 

and transfected with MUC5AC promoter construct containing various mutated 

CRE site as indicated (C). The luciferase activities were displayed after 

correction for transfection efficiency using the β-galactosidase activity of the 

cell lysates to standardize the values. The values shown are means ± S.D. of 

experiments performed in triplicate. 
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IV. DISCUSSION 

 

  Mucin hypersecretion causes many clinical problems, such as rhinorrhea, 

nasal stuffiness, and sputum in the respiratory tract. It has been reported that 

MUC5AC is the major mucin in human airways.22-24, 44 The mechanism of the 

regulation of MUC5AC secretion by inflammatory cytokines in airway is very 

important, and the understanding of this mechanism may offer new therapeutic 

strategies for the inhibition of airway mucus hypersecretion.  

The molecular mechanism by which MUC5AC is up-regulated by IL-1β 

and TNF-α remains poorly understood. In the present study, we undertook to 

reveal the related mechanism of IL-1β and TNF-α in the up-regulation of 

MUC5AC gene expression in normal human airway epithelial cells.  

The fact that more than one MAP kinase may be necessary for the IL-1β- 

and TNF-α-induced MUC5AC gene expression in NHNE and NCI-H292 cells 

is an interesting finding of the present study (Fig. 2 and 3). Although MUC5AC 

is regulated by various inflammatory cytokines such as neutrophil elastase, 27 

IL-9, 28 and IL-4, 29 it was not shown which mechanisms are essential for 

cytokines-induced MUC5AC gene expression. Recently, Takeyama et al. 

reported that epidermal growth factor (EGF) increased MUC5AC gene 
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expression via ERK MAP kinase, but not p38 MAP kinase in NCI-H292 cells.25 

Moreover, Wang et al. showed that NTHi regulated MUC5AC transcription via 

p38 MAP kinase, but did not mediate ERK MAP kinase.40 In the present study, 

we showed that both ERK and p38 MAP kinase, but not JNK signaling, are 

essential for IL-1β- and TNF-α-induced MUC5AC gene expression. These 

suggest that the signaling pathways leading to MUC5AC gene expression are 

distinct, depending on the type of stimuli and cell lines used. We do not yet 

know how both pathways intervene in the activation of cytokine-induced 

MUC5AC gene expression. Recently, TNF-α-induced matrix metalloproteinase 

(MMP)-1 and MMP-3 gene expression is known to be regulated through AP-1-

dependent transcriptional activation via ERK pathway and AP-1-independent 

enhancement via p38 MAPK by mRNA stabilization in human skin fibroblast.44 

Interestingly, TNF-α has an effect on the stability of MUC5AC mRNA in NCI-

H292 cells.45, 46 Thus, taken together, it is conceivable that the intracellular 

signaling coordination controlled by ERK in combination with p38 MAP kinase 

may be essential for IL-1β- and TNF-α-induced MUC5AC gene expression.  

To date, signal molecules involved in the downstream signaling of MAP 

kinases for MUC5AC gene expression have not been yet demonstrated. The role 

of MSK1 and CREB in the downstream signaling of MAP kinases in the IL-1β- 

and TNF-α-induced MUC5AC gene expression in airway epithelial cells is a 
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major finding of the present study. MSK1 is known to be regulated by 

MAPK/ERK and SAPK2a/p38 and is currently the best candidate for the 

mediation of cytokine-induced CREB phosphorylation at Ser133.37-39, 47 

Although CREB activation by MSK1 has been established by previous studies 

in other cells, 37-39 it has remained unclear in airway epithelial cells. In addition, 

little is known about the involvement of CREB in MUC5AC gene expression. In 

this study, our results show that CREB activation is involved in the downstream 

signaling of MAP kinases and MSK1 for IL-1β- and TNF-α-induced MUC5AC 

gene expression. 

Interestingly, MUC5AC mRNA was inhibited in pCREB S133A transfected 

cells treated by IL-1β and TNF-α, and treatment with forskolin and IBMX 

activated the phosphorylation of CREB and increased MUC5AC gene 

expression (Fig. 7A and 7B). These suggest that CREB may be a transcription 

factor for IL-1β-and TNF-α-induced MUC5AC gene expression. However, the 

increase of MUC5AC expression by forskolin and IBMX was less than that 

induced by IL-1β and TNF-α, suggesting that activation by CREB alone is 

insufficient to induce the full expression of MUC5AC. This result suggests that 

transcription factor, other than CREB, may be required for full expression of IL-

1β- and TNF-α-induced MUC5AC gene expression. Previously, P. aeruginosa-

induced MUC2 expression is found to be regulated by NF-κB in NCI-H292 
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cells.41 In fact, we could find the putative NF-κB binding site at -273 and -956 

in MUC5AC promoter.48 Therefore, NF-κB may also regulate cytokine-induced 

MUC5AC gene expression with the cooperation of CREB. This suggestion was 

further supported by our recent finding that IL-1β or TNF-α can initiate IκB 

degradation in NHNE and NCI-H292 cells and that pretreatment of caffeic acid 

phenethyl esther (CAPE), which is known to specifically block the translocation 

of p65 without affecting IκBα degradation, 41 inhibits MUC5AC gene 

expression induced by IL-1β (data not shown). In fact, Gerritsen et al. reported 

that p300 and CREB-binding protein (CBP) act as coactivators of p65 

transactivation and may play an important role in the cytokine-induced 

expression of various immune and inflammation genes.49 Furthermore, Perrais 

et al. reported that transcription factor Sp1 is essential for EGF-and TGF-α-

mediated MUC5AC up-regulation.50 Taken together, these findings suggest that 

CREB may interact directly or indirectly with other transcription factor(s) and 

that non-DNA binding transcriptional coactivators, such as p300 and CBP, 

which were thought to function as bridging proteins between DNA-binding 

transcription factors and the basal transcription factors, play a role as integrators 

of diverse signaling pathways in the MUC5AC gene expression. 

Whereas CREB has recently emerged as potent regulator of mucins (MUC2, 

MUC5AC, MUC5B and MUC6), gene expression in the p15 arm of 
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chromosome 11 (11p15), 51 and cholera toxin A subunit (CTA), an activator of 

cAMP-dependent protein kinase, activates transcription of MUC5B promoter, 52 

little is known about the involvement of CRE in MUC5AC transcription. Our 

results showed that -929/+4 region of MUC5AC promoter was sufficient to get a 

response to IL-1β or TNF-α and that CRE in -878 region of MUC5AC promoter 

was critical for the up-regulation of the transcriptional activity of MUC5AC 

induced by IL-1β or TNF-α. However, Perrais et al. reported that TNF-α did 

not have any significant effect of activity of -1366/+4 region of MUC5AC 

promoter, which was in accordance with our results in -1376/+4 region of 

MUC5AC promoter.50 These results suggest that TNF-α-responsive repressor(s) 

or negative regulatory element (NRE) that represses inherent basal and cAMP-

inducible promoter activity may be located in -1366/-929 region of MUC5AC 

promoter.53 Thus, it seems necessary to explore further the involvement of IL-

1β- or TNF-α-responsive repressor(s) or NRE in IL-1β- or TNF-α-induced 

MUC5AC transcription.  
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V. CONCLUSION 

 

In this study, because MUC5AC hypersecretion during inflammation plays an 

important role in the pathogenesis of airway diseases, we examined that major 

inflammatory cytokines, IL-1β or TNF-α up-regulate MUC5AC gene 

expression by activating specific signal transduction pathways in airway 

epithelial cells. Using pharmacologic or genetic inhibition of either ERK or p38 

MAP kinase pathway, we showed that ERK and p38 MAP kinases, but not JNK 

signaling, are essential for IL-1β- and TNF-α-induced MUC5AC gene 

expression. In addition, the activation of MSK1 and CREB is a crucial aspect of 

the intracellular mechanisms that mediate MUC5AC gene expression (Fig. 10), 

indicating that CREB activation is involved in the downstream signaling of 

MAP kinases and MSK1 for IL-1β- and TNF-α-induced MUC5AC gene 

expression. According to Fig. 8, IL-1β-activated CREB bound to a cis-acting 

element, CRE, in the MUC5AC promoter. Furthermore, this study also 

demonstrated that CRE in the MUC5AC promoter might play a role in these 

processes by binding to CREB. Further analysis of the signal pathways 

activated by various cytokines may yield deeper insights into the signal 

mechanism of MUC5AC gene expression.  
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Fig. 10. Schematic diagram showing steps in the signaling pathway by 

which IL-1β or TNF-α up-regulated human MUC5AC gene transcription. 

As indicated, IL-1β or TNF-α activates a ERK and p38 MAP kinases-MSK1 

pathway, which in turn leads to the activation of CREB-CRE and triggers 

MUC5AC gene expression in human airway epithelial cells. 
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국문요약 

 

정상 호흡기 상피 세포에서 IL-1β와 TNF-α에 

의한  MUC5AC 유전자발현에서 ERK/p38 MAP 

kinase-MSK1-CREB 신호전달체계 규명 

 

<지도교수 윤 주 헌> 

 

연세대학교 대학원 의과학과 

송 경 섭 

 

점액과분비는 호흡기에서 염증을 수반하는 질환에서 보통 

관찰되어진다. 인간 정상 호흡기의 goblet 세포에서 매우 많이 

발현되는 mucin이 MUC5AC이기 때문에 MUC5AC는 호흡기에서 매우 

중요한 mucin으로 알려져 있다. 더욱이 이러한 MUC5AC의 발현은 

다양한 염증 매개체에 의해 조절되어진다고 알려져 있다. 그러나 

정상 코 상피 세포에서 중요한 염증 매개체로 알려진 IL-1β나 TNF-
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α에 의한 MUC5AC 발현 신호전달은 아직까지 정확히 밝혀지지 

않았다. 본 연구에서는 IL-1β나 TNF-α가 어떠한 기전으로 MUC5AC 

발현을 조절하는지 알아보기 위하여 생화학적인 방법과 유전학적인 

방법을 사용하여 조사하였다. IL-1β나 TNF-α에 의해 MAP kinase 

중에서 ERK와 p38 MAP kinase 신호 전달 단백질이 관여함을 알았고 

이러한 단백질을 억제하였을 때 MUC5AC 발현이 억제 되는 것으로 

관찰되었다. 이러한 결과는 ERK와 p38 MAP kinase가 IL-1β나 TNF-α에 

의한 MUC5AC 발현신호전달에 필수적임을 알았다. 또한 ERK와 p38 

MAP kinase의 downstream에 MSK1과 CREB이 관여함을 유전학적인 

방법으로 증명하였고, IL-1β나 TNF-α에 의해 활성화된 CREB은 

MUC5AC promoter에 존재하는 CRE에 결합하는 것을 관찰하였다. 

더욱이 MUC5AC promoter의 CRE (-878)에 의해 전사가 일어남을 

관찰하였다. 이러한 결과들에 의해서 IL-1β나 TNF-α에 의해 MUC5AC 

발현 기전은 순차적으로 ERK/p38 MAP kinase-MSK1-CREB-CRE 

기전임을 증명하였다. 이러한 연구는 IL-1β나 TNF-α에 의한 MUC5AC 

발현신호전달을 증명함으로써 염증반응 동안에 mucin 과분비를 

이해하는데 중요한 자료를 제시한다.  

 

핵심되는 말: CRE, CREB, ERK, MSK1, MUC5AC, p38. 
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