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ABSTRACT 

 

 

The Effect of Statin on Epithelial-Mesenchymal Transition 

in Peritoneal Mesothelial Cells 

 

 

Tae Ik Chang 

 

Department of Medicine 

The Graduate School, Yonsei University 

 

(Directed by Professor Shin-Wook Kang) 

 

 

Background: Statins have recently been highlighted due to their pleiotropic 

actions besides cholesterol-lowering effects. However, it is currently unknown 

whether statin therapy may inhibit peritoneal dialysis (PD)-related 

epithelial-mesenchymal transition (EMT). 

Methods: In vitro, human peritoneal mesothelial cells (HPMCs) were exposed 

to 5.6 mM glucose (NG) or 100 mM glucose (HG) with or without simvastatin 

(1 µM). In vivo, PD catheters were inserted into 32 Sprague-Dawley rats, and 

saline (C, n=16) or 4.25% peritoneal dialysis fluid (PDF) (PD, n=16) was 
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infused for 4 weeks. Eight rats from each group were treated with 5 mg/kg/day 

of simvastatin intraperitoneally. Changes in the protein expression of EMT 

markers such as E-cadherin, α-SMA, Snail, and fibronectin in HPMCs and the 

peritoneum were evaluated by Western blot analysis and immunofluorescence 

or immunohistochemical staining. I also explored whether activation of 

mevalonate pathway and its downstream small GTPases were involved in 

dialysis-related peritoneal EMT and could be inhibited by statin treatment. 

Results: Compared to NG cells, E-cadherin expression was significantly 

decreased, while α-SMA, Snail, and fibronectin expression were significantly 

increased in HPMCs exposed to HG, and these changes were abrogated by 

simvastatin (p<0.05). In addition, the cobblestone-like appearance of normal 

HPMCs was converted into a fibroblast-like morphology after HG treatment, 

which was reversed by simvastatin. These EMT-like changes were also 

observed in HPMCs treated with geranyl-geranyl pyrophosphate (5 µM). HG 

significantly increased the protein expression of RhoA and Rac1 in the 

membrane fractions, and these increases were ameliorated by simvastatin 

(p<0.05). In PD rats, E-cadherin in the peritoneum was significantly decreased, 

whereas α-SMA, Snail, and fibronectin expression were significantly increased 

(p<0.05) compared to C rats. The thickness of the mesothelial layer in the 

peritoneum were also significantly greater in PD rats than in C rats (p<0.05). 

These changes of the peritoneum in PD rats were significantly attenuated by 

simvastatin. 
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Conclusions: This study demonstrated that PD-related EMT was mediated via 

the mevalonate pathway, and statin treatment inhibited the EMT changes in 

HG-treated HPMCs and PDF-stimulated PD rats. These findings suggest that 

statins may be a promising therapeutic strategy for preservation of peritoneal 

membrane integrity in long-term PD patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

---------------------------------------------------------------------------------------- 

Key words: statin, peritoneal mesothelial cells, epithelial-mesenchymal 

transition 
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I. INTRODUCTION 

 

Even though peritoneal dialysis (PD) is generally accepted as an established 

modality for the management of patients with end-stage renal disease (ESRD), a 

concern about peritoneal membrane failure has consistently been raised in 

long-term PD. Many factors are demonstrated to be involved in the 

development of peritoneal dysfunction. In particular, nonphysiologic nature of 
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PD solutions; high concentrations of glucose and lactate, low pH, and glucose 

degradation products is a major factor responsible for the deleterious effect on 

peritoneal membrane.
1,2

 These factors also induce chronic inflammation in the 

peritoneal cavity, which is often exacerbated by recurrent episodes of peritonitis, 

consequently leading to structural and functional alterations of the peritoneal 

membrane.
3
 

Peritoneal fibrosis (PF) is the ultimate form of peritoneal damage. It is 

characterized by the loss of peritoneal mesothelial cell (PMC) monolayer, 

submesothelial fibrosis, angiogenesis, and hyalinizing vasculopathy.
3-6 In the 

past, resident stromal fibroblasts and inflammatory cells had been considered to 

be the main cells responsible for PF.
7,8

 Recently, however, PMCs have emerged 

as an active player in the alteration of the peritoneal membrane. After PD start, 

PMCs progressively lose their epithelial characteristics and acquire 

myofibroblast-like phenotype through the process of epithelial-mesenchymal 

transition (EMT).
5
 EMT is a normal physiologic process during embryo 

implantation, embryogenesis, or organ development, but it is also involved in 

various pathologic processes, including cancer metastasis and fibrotic 

disorders.
7
 Indeed, EMT enables PMCs to gain migratory and invasive 

capacities, thus they can intrude into the substromal stroma and produce 

extracellular matrix (ECM) components such as fibronectin and collagen, which 

ultimately lead to PF.
8
 

Meanwhile, 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) 
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reductase inhibitors or statins have recently been highlighted in numerous 

aspects due to their pleiotropic effects besides lipid-lowering property.
9-11

 Of 

note, one of the key actions of statins is the inhibition of the downstream 

products of the mevalonate pathway such as farnesyl pyrophosphate (FPP) and 

geranyl-geranyl pyrophosphate (GGPP).
12

 In result, isoprenylation of small 

RhoGTPases and Ras, the final products of this pathway, is inhibited by 

statins.
13-15

 Interestingly, previous studies have found that activation of small 

RhoGTPases such as RhoA, Rac1, and Cdc42 plays a key role in the process of 

EMT implicated in diverse renal diseases.
16-19

 In addition, a recent study by 

Zhang et al.
20

 showed that RhoA/ROCK signaling pathway mediated EMT in 

rat PMCs in response to transforming growth factor (TGF)-β1. These findings 

suggest that statins may reverse EMT-like changes through the inhibition of 

isoprenylation of small RhoGTPases. However, to my knowledge, this 

assumption has not yet been tested. In this study, therefore, I investigated the 

effect of statins on PD-related EMT both in vitro and in vivo. 
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II. MATERIALS AND METHODS 

 

1. Isolation of human PMCs (HPMCs) 

HPMCs were isolated according to the method described by Stylianou et 

al.
21

. Briefly, a piece of human omentum, obtained from consenting patients 

who underwent elective abdominal surgery, was washed three times with sterile 

phosphate-buffered saline (PBS) and incubated in 0.05% trypsin-0.02% 

ethylenediaminetetraacetic acid (EDTA) solution for 20 min at 37°C with 

continuous shaking. After incubation, the suspension containing free HPMCs 

was centrifuged at 100 × g for 10 min at 4°C. The cell pellet was then washed 

once and re-suspended in M199 medium supplemented with 10% fetal bovine 

serum (FBS), 100 U/ml penicillin, 100 mg/ml streptomycin, and 26 mM 

NaHCO3, and seeded onto culture dishes. The cells were grown in the same 

medium at 37°C in humidified 5% CO2 in air, and the medium was changed 24 

hr after seeding, and then every 3 days. 

 

2. HPMCs experiments 

Subconfluent HPMCs were serum-restricted for 24 hr, and the medium was 

then changed to serum-free M199 medium containing normal glucose (5.6 mM, 

NG), NG + mannitol (94.4 mM, NG + M), NG + simvastatin (1 µM) (Sigma 

Chemical Co., St Louis, MO, USA), or high glucose (100 mM, HG) with or 

without simvastatin (1 µM). The dose of simvastatin used in the experiments 



8 

 

was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) cell viability assay. To explore whether isoprenoids of the 

mevalonate pathway were involved in peritoneal EMT, HPMCs were treated 

with NG + GGPP (5 µM) (Sigma Chemical Co.). HPMCs exposed to HG were 

also treated with Rho/ROCK inhibitor (Y27632, 1 µM) (Sigma Chemical Co.) 

or Rac inhibitor (EHT1864, 1 µM) (R&D Systems, Minneapolis, MN, USA). At 

72 hr after the media change, cells were harvested and conditioned media were 

collected. 

 

3. Evaluation of small GTPase activation 

To examine the activation of small GTPases, membrane and cytosol proteins 

were prepared separately and the expression of RhoA and Rac1 were 

determined in each fraction by Western blotting. Briefly, HPMCs treated as 

above were washed with cold PBS and lysed by freeze-thawing in ice-cold lysis 

buffer containing 50 mM HEPES (pH 7.4), 5 mM NaCl, 1 mM MgCl2, 2 mM 

EDTA, 1 mM dithiothreitol, 10 mM sodium fluoride, 1 mM 

phenylmethylsulfonyl fluoride, 10 μg/ml aprotonin, and 10 μg/ml leupeptin 

(Sigma Chemical Co.). The homogenates were centrifuged at 4°C and 100,000 

× g for 30 min and the resulting supernatant (cytosolic fraction) was collected. 

The pellets were then homogenized in the same lysis buffer containing 2% 

Triton X-114 and centrifuged at 800 × g for 10 min at 4°C, and the supernatant 

was collected. This supernatant was referred to membrane fraction. Moreover, 
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the activity of Rho-kinase was determined by using the colorimetric G-LISA 

RhoA activation assay biochemical kit (Cytoskeleton, Denver, CO, USA) 

according to manufacturer’s protocol as previously described.
22

 

 

4. Animal studies 

All animal studies were conducted under an approved protocol. Peritoneal 

access ports were inserted in 32 male Sprague-Dawley rats weighing 250-280 g, 

and 2 ml of saline with 1 IU/ml heparin was instilled intraperitoneally until 

wound healing. One week after surgery, 16 rats received a daily (once per day) 

20 ml of saline instillation and 16 rats were instilled daily with 20 ml of 4.25% 

peritoneal dialysis fluid (PDF, Dianeal
®
, Baxter Healthcare Ltd., Singapore) for 

4 weeks. Eight rats from each group were treated with simvastatin (5 mg/kg per 

day) intraperitoneally, while 8 rats in each group were left untreated (control). 

After 4 weeks of PD, the abdomen was opened by a midline incision and the 

entire anterior abdominal wall was removed at the contralateral side to the tip of 

the implanted catheter. One fifth of the whole tissue adjacent to the liver was 

fixed in 10% neutral-buffered formalin for pathologic examination, while the 

parietal peritoneum dissected from the major part of the tissue was washed in 

ice-cold PBS, snap-frozen in liquid nitrogen, pulverized with a mortar and 

pestle while frozen, and suspended in SDS sample buffer [2% SDS, 10 mM 

Tris-HCl, pH 6.8, 10% (vol/vol) glycerol]. After a centrifugation at 16,000 × g 

for 15 min at 4°C, the supernatant was kept at -80°C until use. 
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5. Western blot analysis 

The protein expression of E-cadherin (BD Biosciences, San Jose, CA, USA), 

Snail (Abcam, Cambridge, UK), α-SMA (Sigma Chemical Co.), fibronectin 

(DAKO, Glostrup, Denmark), RhoA (Santa Cruz Biotechnology, Inc., Santa 

Cruz, CA, USA), and Rac1 (Abcam) in HPMCs and peritoneal tissue were 

evaluated by Western blot as previously described.
23

 The band densities were 

measured using TINA image software (Raytest, Straubenhardt, Germany), and 

the changes in the optical densities of bands from the treated groups relative to 

NG cells or the peritoneum of control rats were used in the analysis. 

 

6. Immunofluorescence staining 

HPMCs grown on chamber slides were fixed in 4% paraformaldehyde for 

10 min at 4°C, washed three times with PBS, and incubated with 1% BSA for 

20 min at room temperature. For immunofluorescence staining, primary 

polyclonal antibodies to E-cadherin, Snail, α-SMA, RhoA, and Rac1 were 

diluted in 1:100 with antibody diluent (DAKO) and were applied for 3 hr at 

room temperature. After washing with PBS, Cy3 (red)- or Cy2 

(green)-conjugated anti-rabbit IgG antibody (Research Diagnostics, Inc., 

Flanders, NJ, USA) was added for 60 min.  

 

7. Immunohistochemical and Masson’s trichrome staining 

The peritoneum samples were fixed in 10% neutral-buffered formalin, 
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processed in the standard manner, and 5 μm-thick sections of 

paraffin-embedded tissues were utilized for immunohistochemical staining. 

Slides were deparaffinized, hydrated in ethyl alcohol, and washed in tap water. 

Antigen retrieval was carried out in 10 mM sodium citrate buffer for 20 min 

using a Black & Decker vegetable steamer. Primary antibodies for E-cadherin, 

Snail, α-SMA, and fibronectin were diluted to the appropriate concentrations 

with 2% casein in bovine serum albumin (BSA) and then added to the slides, 

followed by an overnight incubation at 4°C. After washing, a secondary 

antibody was added for 20 min, and the slides were washed and incubated with 

a tertiary PAP complex for 20 min. Diaminobenzidine was added for 2 min and 

the slides were counterstained with hematoxylin. A semi-quantitative score of 

staining intensity was determined by examining at least 5 fields of the 

peritoneum in each section under × 400 magnification and by digital image 

analysis (MetaMorph version 4.6r5, Universal Imaging Corp., Downingtown, 

PA, USA). For Masson’s trichrome staining, 5 μm-thick sections of 

paraffin-embedded tissues were deparaffinized, hydrated in ethyl alcohol, 

washed in tap water, and re-fixed in Bouin’s solution at 56°C for 1 hr. After 

washing in running tap water for 10 min and staining with Weigert’s iron 

hematoxylin working solution for 10 min, the sections were stained with 

Biebrich scarlet-acid fuchsin solution for 15 min, followed by a 10-min wash. 

The slides were then differentiated in phosphomolybdic-phosphotungstic acid 

solution for 15 min, transferred to aniline blue solution and stained for 10 min, 
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and reacted with 1% acetic acid solution for 5 min. The thickness of the 

peritoneum, which was defined as the tissue between the mesothelial surface 

and the underlying muscle or parenchyma, was assessed as previously 

described.
24

 Briefly, the maximal thickness of the peritoneum was measured in 

three Masson’s trichrome-stained tissue sections per rats and five fields, the 

center of which included the area of maximal thickness, were examined under × 

400 magnification. Areas and perimeter lengths of the peritoneum were 

obtained from drawn outlines and the average thickness was calculated from 

rectangular approximation based on the values for area and perimeter in each 

field of view. 

 

8. Statistical analysis 

All values are expressed as means  standard errors of the mean (SEM). 

Statistical analyses were performed using the statistical package SPSS for 

Windows Ver. 11.0 (SPSS, Inc., Chicago, IL, USA). Results were analyzed 

using one-way ANOVA with a post hoc Bonferonni’s test for multiple 

comparisons. P-values < 0.05 were considered statistically significant. 
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III. RESULTS 

 

1. Cultured HPMCs studies 

 

A. Effects of simvastatin on EMT and fibronectin expression in HPMCs 

As shown in Figure 1, MTT assay demonstrated that HPMCs remained 

viable at up to 1 µM of simvastatin, but the viability was decreased by 20% at 

10 µM. Therefore, I determined to use the dose of 1 µM for the experiments. To 

evaluate the effects of statins on EMT in vitro, HPMCs were incubated for 72 hr 

with NG, NG + M, NG + simvastatin, or HG with or without simvastatin. 

E-cadherin protein expression was significantly lower, while the protein 

expression of Snail, α-SMA, and fibronectin were significantly higher in 

HG-stimulated HPMCs compared to NG cells (P < 0.05) (Fig. 2A). Furthermore, 

the changes in HPMCs exposed to HG were significantly abrogated by 

simvastatin treatment (P < 0.05) (Fig. 2A). These findings were corroborated by 

the immunofluorescence analysis. HPMCs cultured under HG medium showed 

a weak staining of E-cadherin, a strong signal intensity of α-SMA, and 

increased nuclear translocation of Snail, all of which were ameliorated by the 

administration of simvastatin (Fig. 2B). On the other hand, mannitol used as an 

osmotic control had no effect on EMT and fibronectin expression in HPMCs. In 

addition, the expression of EMT markers and fibronectin in NG cells was not 

affected by simvastatin. 
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 Moreover, I observed the morphologic changes of HPMCs under an 

inverted phase-contrast microscope. The cobblestone-like appearance of 

HPMCs was converted into a fibroblast-like morphology after HG treatment, 

which was reversed by simvastatin (Fig. 3). 
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Figure 1. MTT assay for cell viability. HPMCs were incubated for 72 hr with 

5.6 mM glucose (NG), NG + mannitol (94.4 mM, NG + M), high glucose (100 

mM, HG), or HG + 0.1 µM, 1 µM, or 10 µM simvastatin (HG + statin). Cell 

viability was maintained at up to 1 µM simvastatin, but was decreased by 20% 

at 10 µM. *; p<0.05 vs. 1 µM simvastatin.
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(A) 

 

(B) 

 

 

 

 

 

 

 

 

 

Figure 2. Effects of simvastatin on EMT and fibronectin expression in HPMCs. 

(A) HPMCs were incubated for 72 hr with 5.6 mM glucose (NG), NG + 

mannitol (94.4 mM, NG + M), NG + 1 µM simvastatin (NG + statin), high 

glucose (100 mM, HG), or HG + 1 µM simvastatin (HG + statin) (A 

representative of five Western blots). E-cadherin protein expression was 

significantly lower, while the protein expression of Snail, α-SMA, and 

fibronectin were significantly higher in HG-stimulated HPMCs compared to 

NG cells, and these changes were significantly attenuated by simvastatin. *; 

p<0.05 vs. NG, †; p<0.05 vs. HG. (B) Compared to NG cells, HPMCs cultured 

under HG medium showed a weak staining of E-cadherin, a strong signal 

intensity of α-SMA, and increased nuclear translocation of Snail, all of which 

were ameliorated by the administration of simvastatin (× 400).
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Figure 3. Morphologic changes under an inverted phase-contrast microscope in 

HPMCs exposed to 5.6 mM glucose (NG), NG + mannitol (94.4 mM, NG + M), 

NG + 1 µM simvastatin (NG + statin), high glucose (100 mM, HG), or HG + 1 

µM simvastatin (HG + statin). The cobblestone-like appearance of HPMCs was 

converted into a fibroblast-like morphology 72 hr after HG treatment, which 

was reversed by simvastatin (× 40). 
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B. Activation of small GTPases such as RhoA and Rac1 in HPMCs 

Posttranslational modification of Rho proteins by geranyl-geranlyation is 

essential for their membrane location and activity. Thus, the assessment of these 

proteins in the membrane fraction of the cells can reflect their degree of 

prenylation through the mevalonate pathway.
25,26

 Since inhibiting isoprenylation 

of the mevalonate pathway products was the main mechanism of statins, I 

evaluated the membrane-associated protein expression of RhoA and Rac1 in 

HPMCs after separation of the membrane and cytosol fractions by Western blot 

analysis. Compared to NG cells, the protein expression of RhoA and Rac1 were 

significantly increased in the membrane fraction of HG-stimulated HPMCs (P < 

0.05), and simvastatin significantly abrogated the increases in RhoA and Rac1 

expression in the membrane fraction of HPMCs exposed to HG (P < 0.05) (Fig. 

4A). Furthermore, the immunofluorescence study revealed that HG provoked 

the translocation of RhoA and Rac1 from the cytosol to the membrane fraction, 

and simvastatin treatment inhibited this translocation of RhoA and Rac1 

induced by HG (Fig. 4B). In addition, the levels of Rho kinase were 

significantly increased in HG-treated HPMCs than in NG cells (P < 0.05), and 

these changes were significantly ameliorated by simvastatin (P < 0.05) (Fig. 4C).
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(A) 

 

 

(B) 
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Figure 4. RhoA1 and Rac1 protein expression in the membrane and cytosol 

fractions of HPMCs exposed to 5.6 mM glucose (NG), NG + mannitol (94.4 

mM, NG + M), NG + 1 µM simvastatin (NG + statin), high glucose (100 mM, 

HG), or HG + 1 µM simvastatin (HG + statin). (A) The protein expression of 

RhoA and Rac1 were significantly increased in the membrane fraction of 

HG-stimulated HPMCs compared to NG cells, and simvastatin significantly 

attenuated the increases in RhoA and Rac1 expression in the membrane fraction 

of HPMCs exposed to HG. *; p<0.05 vs. NG, †; p<0.05 vs. HG. (B) 

Immunofluorescence study revealed that HG provoked the translocation of 

RhoA and Rac1 from the cytosol to the membrane fraction, and simvastatin 

treatment inhibited this translocation of RhoA and Rac1 induced by HG (× 40). 

(C) The levels of Rho kinase were significantly increased in HG-treated 

HPMCs than in NG cells, and these changes were significantly abrogated by 

simvastatin. *; p<0.05 vs. NG, †; p<0.05 vs. HG. 



21 

 

C. Involvement of isoprenoids of the mevalonate pathway in EMT of 

HPMCs 

To evaluate whether isoprenoids of the mevalonate pathway were involved 

in peritoneal EMT, HPMCs were incubated with 5 µM GGPP for 72 hr. The 

administration of GGPP significantly decreased E-cadherin protein expression 

and significantly increased the protein expression of Snail, α-SMA, and 

fibronectin in HPMCs (P < 0.05) (Fig. 5A). The protein expression of RhoA and 

Rac1 were also significantly increased in the membrane fraction of HPMCs 

exposed to GGPP (P < 0.05) (Fig. 5B). 
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Figure 5. The protein expression of EMT markers and fibronectin in HPMCs. 

HPMCs were incubated with 5.6 mM glucose (NG) and NG + 5 µM GGPP (NG 

+ GGPP) for 72 hr. (A) GGPP treatment significantly decreased E-cadherin 

expression and significantly increased the protein expression of Snail, α-SMA, 

and fibronectin in HPMCs (A representative of five Western blots). *; p<0.05 vs. 

NG. (B) The protein expression of RhoA and Rac1 were significantly increased 

in the membrane fraction of HPMCs exposed to GGPP. *; p<0.05 vs. NG. 
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D. Effect of small GTPase inhibitors on EMT and fibronectin expression in 

HPMCs 

I added Rho/ROCK inhibitor (Y27632) and Rac inhibitor (EHT1864) to 

HG-stimulated HPMCs, and determined the changes in EMT markers and 

fibronectin expression. The administration of these two small GTPase inhibitors 

significantly ameliorated the changes in EMT markers and fibronectin 

expression in HPMCs cultured under HG medium (P < 0.05) (Fig. 6). 
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Figure 6. The protein expression of EMT markers and fibronectin in HPMCs 

exposed to 5.6 mM glucose (NG), NG with 1 µM Y27632 (Rho/ROCK 

inhibitor) (NG + Y27632), NG with 1 µM EHT1864 (Rac inhibitor) (NG + 

EHT1864), high glucose (100 mM, HG), HG with 1 µM Y27632 (HG + 

Y27632), or HG with 1 µM EHT1864 (HG + EHT1864). The administration of 

Y27632 and EHT1864 significantly attenuated the changes in EMT markers 

and fibronectin expression in HPMCs cultured under HG medium. *; p<0.05 vs. 

NG, †; p<0.05 vs. HG, ‡; p<0.05 vs. HG.
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2. Animal studies 

 

A. Effects of simvastatin on peritoneal EMT and ECM accumulation in a 

PD rat model 

Finally, the effects of simvastatin on peritoneal EMT and ECM 

accumulation were explored in a PD rat model. E-cadherin protein expression 

was significantly lower, while Snail, α-SMA, and fibronectin protein expression 

were significantly higher in rats treated with 4.25% PDF compared to control 

rats (P < 0.01), and these changes were significantly abrogated by simvastatin 

treatment (P < 0.05) (Fig. 7). 
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Figure 7. The protein expression of EMT markers and ECM in the peritoneum 

of control (C), C+ simvastatin (C + statin), 4.25% PDF instillation (PD), or 

4.25% PDF + simvastatin (PD + statin) rats. E-cadherin protein expression was 

significantly lower, while Snail, α-SMA, and fibronectin protein expression 

were significantly higher in rats treated with 4.25% PDF compared to control 

rats, and these changes were significantly ameliorated by simvastatin. *; p<0.05 

vs. C, †; p<0.05 vs. PD. 
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B. Immunohistochemical and Masson’s trichrome staining 

Immunohistochemical staining of the peritoneum also revealed that EMT 

markers and fibronectin protein expression were significantly higher in rats 

treated with 4.25% PDF relative to control rats, and simvastatin significantly 

attenuated EMT and ECM accumulation in PD rats (Fig. 8). Moreover, 

Masson’s trichrome staining found that submesothelial layer was significantly 

thicker and peritoneal fibrosis was more extensive in PD rats with 4.25% PDF 

than control rats, and these changes were significantly abrogated by simvastatin 

treatment (Fig. 9). 
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Figure 8. Immunohistochemical staining of the peritoneum of control (C), C+ 

simvastatin (C + statin), 4.25% PDF instillation (PD), or 4.25% PDF + 

simvastatin (PD + statin) rats. The intensity of E-cadherin staining was 

significantly lower, while Snail, α-SMA, and fibronectin staining intensities 

were significantly higher in PD rats compared to C rats, and simvastatin 

significantly ameliorated these changes in PD rats (× 200). 
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Figure 9. Masson’s trichrome staining of the peritoneum of control (C), C+ 

simvastatin (C + statin), 4.25% PDF instillation (PD), or 4.25% PDF + 

simvastatin (PD + statin) rats. Peritoneal fibrosis assessed by Masson’s 

trichrome staining was significantly more extensive in PD rats with 4.25% PDF 

than C rats, and these changes were significantly attenuated by simvastatin 

treatment (× 200). 
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IV. DISCUSSION 

 

PF is one of the most serious complications of long-term PD, leading to 

membrane failure. Even though resident peritoneal fibroblasts and infiltrating 

inflammatory cells have been considered to play a key role in the development 

PF, EMT of PMCs is recently highlighted as another potential mechanism 

responsible for PF.
5-8

 In this study, I show for the first time that statin treatment 

abrogates PD-related EMT of HPMCs and ECM accumulation in a PD rat 

model. In addition, I demonstrate that these beneficial effects of statin are 

mediated, at least in part, by inhibiting isoprenylation of small RhoGTPases 

such as RhoA and Rac1. 

Besides a physiologic role of EMT in embryogenesis or organ development, 

it also plays a pathologic role in cancer metastasis and fibrotic disorders.
7
 A 

number of recent studies have found that PMCs also undergo EMT during 

PD.
5,27-29

 In particular, Yanez-Mo et al.
5
 showed that PMCs underwent a 

transition from an epithelial phenotype to a mesenchymal phenotype soon after 

PD was initiated along with a decrease in the expression of cytokeratins and 

E-cadherin, suggesting that these cells indeed acquire structural changes during 

PD. Consistent with these findings, in my study, E-cadherin expression was 

significantly decreased, while Snail, a-SMA, and fibronectin expression were 

significantly increased in HPMCs exposed to HG and in the peritoneum of rats 

instilled with 4.25% PDF. Furthermore, the cobblestone-like appearance of 
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normal HPMCs was converted into a fibroblast-like morphology after HG 

treatment. These findings support previous evidence of EMT of PMCs under 

pathologic conditions. 

HMG-CoA reductase inhibitors or statins are potent inhibitors of cholesterol 

biosynthesis and have emerged as the leading lipid-lowering agents. However, it 

has been acknowledged that the beneficial effects of statins are not mediated 

solely by their lipid-lowering property but also through effects separate from 

inhibiting cholesterol synthesis, known as “pleiotropic” effects.
9-11

 In fact, 

statins exert these effects by preventing the synthesis of other important 

isoprenoids of cholesterol biosynthetic pathway, such as FPP and GGPP that are 

downstream of the mevalonate pathway.
12

 These intermediates play key roles in 

the post-translational modification of many proteins, including small GTP 

binding proteins; the family of Ras, Rho, Rap, and Rab GTPase, by serving as 

lipid attachments through a process known as “prenylation”.
13-15

 Isoprenylation 

of these proteins permits the covalent attachment, subcellular localization, and 

intracellular trafficking of membrane-associated proteins.
13-15

 Therefore, small 

G proteins are anchored into the cell membrane if they are prenylated, while 

they remain in the cytoplasm when prenylation is inhibited. In general, 

modification of FPP is necessary for localization of Ras, whereas GGPP is 

required for Rho, Rap, and Rab family proteins.
12

 By inhibiting the synthesis of 

mevalonate products, statins prevent isoprenylation of small GTPases, leading 

to suppression of these signal molecules.
14

 To support this notion, I clearly 
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demonstrated that the expression of RhoA and Rac1 protein in the membrane 

fraction were increased in cultured HPMCs exposed to HG, and these increases 

were ameliorated by statin treatment. 

 In addition to pivotal roles of small RhoGTPases in the regulation of cell 

shape, adhesion, migration, secretion, and proliferation,
12-14

 several recent 

studies have found that small RhoGTPases such as RhoA, Rac1, and Cdc42 

exert a direct effect on EMT in a number of cell types including renal,
16-20

 

lens,
30

 bronchial,
31

 and mammary epithelial cells.
32

 Bhowmick et al.
32

 showed 

that a RhoA-dependent mechanism was responsible for TGF-β1-induced 

mammary epithelial EMT. Moreover, some investigators demonstrated that 

overexpression of active RhoA reduced E-cadherin expression and increased 

mesenchymal cell markers,
16

 while transfection of RhoA dominant-negative 

vector or ROCK inhibition with Y-27632 or fasudil inhibited EMT provoked by 

angiotensin II in renal tubular epithelial cells,
19

 indicating that RhoA may be 

directly involved in renal tubular epithelial EMT. Furthermore, in contrast to the 

putative roles of Rac1 and Cdc42, which are believed to be involved in the 

establishment and maintenance of epithelial intercellular adhesions,
33-35

 

activation of these proteins can also induce EMT accompanied by breakdown of 

cell-cell adhesion and rearrangement of the actin cytoskeleton.
36-38

 Similar to 

these cells, EMT-like changes caused by small GTPases can occur in PMCs. A 

recent study by Zhang et al.
20

 found that activation of RhoA in rat PMCs by 

TGF-β1 up-regulated α-SMA, vimentin, and collagen expression and 



33 

 

down-regulated E-cadherin expression, suggesting that RhoA/ROCK signaling 

pathway mediated EMT in rat PMCs in response to TGF-β1. Based on these 

findings, it is surmised that small GTPases such as RhoA, Cdc42, and Rac1 

may be involved in EMT. 

Because statins have inhibitory effect on the synthesis of isoprenoid 

intermediates, it can be presumed that statins may reverse EMT-like changes 

through inhibiting isoprenylation of small RhoGTPases. This assumption was 

verified in the current study. I showed for the first time that statin treatment 

attenuated HG- or PD-induced EMT and ECM accumulation in HPMCs in vitro 

and in vivo. In addition, I provided the underlying mechanisms of the effect of 

statins against EMT. The present study revealed that HG increased membrane 

translocation of RhoA and Rac1 and enhanced Rho-kinase activity in cultured 

HPMCs. Moreover, HG-induced changes in EMT markers were reversed by 

Rho and Rac inhibitors. Taken together, it was suggested that HG increased 

isoprenylation of small GTPases, and these proteins played a role in 

HG-induced EMT of HPMCs. Furthermore, GGPP-treated HPMCs lost 

epithelial marker and acquired mesenchymal markers, indicating that isoprenoid 

intermediates were directly involved in EMT of HPMCs. All these findings 

support evidence that statins can inhibit HG-induced EMT in HPMCs, at least 

in part, through inhibiting isoprenalytion process and subsequently leading to 

inactivation of RhoA and Rac1. 

Even though this study underscores an important role of statins in terms of 
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inhibiting small GTPases, it is possible that statins may exhibit this favorable 

effect via other mechanisms. In fact, EMT can be induced by a variety of 

cytokines or growth factors including TGF-β,
28

 angiotensin II,
39

 fibroblast 

growth factor-2,
40

 epidermal growth factor,
41

 and platelet-derived growth 

factor.
42

 Furthermore, it can be triggered by inflammation or oxidative stress,
43

 

and statins have been reported to abrogate some of these stimuli such as 

inflammation, oxidative stress,
44-46

 connective tissue growth factor,
47

 or TGF- 

β.
48

 However, there is lack of evidence elucidating whether statins can inhibit 

EMT by reducing these triggering factors. On the other hand, my in vivo 

experiment demonstrated that alteration of EMT markers and increased ECM 

accumulation in a PD rat model were not completely ameliorated by statin 

treatment. Based on these findings, it is implied that peritoneal EMT is a 

complex process which is engaged by a wide spectrum of factors other than 

RhoA and Rac1 activation. Therefore, the results of the current study should be 

interpreted with caution, but provide another potential mechanism of pleiotropic 

effects of statins with respect to inhibiting EMT. 

In conclusion, the present study found that PD-related EMT was mediated 

through activation of the mevalonate pathway and statin treatment attenuated 

EMT changes in HG-stimulated HPMCs and 4.25%-PDF-instilled PD rats. 

These findings suggest that statins may be a promising therapeutic strategy for 

preservation of peritoneal membrane integrity in long-term PD patients. 
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V. CONCLUSION 

 

In this study, I investigated the effects of simvastatin on EMT and 

fibronectin expression and whether isoprenoids of the mevalonate pathway were 

involved in HG-induced EMT in cultured HPMCs. The effects of simvastatin 

on peritoneal EMT and PF were also examined in an animal model of PD. 

 

1. Compared to NG cells, E-cadherin expression was significantly decreased, 

while Snail, α-SMA, and fibronectin expression were significantly increased in 

HPMCs exposed to HG, and these changes were abrogated by simvastatin. 

2. The cobblestone-like appearance of normal PMCs was converted into a 

fibroblast-like morphology after HG treatment, which was reversed by 

simvastatin treatment. 

3. HG significantly increased the protein expression of RhoA and Rac1 in the 

membrane fraction of HPMCs, and these increases were significantly 

ameliorated by simvastatin. 

4. The activity of Rho kinase was significantly increased in HG-stimulated 

HPMCs than in NG cells, and this increment was significantly inhibited by 

simvastatin treatment. 

5. The administration of GGPP significantly reduced E-cadherin protein 

expression and significantly increased the protein expression of Snail, α-SMA, 

and fibronectin in cultured HPMCs. 
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6. Administration of Rho/ROCK inhibitor (Y27632) or Rac inhibitor 

(EHT1864) significantly attenuated the increase in E-cadherin protein 

expression and the decreases in Snail, α-SMA, and fibronectin protein 

expression in HPMCs cultured under HG medium. 

7. Western blot and immunohistochemical staining revealed that Snail, α-SMA, 

and fibronectin protein expression were significantly higher, while E-cadherin 

protein expression was significantly lower in the peritoneum of rats treated with 

4.25% PDF compared to control rats, and these changes were significantly 

abrogated simvastatin. 

8. Submesothelial layer of the peritoneum assessed by Masson’s trichrome 

staining was significantly thicker in rats treated with 4.25% PDF relative to 

control rats. 

9. Simvastatin significantly ameliorated EMT and ECM accumulation and 

significantly reduced submesothelial thickness in PD rats. 

 

In conclusion, PD-related EMT was mediated through activation of the 

mevalonate pathway and statin treatment attenuated EMT changes in 

HG-treated HPMCs and 4.25%-PDF-instilled PD rats. These findings suggest 

that statins may be a promising therapeutic strategy for preservation of 

peritoneal membrane integrity in long-term PD patients. 
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ABSTRACT (IN KOREAN) 

실험적 복막투석 모형에서 스타틴의 

상피-중간엽 이행 억제효과에 관한 연구 

 

<지도교수 강 신 욱> 

연세대학교 대학원 의학과 

장 태 익 

 

배경: 복막을 이루고 있는 중피세포는 복막투석을 하면서 상피세포의 

성격을 소실하고, 중간엽세포로 이행하는 상피-중간엽 이행의 변화를 

보이며, 궁극적으로는 복막섬유화를 이루게 된다. 최근 여러 연구들을 

통하여 복막 중피세포의 상피-중간엽 이행 유발인자들이 보고되었다. 

그러나 아직까지 이를 억제할 수 있는 치료적인 방법을 제시한 

연구들은 드물다. 이에 본 연구자는 스타틴이 복막투석에 의한 

상피-중간엽 이행의 변화를 억제 할 수 있는지 알아보고자 하였다. 

방법: 생체 외 실험은 복강 수술을 시행한 환자에서 얻은 복막을 

처리하여 복막 중피세포를 얻은 후 정상 포도당군 (5.6 mM), 정상 

포도당+만니톨군 (94.4 mM), 정상 포도당+심바스타틴 처치군 (1 µM), 

고포도당군 (100 mM), 고포도당+심바스타틴 처치군 (1 µM) 으로 
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나누어 72시간 동안 배양 후 세포 형태 변화 및 상피-중간엽 이행 

표식자를 Western blot으로 확인하였다. 또한 스타틴의 상피-중간엽 

이행 억제 기전을 규명하고자, RhoA, Rac1 단백 발현 변화를 

관찰하였고, mevalonate pathway 대사 산물인 geranyl-geranyl 

pyrophosphate (GGPP, 5 µM)를 처리 후 상피-중간엽 이행 변화가 

나타나는지도 관찰하였다. 생체 내 실험으로는 32마리의 

Sprague-Dawley 백서에 복막관을 삽입 후, 16마리는 생리식염수 20 

ml를 1일 1회 주입하는 대조군, 그리고 16마리는 4.25% 투석액 20 

ml를 1일 1회 주입하는 복막투석군으로 나누었으며, 각 군에서 

8마리씩은 심바스타틴을 피하로 1일에 5 mg/kg의 용량으로 4주간 

주사하였다. 복막의 비후 및 섬유화는 Masson’s trichrome 염색을 통해, 

그리고 상피-중간엽 이행 여부는 면역조직화학 염색을 통해 관찰 

하였다. 

결과: 고포도당으로 처리한 복막 중피세포와 고농도 포도당을 이용한 

복막투석 백서의 복막에서 정상군에 비해 E-cadherin 단백이 의미있게 

감소하였으며, α-SMA, Snail, fibronectin은 유의하게 증가하였다. 또한, 

이와 같은 상피-중간엽 이행의 변화는 심바스타틴에 의해 의의있게 

억제되었고, 복막투석군에서 관찰되었던 복막의 비후 및 섬유화도 

심바스타틴 전처치로 의미있게 완화되었다. 한편, 고포도당은 복막 
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중피세포의 세포막내 RhoA와 Rac1의 단백 발현을 유의하게 

증가시켰고, 심바스타틴은 이를 의미있게 감소시켜, 고포도당으로 

유발된 상피-중간엽 이행에 미치는 심바스타틴의 보호효과는 

mevalonate pathway의 억제에 기인함을 확인 하였다. 

결론: 이상의 결과를 종합해 볼 때, 고포당으로 자극한 복막 

중피세포와 복막투석 백서에서 유발된 상피-중간엽 이행은 mevalonate 

pathway의 활성화에 기인하며, 스타틴을 통한 상피-중간엽 이행 

발생의 보호 효과는 이의 억제와 연관이 있을 것으로 생각된다. 
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