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Abstract 

 

Development of a Real-time Cortical 

Rhythmic Activity Imaging Technology and 

Its Applications 

 

 

Han-Jeong Hwang 

Dept. of Biomedical Engineering 

The Graduate School  

Yonsei University 

 

 

The principal aim of this dissertation is to develop a real-time cortical rhythmic 

activity imaging technology and to apply this technology to a variety of potentially 

practical applications, such as real-time brain activity monitoring, diagnosis of brain 

diseases, advanced neurofeedback, brain-computer interface (BCI), and classification 

of human thoughts.  
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To this end, the author first implemented an EEG-based, real-time, cortical 

rhythmic activity monitoring system to investigate whether or not a real-time cortical 

rhythmic activity imaging is feasible. In the monitoring system, a frequency domain 

inverse operator is preliminarily constructed, considering the subject’s anatomical 

information and sensor configurations, and then the spectral current power at each 

cortical vertex is calculated for the Fourier transforms of successive sections of 

continuous data, when a particular frequency band is given. A preliminary offline 

simulation study using four sets of artifact-free, eye-closed, resting EEG data 

acquired from two dementia patients and two normal subjects demonstrates that 

spatiotemporal changes of cortical rhythmic activity can be monitored at the cortical 

level with a maximal delay time of about 200 ms, when 18 channel EEG data are 

analyzed under a Pentium4 3.4 GHz environment. The first pilot system is applied to 

two human experiments– (1) cortical alpha rhythm changes induced by opening and 

closing eyes and (2) cortical mu rhythm changes originated from the arm 

movements– and demonstrated the feasibility of the developed system.  

 

The developed real-time cortical rhythmic activity monitoring system was 

utilized as a motor imagery training system for EEG-based brain-computer interface 

(EEG). Ten healthy participants took part in this study, half of whom were trained by 

the suggested training system and the others did not use any training. All participants 

succeeded in performing motor imagery after a series of trials to activate their motor 

cortex without any physical movements of their limbs. To confirm the effect of the 
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suggested system, EEG signals were recorded for the trained group around 

sensorimotor cortex while they were imaging either left or right hand movements 

according to the experimental design, before and after the motor imagery training. For 

the control group, EEG signals were also measured twice without any training 

sessions. The participants’ intentions were then classified using a time-frequency 

analysis technique, and the results of the trained group showed significant differences 

in the sensorimotor rhythms between the signals recorded before and after training. 

Classification accuracy was also enhanced considerably in all participants after motor 

imagery training, compared to the accuracy before training. On the other hand, the 

analysis results for the control EEG data set did not show consistent increment in both 

the number of meaningful time-frequency combinations and the classification 

accuracy, demonstrating that the suggested system can be used as a tool for training 

motor imagery tasks in BCI applications.  

 

With just slight modifications of the real-time cortical rhythmic activity 

monitoring system, the author developed an EEG-based, real-time, cortical functional 

connectivity imaging system capable of monitoring and tracing dynamic changes in 

cortical functional connectivity between different regions of interest (ROIs) on the 

brain cortical surface. To verify the implemented system, the author performed three 

test experiments in which the author monitored temporal changes in cortical 

functional connectivity patterns in various frequency bands during structural face 

processing, finger movements, and working memory task. The author also traced the 
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changes in the number of connections between all possible pairs of ROIs whose 

correlations exceeded a predetermined threshold. The quantitative analysis results 

were consistent with those of previous off-line studies, thereby demonstrating the 

possibility of imaging cortical functional connectivity in real-time.  

 

The cortical source imaging was used to decode various mental states more 

accurately than sensor-level analyses. Eight participants took part in this study; their 

EEG data were recorded while they performed four different cognitive imagery tasks. 

The spectral power at each preliminarily determined cortical ROIs was estimated, and 

then a 2D spatiospectral pattern map was constructed for each task, of which each 

element was filled with 1, 0, and -1 reflecting the degree of event-related 

synchronization (ERS) and event-related desynchronization (ERD). Consistent 

ERS/ERD patterns were observed more frequently between trials in the same class 

than those in different classes, indicating that these spatiospectral pattern maps could 

be used to classify different mental states. Classification of a specific mental state was 

performed through the similarity evaluation between a current 2D pattern map and the 

template pattern maps, by taking the inner-product of two pattern matrices. The 

classification accuracy was evaluated using the leave-one-out cross-validation 

(LOOCV) and that for sensor-level analysis using the raw EEG signals was also 

calculated for comparison. An average accuracy of 76.31% (± 12.84%) was attained 

for the cortical-level analysis; whereas an average accuracy of 68.13% (± 9.67%) was 
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attained for the sensor-level analysis, demonstrating cortical-level analysis can 

interpret various human thoughts more correctly than sensor-level analysis.  

 

In summary, the author developed a real-time cortical rhythmic activity imaging 

technology and demonstrated the usefulness of the developed technology by 

successfully realizing a variety of practical applications.  
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Chapter 1: Introduction 
 

 

Cortical rhythmic activity, which is often called spontaneous brain activity or 

oscillatory brain activity, is generated intrinsically rather than as phase-locked 

responses to external stimuli [1]. In electroencephalography (EEG) and 

magnetoencephalography (MEG), the first recorded signal was the alpha rhythm, 

which is a kind of cortical oscillation peaking at about 10 Hz.  

 

Recently, an increasing number of neuroscientists are becoming interested in 

cortical rhythmic activity since various in vivo studies in both humans and animals 

have revealed that cortical rhythmic activity at various frequencies might be closely 

related to information encoding in the brain [2-7]. For instance, cortical rhythmic 

activity might reflect specific body movements and behavioral states. The alpha 

rhythmic peaking at around 10 Hz becomes strongest when the subject has his eyes 

closed and is suppressed when the subject is exposed to visual stimuli [6]. The mu 

rhythm, with both 10 Hz and 20 Hz components, is dampened by limb movements or 

tactile stimulations [7]. It has also been revealed by numerous studies [2, 3, 5] that 

gamma-band activity (30–100 Hz) can be modulated by various behavioral states 

such as attention, working memory and associative brain diseases such as 

schizophrenia [4] and Alzheimer’s disease [8].  
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EEG and MEG are excellent tools to investigate human cortical rhythmic 

activity noninvasively thanks to their superior temporal resolutions to other 

noninvasive brain mapping techniques such as functional magnetic resonance 

imaging (fMRI), positron emission tomography (PET), near infrared spectroscopy 

(NIRS) and so on. Many studies have been performed to evaluate the coherence 

between signals acquired at different scalp EEG electrodes or MEG sensors, and 

investigated spatial signal power patterns appearing in the scalp potential maps or 

magnetic field maps on the sensor plane [1-9]. However, the EEG or MEG 

topographies cannot be directly attributed to the underlying cortical regions since 

sensors may contain information from multiple brain sources, some of which might 

overlap, and the topographic maps might be smeared out due to the inhomogeneous 

conductivity distributions in the human head. A deep tangential source might generate 

two distinct peaks on the topographic map, which are hard to distinguish from two 

radial sources around the peak locations. Moreover, a very small cortical activation in 

some cortical areas could yield widespread filed distribution in the topographic maps, 

preventing one from identifying the correct location of the actual cortical source and 

investigating the coherence between different sensors. If a subject’s head is tilted 

especially in a helmet-type MEG, so that one hemisphere is closer to the sensors than 

the other is, one could observe stronger activity at sensors closer to the subject’s head 

even when the strengths are equal at the cortical level. Therefore, to overcome these 

limitations, source imaging rhythmic activity at the cortical level is necessary.  
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Over the last decade, several methods for source imaging of cortical rhythmic 

activity have been proposed, such as sequential dipole modeling [10], dynamic 

imaging of coherent sources (DICS) [11], frequency-domain minimum current 

estimation (FD-MCE) [12], synthetic aperture magnetometry (SAM)[13] and spectral 

spatiotemporal imaging [14]. Despite the recent progress in the imaging techniques, 

source imaging of cortical rhythmic activity has rarely been applied to the real-time 

brain activation monitoring system. Congedo et al [10, 15] attempted to apply inverse 

solutions to the EEG neurofeedback system for the first time. They applied low-

resolution electromagnetic tomography (LORETA) software 

(http://www.unizh.ch/keyinst) to the EEG data which were bandpass-filtered for a 

specific frequency band. Their system enhanced the efficiency of conventional 

neurofeedback systems which relied only upon the EEG or MEG topographic maps, 

by tracking spectral power changes at a region of interest (ROI) in a standard human 

brain. Their approach is meaningful enough in that they first implemented a real-time 

cortical rhythmic activity monitoring system. Basically, however, the conventional 

approach that used LORETA-key software resulted in too widespread low-resolution 

images and did not visualize 3D cortical activation changes in real-time. Moreover, 

they did not concern themselves about the delay time seriously because their 

application could be implemented without a very high temporal resolution.  

 

In this dissertation, the first goal was to realize a real-time cortical rhythmic 

activity monitoring system that visualizes instantaneous cortical activation images, 
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and is generally applicable to a variety of potential applications such as brain 

computer interface (BCI), neurofeedback, real-time diagnosis of brain diseases, and 

so on, with just slight modifications in the operating software. Before implementing a 

pilot system, offline analysis software which simulates the real-time cortical 

activation monitoring system was implemented and applied to four sets of artifact-

free, eye-closed, resting EEG data acquired from two dementia patients and two 

normal male subjects, in order to investigate if the real-time cortical activity 

monitoring system is possible. After confirming the possibility of the system, the 

author implemented a first online pilot system which was integrated with a 

commercial EEG recording device and applied it to two well-known experiments– (1) 

cortical alpha rhythm changes induced by opening and closing eyes and (2) cortical 

mu rhythm changes originated from the arm movements– which demonstrate the 

validity of the real-time cortical activity monitoring system. The detailed processes of 

real-time cortical rhythmic source imaging, experimental procedures, and results will 

be presented in Chapter 3 of this dissertation.  

 

After the verification of the real-time cortical rhythmic activity monitoring 

system, this real-time source imaging system was used as a motor imagery training 

system for brain-computer interface (BCI). Motor imagery, defined as mental 

simulation of a kinesthetic movement [16, 17], is one of the widely used effectors in 

EEG-based BCI systems. However, many individuals have difficulty in getting used 

to the feel of motor imagery because most people do not easily recognize how they 
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can have a concrete feeling of motor imagery. Therefore, the author proposed a 

neurofeedback-based motor imagery training system based on the developed real-time 

cortical rhythmic source imaging system, with the expectation that the motor imagery 

training system can help individuals to easily get the concrete feeling on the motor 

imagery. In the experiment, half of 10 human volunteers, who had no prior 

experience of BCI experiments, were asked imagine either left or right hand 

movement while they were watching their cortical activation maps through the real-

time monitoring system. During the experiment, the participants were asked to 

continuously try to increase their mu rhythm activations (8–12 Hz) around the 

sensorimotor cortex areas. The author then investigated changes in the EEG signals 

recorded before and after motor imagery training to demonstrate the effect of the 

motor imagery training system. The other five control participants did not had any 

motor imagery training and the changes in the EEG signals recorded before and after 

a 30-min break were investigated. The detailed processes of motor imagery training, 

experimental procedures, and results will be found in Chapter 4 of this dissertation. 

 

The author also developed a real-time cortical functional connectivity imaging 

system capable of monitoring and tracing temporal changes in source-level 

connectivity between different regions of interest (ROIs) on the cortical surface, after 

the simple modification of the real-time cortical rhythmic activity motoring system. 

To implement this system, scalp EEG signals were converted into frequency domain 

data-sets in real-time and mapped onto cortical source space by applying frequency 
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domain inverse estimation. Then, the cortical signals were spatially grouped for each 

ROI and analyzed in order to find the correlations among the ROIs. To demonstrate 

the feasibility of the implemented system, the author performed three test experiments 

in which the author monitored the changes in cortical functional connectivity patterns 

while participants were performing different tasks. The experimental procedures and 

results for each test experiment will be fully presented in Chapter 5 of this 

dissertation. 

 

Lastly, the cortical source imaging method was applied to decoding various mental 

states in order to more accurately interpret individuals’ intentions. Eight participants 

took part in this mind reading study, and performed four different mental tasks. EEG 

signals recorded for each mental task were firstly transformed into the frequency 

domain using the fast Fourier transform (FFT), and the spectral power at each cortical 

region of interest (ROI) is calculated using preliminarily constructed inverse operator. 

Then, the author constructed two-dimensional spatiospectral pattern maps, consisting 

of quantized event-related synchronization (ERS) and event-related 

desynchronization (ERD) values evaluated at every combination of ROI and 

frequency bin. A similarity between the spatiospectral pattern maps was evaluated by 

computing the inner-product of two pattern matrices and was then used to classify the 

current mental states; the resultant classification accuracy was also compared to that 

of the same analysis method using raw EEG signals. The detailed mental state 
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classification method and experimental results will be found in Chapter 6 of this 

dissertation.  
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Chapter 2: Electroencephalography (EEG) 
 

 

This chapter briefly introduces basic knowledge on electroencephalography 

(EEG) that will help readers to understand this dissertation. Section 2.1 describes how 

neurons generate brain signals capable of being measured on the surface of the scalp. 

Section 2.2 introduces how EEG activity is recorded on the surface of the scalp. 

Finally, Section 2.3 introduces five brain waves divided based on frequency and 

explains their characteristics associated with mental states and brain functions.  

 

 

2.1. Source of EEG 
 

Neurons in the human cerebral cortex are electrically excitable cells that process 

and transmit information by means of electrical signals and thus enable the electrical 

recordings of their activity. 

 

Figure 2.1 depicts the structure of a cortical neuron. A cortical neuron largely 

consists of three main parts: the dendrites, the soma, and the axon. The dendrites of 

the neuron are cellular extensions with many branches and receive the electrical 

signals from upstream neurons via synapses. The soma containing the nucleus of the 

neuron is the central part of the neuron at which the electrical signals from the 
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2.2. Measuring Method 

 
EEG activity can be measured by placing electrodes on the surface of the scalp 

with a conductive gel or paste. Figure 2.3 shows an example of an electrode cap used 

in EEG recording systems. Electrodes are embedded in the cap that is flexible to fit 

into individuals’ head shape.  

 

As for the electrode configuration, the international 10–20 system has been 

widely used as an international standard, where electrodes are placed at 10 and 20% 

fractions of the distances between anatomical landmarks of the skull, being nasion, 

inion, and the pre-auricular points. Figure 2.4(a) and 2.4(b) show the electrode 

configuration for the international 10–20 system. EEG activity can be measured at 21 

electrode positions guided by the international 10–20 system. Additional electrodes 

can be placed to the standard set-up when some clinical and research applications 

demand more electrodes. Figure 2.4(c) shows the electrode configuration for the 

extended 10–20 system (or 10–10 system) in which intermediate 10% electrode 

positions are used and 75 electrodes can be used for EEG recording.  
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2.3. Rhythmic EEG Activity 

 
Neuronal networks can reflect different states of neural synchrony and thereby 

scalp EEG shows rhythmic oscillations at different frequencies: delta (0–4 Hz), theta 

(4–8 Hz), alpha (8–13Hz), beta (13–30 Hz), and gamma (30–100 Hz). It has been 

well established that EEG signals of each frequency band are tightly associated with 

different states of brain functioning.  

 

A delta rhythm has a frequency of 4 Hz or below. It is the slowest wave and has 

the highest amplitude as compared to other brain rhythms. The delta rhythm is 

associated with sleep stages 3 and 4 that are the deepest stages of sleep. It has been 

also found that the delta wave is also observed during some continuous attention tasks 

[18].  

 

A theta rhythm has a frequency of 4 to 8Hz and is classified as ‘slow’ brain 

activity. It is generally seen in young children and in drowsiness or arousal in older 

children and adults. The theta rhythm is associated with spatial navigation [19] and 

creative states [20]. It has been also found that the theta rhythm is involved in 

conducting working memory task [20, 21] and the author confirmed this phenomenon 

by monitoring theta band connectivity changes during working memory task in this 

dissertation (see Chapter 5 for details).  
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An alpha rhythm is a pattern of neural oscillation with a frequency range of 8–13 

Hz. Since the alpha rhythm is usually seen in the posterior regions of the head, it is 

also called the ‘posterior basic rhythm’ or ‘posterior alpha rhythm’. The alpha rhythm 

significantly appears when closing the eyes, and disappears when opening the eyes 

[22, 23]. This phenomenon was also observed by the author in the verification 

experiments of the real-time cortical activity monitoring system (see Chapter 3 for 

more details). In addition to the posterior basic rhythm, there is another alpha wave 

that is called the mu rhythm (8-12 Hz) related to motor actions. Since the mu rhythm 

can be voluntarily modulated by the imagination of the motor actions [24], it has been 

widely used in realizing brain-computer interface (BCI) systems. In this dissertation, 

various experiments related to the mu rhythm were conducted and will be introduced 

in Chapter 3, 4, and 5.  

 

A Beta rhythm occurs with a frequency between 13 and 30 Hz and has relatively 

low amplitude. It has been revealed that the beta rhythm is associated with normal 

waking consciousness [25] and motor behavior along with the mu rhythm [24]. In this 

dissertation, the author demonstrates the characteristics of the beta rhythm with 

respect to power and functional connectivity changes during real and imaginary motor 

tasks and the detailed contents will be presented in Chapter 4 and 5.  

 

A gamma rhythm is the fastest brain wave with a frequency between 30 to 100 

Hz. It was difficult to record the gamma wave before the development of digital EEG 
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systems, and the gamma wave was initially regarded as a noise. However, some 

research results have suggested that the gamma wave is associated with conscious 

perception [26] and cognitive task execution [27-29]. This fact is also verified by the 

author in the real-time cortical functional connectivity (see Chapter 5) and mind 

reading (see Chapter 6) studies.  
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Chapter 3: An EEG-based Real-time Cortical 

Rhythmic Activity Monitoring System 

 

 

This chapter describes the technical details of the developed real-time cortical 

rhythmic activity imaging method and how the method was successfully applied to a 

real-time cortical rhythmic activity monitoring system.  

 

 

3.1. Methods 

 
3.1.1. Concept of a Real-time Cortical Rhythmic Activity 

Monitoring System  

 
The suggested real-time cortical rhythmic activity monitoring system consists of 

three parts: (1) data acquisition; (2) pre-processing; (3) processing and visualization. 

Figure 3.1 shows a schematic diagram to elucidate the concepts of the suggested 

system.  
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locations of electrodes and important anatomical landmarks are measured using a 3D 

digitizer system. The sMRI data and electrode configurations are then transferred to 

the pre-processing part.  

 

The pre-processing part plays a role in constructing an inverse operator in which 

the subject’s anatomical information is reflected. Once the linear inverse operator is 

constructed and saved to a data-storage unit, spatiotemporal changes of cortical 

rhythmic activities can be monitored in real-time by means of a unified processing 

and visualization part.  

 

The processing and visualization part is composed of three independent programs–

the FFT program, the frequency domain minimum norm estimation (FD-MNE) solver 

and the visualization program– which are executed one after the other at each time 

slice.  

 

3.1.2. Forward Calculation and Inverse Estimation 

 
In the present system, a realistic geometry head model was used for accurate EEG 

forward calculation [30, 31]. A fist-order node-based boundary element method 

(BEM) was applied to construct a lead field matrix which relates source locations to 

scalp electrodes. In the present study, three-layer tessellated boundary surfaces, 

consisting of inner and outer skull boundaries and scalp surface, were generated using 
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CURRY5 for windows (Compumedics, Inc., El Paso, TX) from structural MRI data. 

As stated in the previous section, for all studies, MNI standard brain was utilized. The 

relative conductivity values of the brain, skull and scalp were assumed to be 1, 1/16 

and 1, respectively [32, 33]. Coordinate transformation and electrode positioning 

were performed using in-house software ‘BioEST’, developed in the Computational 

Neuroengineering Laboratory of Hanyang University (http://cone.hanyang.ac.kr).  

 

Since synchronously activated pyramidal cortical neurons, which are located 

perpendicularly on the cortical surface, are widely believed to be the main EEG and 

MEG generators, many recent studies have adopted this physiological phenomenon as 

a basic anatomical constraint in EEG or MEG source imaging [34-37]. The source 

imaging with such an anatomical constraint, which has often been called cortically 

distributed source model or cortical source imaging, resulted in the elimination of 

spurious sources [34] as well as the reduction of crosstalk distribution [38], compared 

to conventional volume based imaging techniques.  

 

To impose the anatomical constraint, many dipolar sources are placed on the 

cortical surface extracted and tessellated from structural MRI data. Although 

development of medical image processing and high-resolution structural MRI enabled 

us to obtain a high resolution cortical surface with sub-millimeter modeling errors 

[39], it is computationally inefficient to use whole cortical surface vertices for the 

source reconstruction purpose because of the increased underdetermined relationship 
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between the limited numbers of sensors and the larger numbers of source locations. 

Therefore, to reduce the number of possible cortical source locations, we first inflated 

the cortical surface [40] and generated a down-sampled epi-cortical surface. For the 

extraction and tessellation of the cortical surface models, we applied Brain Suite 

developed in the University of Southern California, CA, USA [41].  

 

In the present study, about 1000 vertices were down-sampled from more than 

400,000 original cortical vertices. Figure 3.2 shows the processes for generating the 

cortical source space from standard brain MRI data. Figure 3.2(a) and (b) show the 

original and inflated cortical surfaces, respectively. Figure 3.2(c) shows down-

sampled cortical surface on which equivalent dipole sources are placed and Figure 

3.2(d) shows the complete boundary element models on which 99 electrodes are 

attached. Since we used the inflated cortical surface model as the source space, the 

source orientation constraint was not imposed.  
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Where A  is a lead field matrix which represents the impulse response of each 

source vector component at every measurement site [42], R  is a source covariance 

matrix representing the inter-source relationship, which is hardly estimated without 

using intracranial recordings and C  is a nose covariance matrix. If we assume that 

both R  and C  are scalar multiples of the identity matrix, this approach becomes 

identical to minimum norm estimation [43]. In this study, the source covariance 

matrix R  was assumed to be a diagonal matrix, which means that we ignored the 

relationships between neighboring sources. The lead field weightings were imposed 

on the lead filed matrix to compensate for the sensitivity difference according to the 

source depth [44]. In this study, the background environmental noise acquired before 

attaching electrodes on the subject’s scalp was used to calculate C [14]. 2λ  is a 

regularization parameter and determined systematically using the following equation 

[14]:  

 

2
2

)(
)(

SNRCtrace
ARAtrace T

=λ ,    (3.2) 

 

where trace( ⋅ ) and SNR  represent the sum of diagonal terms and the signal-to-

noise ratio, respectively. The signal-to-noise ratio could be determined after some 

preliminary recordings of continuous EEG signals.  
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3.1.3. Processing and Visualization 

 
The processing and visualization part is composed of three independent programs– 

the FFT program, the frequency domain minimum norm estimation (FD-MNE) solver 

and the visualization program– which are executed one after another at each time 

slice. At a certain time slice, time domain signals in N2  data samples before the time 

slice are transformed into frequency domain signals using a self-executable, in-house 

FFT program coded based on Netlib library routines (http://www.netlib.org). The 

number N  could be modified by users (e.g. N  = 7, 8, 9 and 10) according to their 

purpose of using the monitoring system. In the present study, we used N = 7 for all 

simulation and pilot studies. Once a specific frequency band is determined, the FFT 

program stores real and imaginary components at all discrete frequencies within the 

predetermined frequency band to an ASCII data file. Then, the FD-MNE solver is 

executed and load the Fourier transformed signals Re)( ifB and Im)( ifB ,  

ni ,...,2,1= , where Re  and Im  represent the real and imaginary parts of the 

Fourier transformed signals, respectively, as well as the pre-saved inverse operator 

W . The real part Re)( ij fq  and imaginary part Im)( ij fq  of the current source 

vector at the j th cortical vertex with respect to the frequency of interest if  can 

then be evaluated by multiplying the corresponding rows ( 23 −j , 13 −j  and j3 th 

rows) in W  with the Fourier transformed signals Re)( ifB  and Im)( ifB . Finally, 
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the absolute current source power at the j th cortical vertex with respect to the 

frequency band of interest is calculated as  

 

),)()((
2
1 2

Im
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n
Q ∑

=

+=    (3.3) 

 

This process is equivalent to the conventional frequency domain minimum current 

estimates (FD-MCEs) proposed by Jenson and Vanni [1]. While the conventional FD-

MCEs have used L1 norm-based nonlinear optimization, the FD-MNE approach used 

in the present study is based on L2 norm-based linear optimization. We adopted the 

FD-MNE approach since L1 norm based optimization requires time-consuming 

nonlinear iteration, which is inadequate for the real-time monitoring system.  

 

After the current source power at every cortical vertex is calculated, a 3D 

visualization program is executed and visualizes the resultant source distribution at a 

given frequency band. The visualization program named MeshViewer, which was 

coded with visual C++ under an OpenGL environment, can visualize instantaneous 

and/or averaged source power changes in real-time from any 3D viewpoints.  
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3.2. Possibility of the Real-time Cortical Rhythmic Activity 

Monitoring System: a Preliminary Simulation Study 

 
3.2.1. Simulation Setups and Materials  

 
For the verification of the suggested real-time cortical activation monitoring 

system, offline simulations which perfectly simulated the suggested system were 

conducted. Four sets of artifact-free, eye-closed, resting EEG data acquired from two 

male dementia patients and two normal male subjects were used to show the 

possibility of the suggested system. The experimental data were acquired in the 

Department of Neuropsychiatry on Inje University Ilsan-Paik Hospital, Korea. 

Written informed consent was obtained from the subjects or their close relatives. The 

control subjects had no history of neurological, psychiatric or other severe diseases. 

The patients had no history of stroke, head trauma or any other neurological diseases 

except gradual decline of cognitive functions and memory. The number of electrodes 

used for the recording was 18 (FP1, F3, C3, P3, Fp2, F4, C4, P4, F7, T7, P7, O1, F8, 

T8, P8, O2, T1, and T2) and the sampling frequency was 250 Hz. Since the individual 

subject’s sMRI data were not available then, a standard cortex-head model extracted 

from MNI brain atlas was utilized. For more realistic simulations, the 20 s EEG data 

were stored preliminarily in a computer memory and were transferred to a signal 

variable array, one after another at every 4 ms. At a specific time slice, time domain 

signals in N2  data samples before the time slice are transformed into frequency 
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domain signals using the FFT program. We used 7=N  and updated the cortical 

activation maps at every 500 ms (2 image frames s-1). As described before, the linear 

inverse operator W  in (3.1) was preliminarily constructed and stored in the 

computer. Since we had already constructed the standard cortex-head models, the 

time required for the construction of the inverse operator was less than 3 min. The 

simulation study was performed in an Intel® Pentium4–3.4 GHz personal computer 

system with 1 GB memory.  

 

3.2.2. Results of the Simulation Study 

 

Figure 3.3(a) and 3.3(b) show the cortical alpha activity (8 to 13 Hz) changes in 

the dementia patients. The figures show cortical activation maps averaged over 20 s 

as well as instantaneous screenshots of the cortical activity maps at 1, 2 and 3 s. The 

two patients showed similar activation patterns in both instantaneous and averaged 

cortical activation maps. Figures 3.4(a) and 3.4(b) show the cortical alpha activity 

changes in the normal subjects, acquired under the same conditions. Both normal 

subjects showed very typical cortical activations which are located around the 

occipital lobe [22, 23], whereas the dementia patients showed additional strong 

cortical activations around the right temporal and frontal lobes and relatively weak 

additional activations around the left temporal lobe. Such a clear difference in the 

cortical activation maps of dementia and normal subjects not only shows that the 
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command consol window. The independent visualization software was executed at 

the first execution and just refreshed at each image frame without closing or opening. 

During the test, no applications, including virus vaccine, were executed to reduce the 

system load. For the measurement of the delay time, an intrinsic Fortran function 

‘date_and_time()’ was used. The FFT program and the main FD-MNE program were 

executed repeatedly and each execution time was averaged over 100 times. We could 

obtain minimal delay time when 128 data samples were used and the source 

distribution was reconstructed at a single frequency. Then, the execution of the FFT 

program and the FD-MNE took 43.9 and 94.5 ms, respectively. The maximal 

computational load was required in the present study when we repeated source 

imaging with 1024 data samples within the whole frequency band of interest (0–30 

Hz). Then, the execution times for FFT and FD-MNE were measured as 59.5 and 128 

ms, respectively. When considering about 8-times bigger data size and 123-times 

more matrix multiplications, the increment of delay time was not significant. The 

delay time was monotonically increased by the increment of the number of data 

samples or the number of frequencies of interest. The intrinsic delay time for each 

program was originated from the CPU time needed for executing programs and time 

for loading and saving data files. The average time taken to execute the visualization 

program was 15 ms. Thus, this analysis points out that cortical rhythmic source 

changes can be monitored at the cortical level with a maximal delay time of about 200 

ms when 18 channel EEG data are analyzed.  

 



 - 30 -

For comparison, we also repeated the source imaging with 1024 data samples 

within the whole frequency band of interest (0–30 Hz), for 32-channel EEG data 

acquired from a different EEG recording system (WEEG-32, Laxtha Inc., Korea). 

Then, the execution times for FFT and FD-MNE were measured to be 62.7 and 137 

ms, respectively, suggesting that the increment of recording channels does not highly 

affect the overall delay time.  
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3.3. A First Pilot System: Experimental Results 

 

The first pilot system for the EEG-based real-time cortical rhythmic activity 

monitoring was implemented at the Bioelectromagnetics and Neuroimaging 

Laboratory of Yonsei University. The EEG was recorded at 16 electrode locations 

(Fpz, F3, C3, P3, F4, C4, P4, T7, P7, O1, Cz, T8, P8, O2, T1, and T2) using the 

WEEG-32 EEG acquisition system (Laxtha Inc., Daejeon, Korea). The electrodes 

were attached on the subject’s scalp according to the extended 10–20 system without 

using an electrode cap. The EEG was sampled at 256 Hz and the low- and high-pass 

filters were set at 64 and 0.5 Hz cutoffs, respectively. The recorded EEG signals were 

transferred to an operating computer in real-time and the values were stored in a two-

dimensional array variable. The acquisition program was coded in the laboratory 

using C++. Since the individual subject’s sMRI data were not available then, a 

standard cortex-head model extracted from MNI standard brain atlas was utilized to 

construct the inverse operator. At a specific time slice, time domain signals in 128 

data samples before the time slice are transformed into frequency domain signals 

using the FFT program. We updated the cortical activation maps at every 250 ms (4 

image frames s-1).  

 

Two male subjects (YJ and JJ, 26 and 24 years old respectively) volunteered to 

participate in the test experiments in exchange for monetary compensation. Written 
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3.4. Discussions and Summary 

 

In the present study, we implemented a real-time cortical rhythmic activity 

monitoring system which can monitor spatiotemporal changes of cortical rhythmic 

activity on a subject’s cortical surface with high temporal resolution. In the present 

system, a frequency domain inverse operator was constructed a priori and the spectral 

current power at each cortical vertex was then calculated for the Fourier transforms of 

successive sections of continuous data. An offline simulation study as well as 

experimental validation studies demonstrated that cortical rhythmic source changes 

can be monitored at the cortical level with a maximal delay time of about 200 ms.  

 

For the simulation study, we have used four sets of artifact-free, eye-closed, 

resting EEG data acquired from two dementia patients and two normal male subjects 

to show the possibility of the suggested system. The preliminary offline analysis 

yielded promising results, suggesting that the real-time cortical activation monitoring 

system can be potentially used for the real-time diagnosis of psychiatric brain 

diseases such as dementia and schizophrenia. Application of the ‘online’ cortical 

activity monitoring system to the real-time diagnosis of psychiatric brain diseases will 

be performed in our future studies. For the experimental study, cortical alpha rhythm 

changes by closing eyes and cortical mu rhythm changes by arm movements were 

observed, which were consistent with previous reports.  
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Another possible application of the real-time cortical activation monitoring system 

is the EEG-based brain computer interface (BCI) system. Although such a system has 

not been realized yet, some offline simulation studies already demonstrated that the 

use of inverse solutions could enhance the classification capability of the EEG-based 

BCI system [45-47]. As already introduced in the introduction section, the real-time 

cortical activation monitoring system can be applied to neurofeedback systems in 

order to enhance the efficiency of detecting the current mental status of a subject. 

Moreover, the suggested real-time cortical activation monitoring system can be used 

for online monitoring of EEG experiments regarding various cognitive and functional 

brain studies. The experimenter can modify the experimental protocols without 

stopping the on-going measurement with the aid of the suggested system.  
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Chapter 4: Neurofeedback-based Motor Imagery 

Training for Brain-Computer Interface (BCI)  

 

 

In this chapter, the author introduces an effective motor imagery training system 

for brain-computer interface (BCI) as one of the applications of the real-time cortical 

rhythmic activity monitoring system described in Chapter 3.  

 

 

4.1. Research Background  

 

There are a great numbers of disabled individuals who cannot freely move or 

control specific parts of their body because of serious neurological diseases such as 

amyotrophic lateral sclerosis (ALS), brainstem stroke, and so on. Brain-computer 

interfaces (BCIs) can help them to drive and control external devices using only their 

brain activity, without the need for physical body movements [48].  

 

Diverse types of electrical brain activities have been used to realize 

electroencephalography (EEG)-based BCI systems, e.g., mu rhythm [45, 49-52], slow 

cortical potential [53], event-related p300 [54, 55], and steady-state visual evoked 
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potential [56, 57]. Among these activities, the one most widely used to monitor brain 

activities for BCI applications has been the mu ( μ ) rhythm, which is related to motor 

actions [49, 58-60]. The mu rhythm can be voluntarily modulated by individuals 

unlike event related brain activities.  

 

Motor imagery, defined as mental simulation of a kinesthetic movement [16, 17], 

can also modulate mu rhythm activities in the sensorimotor cortex without any 

physical movements of the body. It has been well established that the imagination of 

each left and right hand movement results in event-related desynchronizaion (ERD) 

of mu-band power in the contralateral sensorimotor areas, which is also the case for 

physical hand movements [61, 62]. Brain activities modulated by motor imagery of 

either the left or right hand are regarded as good features for BCIs, because such 

activities are readily producible and show consistent EEG patterns on the 

sensorimotor cortical areas [63, 64]. Moreover, thanks to the contralateral localization 

of the oscillatory activity, the activities evoked from left and right hand motor 

imagery are, comparatively, readily discriminated [45, 65, 66]. However, many 

individuals have difficulty in getting used to the feel of motor imagery, since most 

people do not easily recognize how they can have a concrete feeling of motor imagery 

and tend to imagine the images of moving their hands or legs instead [67]. Therefore, 

one of the challenging issues in the EEG-based BCI studies has been how one can 

efficiently train individuals to perform motor imagery tasks.  
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Over the last decade, various feedback methods for motor imagery training have 

been proposed, most of which are based on visual [49, 52, 68] or auditory feedbacks 

[69, 70]. For example, suppose that a participant is instructed to perform a motor 

imagery task involving their left or right hand. Then, reference features of brain 

activities evoked from the left and right hand motor imagery are extracted and the 

participants’ intentions are classified by comparing the reference features with the 

current features. The participants are then provided with visual or auditory feedback 

according to the classification results. However, some participants cannot generate 

more useful features in their sensorimotor cortex after motor imagery training 

processes, compared to the features extracted before the training [49, 55, 70]. One 

typical reason to explain the wrong motor imagery is that participants tend to imagine 

visual images of the movement (visual-motor imagery: VMI), which generates a type 

of brain activity pattern completely different from that of actual motor imagery [67]. 

Therefore, even when participants attempt the same motor imagery task, individual 

differences are often observed, because the results are dependent on their feelings and 

perception on the motor imagery task, as described by Annett [71].  

 

The goal of the present study was to develop a motor imagery training system that 

can help individuals easily get the feel of motor imagery. To this end, the author 

utilized the real-time cortical rhythmic activity monitoring system introduced in 

Chapter 3, and participants trained themselves to be accustomed to motor imagery 

while they were monitoring their time-varying cortical activation maps in real-time. 
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 4.2. Materials and Methods 

 
Our experiments consisted of two sessions: motor imagery training session and 

EEG recording sessions. In the motor imagery training session, the participants were 

trying to increase their mu rhythm activations around the sensorimotor cortex while 

they were watching their cortical activation maps through the real-time rhythmic 

activity monitoring system. Two EEG recordings were performed each before and 

after the motor imagery training session to demonstrate the effect of our 

neurofeedback-based motor imagery training system.  

 

4.2.1. Participants and Environment of Experiments 

 

Ten healthy volunteers (all male, all right handed, age 25.1± 1.97 years) took part 

in this study. None of the participants had a previous history of neurological, 

psychiatric, or other server diseases that may otherwise influence the experimental 

results. We gave a fully detailed summary of the experimental procedures and 

protocols to each of the participants before the experiment. All participants gave 

written consent and received adequate reimbursement for their participation. The 

study protocol was approved by the Institutional Review Board (IRB) committee of 

Yonsei University in Korea. None of the participants had previous background 

knowledge or experience with BCIs, nor had they ever participated in EEG 

experiment. All experiments were conducted in the Bioelectromagnetics and 
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Neuroimaging Laboratory of Yonsei University.  

 

Electrodes were attached on the participants’ scalp according to the extended 

international 10-20 system. In the motor imagery training session, the EEG signals 

were acquired at 16 electrode locations (AF3, FC3, C3, CP3, PO3, FCz, Cz, CPz, 

AF4, FC4, C4, CP4, PO4, T7, T8, and Oz) using a multi-channel EEG acquisition 

system (WEEG-32, Laxtha Inc., Daejeon, Korea) in a dimly lit, soundproof room. In 

the EEG recording sessions, the EEG signals were recorded at 15 electrode locations 

(Cz, C1, C2, C3, C4, CPz, CP1, CP2, CP3, CP4, FCz, FC1, FC2, FC3, and FC4) 

covering the sensorimotor area, using the same recording system. The sampling rate 

was set at 256 Hz in all experiments with a sensitivity of 7 μV. Facial EMG and 

EOG were also recorded during the EEG recordings and used as references in artifact 

rejection process.  

 

We used different electrode configurations for the motor imagery training and the 

EEG recording sessions. In the training session, we used 16 electrodes broadly 

attached on the participants’ scalp because we needed to monitor their brain activity 

patterns in the whole brain areas including the sensorimotor cortex. On the other hand, 

in the EEG recording sessions, 15 electrodes were focally attached around their 

sensorimotor cortex as we were only interested in EEG signals related with motor 

functions.  
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4.2.2. Motor Imagery Training 

 

During the motor imagery training sessions five volunteers (EK, GS, DK, KS, and 

JN) were made to sit on a comfortable armchair facing a 17" monitor and were 

presented with time-varying maps of their cortical rhythmic activity that were updated 

every 350ms while they were attempting either left or right hand motor imagery. 

Figure 4.1 shows screenshots of the experiment, where the subject EK activated his 

motor cortex without any physical movements of his hands (see Supplementary 

movie file, http://www.sciencedirect.com/science/article/pii/S0165027009000454). 

Before the training, we explained to the participants the locations of the sensorimotor 

cortex and provided them with a movie that explained the expected cortical activation 

changes. The participants were then instructed to continuously attempt to generate 

cortical activations around the sensorimotor cortex. In the beginning of the training 

session, all participants failed to generate brain activities around the sensorimotor 

cortex; however, through repetitive trials, all participants succeeded in generating 

brain activity on their sensorimotor cortex without any physical movements. 

Participants were given 30 min for the motor imagery training.  
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being performing either left or right hand motor imagery. The time period used for the data 

analysis (3.0 s) is depicted in the figure.  

To confirm if the participants physically moved their hands, we also recorded an 

electromyogram (EMG) from electrodes attached on the participant’s both forearms 

[72] during the EEG recording sessions. Figure 4.3 shows the changes of EMG 

powers recorded both before and while the participants of the trained group were 

performing the motor imagery task. No significant difference between the two EMG 

data sets (less than 10% variations) were found for all five participants, indicating that 

they did not move their hands when they were attempting to perform the motor 

imagery task.  
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4.2.4. EEG Data Analysis 

 

We used the 3.0 s time segment marked in Figure 4.2 for the data analysis because 

the participant might start the motor imagery before the letter ‘X’ appeared [45, 65]. 

After data acquisition, the raw EEG signals were converted to a common average 

reference (CAR) to compensate for common noise components. The CAR method has 

been shown to produce good performance in noise reduction along with surface 

Laplacian filtering [73, 74]. EEG epochs highly contaminated by facial muscle 

movements were rejected manually by inspecting the simultaneously recorded facial 

EMG signals. EOG artifacts were not removed since the influence of eye blinks or 

eye-ball movements upon the EEG channels around the sensorimotor area was not 

significant.  

 

For the time-frequency analysis we used forth order Butter-worth band-pass filters 

in which the span of the frequency bands was 2 Hz with a 50% overlapping. The 

selected frequency bands were 6–30 Hz, including mu and beta bands, which are 

related to limb movements. After calculating the envelopes of the signals at each 

frequency bin, a moving average filter was applied to the time domain signals at 400 

ms intervals (50% overlapping) to smooth the envelopes. After all, the frequency 

band and time series were evenly divided into 23 frequency bins and 14 time 

segments, respectively. We then obtained a time-frequency pattern map by integrating 
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the enveloped signals at each time segment and frequency bin. Two-tailed t-tests were 

then applied to every possible combination of frequency bins, time segments, and 

electrodes in order to find combinations that produced significant differences (p < 

0.05) between left and right hand motor imagery.  

 

To evaluate the classification accuracy, the two time-frequency combinations that 

had the smallest p-value in the time-frequency pattern maps were selected for each 

participant. Among the 180 trials (90 each for right and left hand motor imagery), 90 

trials (45 each for right and left hand motor imagery) were randomly selected and 

used as a training set, while the remaining motor imagery trails were used as a test set 

for calculating the classification accuracy. For each trial of the test set, Euclidean 

distances from the two average feature vectors computed on the reference data sets 

(45 right and 45 left hand motor imagery trials each) were compared and the trial was 

assigned to a class based on whichever had the shorter distance.  
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4.3. Results 

 
4.3.1. Changes in Brain Activity after Motor Imagery Training 

 

Figure 4.4 shows the time-frequency pattern maps for the trained group 

participants, where the black colored blocks represent time-frequency combinations 

that showed significant differences (p < 0.05) between left and right hand motor 

imagery. As seen in the figures, where two featured electrodes were selected for each 

participant, the time-frequency pattern maps did not show any distinguished features 

before the training session. On the contrary, we observed that the number of the 

‘black’ blocks was increased and the blocks were clustered around the sensorimotor 

rhythm (around 10 and 20 Hz) after the training session.  
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Table 1 shows the number of time-frequency combinations that showed significant 

difference between left and right hand motor imagery, demonstrating that meaningful 

changes of brain activities occurred in all participants of the trained group after the 

training session. On the other hand, for the control group, we could not observe any 

consistent changes in the number of significant time-frequency combinations between 

the first and second EEG data sets. From these results, we confirmed that it was 

possible to train participants to generate specific brain activity pattern on the 

sensorimotor cortex using the proposed system.  

 

 

Table 4.1. The total number of time-frequency combinations showing a significant difference 

between left and right hand motor imagery.  

 

Trained Group Control Group 

Participant Before After Participant First Second 

EK 220 300 JI 219 207 
GS 280 308 BK 269 217 
DK 183 275 HJ 379 384 
KS 297 446 TI 508 312 
JN 275 349 SJ 412 547 

 

‘Before’ and ‘After’ represent the number of significant features obtainable before the motor 

imagery training and after the motor imagery training, respectively. ‘First’ and ‘Second’ 

represent the number of significant features obtainable in the first and second EEG recording 

sessions, respectively.  
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4.3.2. Classification Accuracy before and after the Motor Imagery 

Training 

 

We also investigated the changes in classification accuracy before and after motor 

imagery training. Table 4.2 shows the accuracy of classifying left and right hand 

motor imagery of all participants. Since small p-values in the time-frequency pattern 

maps meant that there were significant differences between the left and right hand 

motor imagery, we selected two time-frequency combinations having smallest p-

values as the features for classifying left and right hand motor imagery. We found that 

most of the extracted features corresponded to the mu rhythm which had been used in 

the neurofeedback training session (frequency bin and electrode in each participant of 

the trained group– EK: 11–13 Hz in FC1 and 11–13 Hz in C4; GS: 10–12 Hz in FC1 

and 9–11 Hz in FC2; DK: 13–15 Hz in FC4 and 13–15 Hz in C2; KS: 12–14 Hz in 

C3 and 11–13 Hz in C2; JN: 7–9 Hz in C2 and 9–11 Hz in CP3).  

 

A simple Euclidean distance algorithm was then used to estimate classification 

accuracy. Analysis of the results indicated that the classification accuracy was 

enhanced considerably for all five individuals in the trained group after the motor 

imagery training; while the analysis results for the control EEG data set did not show 

consistent increment in the classification accuracy, demonstrating that the proposed 

motor imagery training system could be used to enhance the performance of motor-
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imagery-based BCI systems. These results have a thread of connection with those of 

the previous time-frequency analysis, in that the individuals of the trained group were 

able to generate distinguishable brain activity patterns between the left and right hand 

motor imagery after a short training session that lasted for 30 min.  

 

To test if the number of features affects the computed classification accuracy, we 

applied different numbers of features to the same classification algorithm (from 3 to 

5). The use of more features enhanced the classification accuracy in most cases, but 

the difference was not significant and did not affect the findings of our study.  

 

 

Table 4.2. Changes in classification accuracy before and after motor imagery training (or first 

and second EEG recordings in control group). We first selected the two time-frequency 

combinations that had the smallest p-values as the features for classifying left and right hand 

motor imagery. A Euclidean distance algorithm was then used to estimate the classification 

accuracy.  

Trained Group Control Group 

Participant Before (%) After (%) Participant First (%) Second (%) 

EK 60 77 JI 57 52 
GS 62 67 BK 60 54 
DK 59 72 HJ 73 70 
KS 58 72 TI 67 75 
JN 55 69 SJ 64 66 

Mean 58.8 71.4 Mean 64.2 63.4 
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4.4. Discussions and Summary 

 

For motor imagery training we used a real-time cortical rhythmic activity 

monitoring system [75] that visualizes source activation maps on the cortical surface, 

rather than the scalp surface, to show the subjects their time-varying brain activities. 

The main reason why we chose to use the ‘cortical’ activity monitoring system was 

that EEG topographies cannot be directly attributed to the underlying cortical regions. 

In BCI applications, different types of EEG topographies can be observed even for 

identical motor imagery tasks [76] because the EEG topography is dependent on 

neuronal source orientations. Since most participants of motor imagery experiments 

are not familiar with EEG topographies, the use of inverse solutions could help them 

easily perform motor imagery training.  

 

Many studies have reported the importance and usefulness of motor imagery in 

various applications such as learning complex motor skills in sports [77] and re-

learning motor skills in clinical applications [78]. Ever since Jastrow’s first study of 

mental simulation [79], motor imagery, a kind of mental process, has been widely 

used for learning motor skills and enhancing players’ performance in sports science. 

Indeed, mental imagery, including motor imagery, has been demonstrated to be a 

central factor for motor skill acquisition and execution [77]. Motor imagery has been 

also been used to diagnose and rehabilitate brain-injured patients [80, 81]. For 
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example, Tamir et al. [81] applied motor imagery to patients with Parkinson’s disease 

for improving their motor function, and found that the combination of motor imagery 

and physical practice is more effective than conventional physical training methods, 

especially for reducing bradykinesia. Although in the present study we applied our 

proposed motor imagery training system to a noninvasive BCI application, we expect 

that it can be applied to other applications, including those described above, in order 

to help the individuals get the feel of the motor imagery tasks and consequently, 

thereby enhancing efficiency of the relevant studies.  

 

The average classification accuracy in the trained group was 71.4 % after the 

motor imagery training, which, although relatively low compared to values reported 

in the literatures concerning similar motor imagery classification [45, 65, 68, 82] was 

still thought to be an acceptable level for practical BCI applications according to 

Perelmouter and Birbaumer’s report [83]. Nonetheless, the increment of the 

classification accuracy was thought to be meaningful enough to confirm the effect of 

our neurofeedback-based motor imagery training, considering that the main purpose 

of the classification was not to obtain a high classification accuracy, but rather to 

show how efficiently we were able to train individuals, who were unable to have a 

concrete feeling of motor imagery, to perform the motor imagery task.  

 

In the present study, we focused on training motor imagery of both hands. 

According to the literature, imagery of feet and tongue (or mouth) movements can be 
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also used as effectors in EEG-based BCI systems [51]. Further, it has been reported 

that the mu rhythm is blocked or desynchronized at sensorimotor cortex during hand 

movement imagery, whereas it increases during foot or tongue motor imagery [51]. In 

the same study, it was also reported that EEGs recorded during left hand, right hand, 

foot, and tongue motor imagery are classifiable. Based on the previous report, it 

seems that individuals should be able generate distinguishable brain activity patterns 

of four or more effectors using our motor imagery training system, an exciting 

prospect that we will focus on in future studies.  

 

In our neurofeedback-based motor imagery training system, we confined mu 

rhythm to 8–12 Hz frequency band, but the frequency band of mu rhythm nay vary 

from on individuals to another. Fortunately, in our experimental study, all participants 

succeeded in generating brain activity around their sensorimotor cortex in the 

neurofeedback training session with the typical frequency band. However, if the 

training session fails, the experimenter can adjust the frequency band (e.g. 13–15 Hz) 

and repeat training session.  

 

In the present study, we confirmed the effect of our neurofeedback-based motor 

imagery training system by comparing two EEG data sets each recorded with a cue-

based (or synchronized) BCI paradigm before and after motor imagery training. Since 

asynchronous (or self-paced) BCI systems are becoming popular in recent years, we 

will apply our motor imagery training system to such systems in our future studies. In 
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addition, we are planning to compare our training method with other conventional 

training methods in the near future.  

 

In summary, we developed a type of neurofeedback systems that can help 

individuals to get the feel of motor imagery by presenting them with real-time cortical 

activation maps on their sensorimotor cortex. Importantly, all of the study participants 

succeeded in generating brain activation around the sensorimotor cortex during the 

training session. The EEG data recorded after the motor imagery training showed 

significant enhancement in both the number of meaningful features and the 

classification accuracy, demonstrating the efficiency of our motor imagery training 

system. Lastly, we expect that the proposed motor imagery training system will be 

useful not only for BCI applications but also for functional brain mapping studies 

relevant to motor imagery tasks. 
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Chapter 5: An EEG-based Real-time Cortical 

Functional Connectivity Imaging System 

 

 

In this chapter, the author introduces a real-time cortical functional connectivity 

imaging system that can monitor and trace dynamic changes in cortical functional 

connectivity between different brain regions. Since the real-time functional 

connectivity imaging system is based on the real-time cortical rhythmic activity 

monitoring system introduced in Chapter 3, the concept of the real-time cortical 

functional connectivity imaging system is nearly identical to the real-time cortical 

rhythmic activity monitoring system, except for the 3D visualization part.  

 

 

5.1. Research Background 

 

Traditional neuroimaging studies have focused on either functional mapping of 

brain areas or investigation of task-dependent changes in brain activities; however, 

such studies can only provide a limited amount of information with respect to 

underlying neuronal processes. Recently, an increasing number of neuroscientists 

have become interested in describing the communications between different brain 
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areas, since such information might be helpful for better understanding the functional 

networks of cortical regions [84-90]. Generally, functional interactions among 

different cortical areas, typically referred to as functional connectivity, can be 

measured using linear or nonlinear analysis of time series extracted from various 

brain imaging techniques such as functional magnetic resonance imaging (fMRI) [86], 

near infrared spectroscopy (NIRS) [87], electroencephalography (EEG), and 

magnetoencephalography (MEG) [84, 85, 88-90].  

 

EEG and MEG are believed to be more suited for studying interactions among 

brain areas at the level of cognitive processes due to their superior temporal 

resolutions as compared to hemodynamics-based imaging modalities such as fMRI 

and NIRS [84, 91]. Indeed, functional connectivity analyses based on scalp EEG and 

MEG have been applied extensively to a variety of practical applications including 

functional characterization of neuropsychiatric diseases[92-94], noninvasive 

diagnosis of psychiatric diseases by quantifying global synchronization [95-97], and 

investigation of functional networks associated with various cognitive processes [40, 

98]. Further, freely available MATLAB toolboxes for the functional connectivity 

analysis are widely available [98, 99].  

 

At present, despite recent advances in technology, estimation of functional 

connectivity from sensor level recordings has been met with severe criticism from 

many neuroscientists, as these recordings can be corrupted by the effect of volume 



 - 59 -

conduction (or field spread). Indeed, simulation studies have shown field spread can 

lead to misinterpretation of connectivity estimates between some pairs of sensors [100] 

because scalp potentials recorded from scalp EEG are not usually directly attributed 

to the underlying cortical regions. However, recent developments in source imaging 

techniques have made possible the ability to estimate temporal changes in underlying 

cortical sources; functional connectivity can now be estimated at the cortical source 

level [101, 102]. Therefore, the functional connectivity estimation at the cortical 

source level has been gradually replacing sensor-level analyses.  

 

To the best of our knowledge, however, real-time imaging of cortical functional 

connectivity at the cortical source level has not been introduced, despite the rapid 

developments in computational neuroimaging. Implementation of such a real-time 

imaging of cortical functional connectivity may be a promising tool for practical 

applications. For example, such a system could be used as an auxiliary diagnosis tool 

to provide a prompt measure reflecting a subject’s brain responses to certain stimuli, 

thereby helping patients with neuropsychiatric diseases such as dementia and 

schizophrenia as well as their relatives to accept diagnostic results [103], since people 

are apt to put more confidence in high-tech medical diagnostic devices than they are 

in traditional paper-based diagnosis methods such as the mini-mental state 

examination (MMSE) and positive and negative symptom scale (PANSS). Moreover, 

the real-time cortical functional connectivity imaging system can be used for EEG 

neurofeedback applications, as many researchers have been interested in monitoring 
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dynamics of functional connectivity during neurofeedback treatment [104-107]. 

Potential applications of real-time imaging of cortical functional connectivity will be 

discussed more in Sect. 5.4.  
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5.2. Methods  

 
5.2.1. Methods for Real-time Connectivity Imaging 

 

The proposed cortical functional connectivity imaging system is based on the 

EEG-based real-time cortical rhythmic activity monitoring system [75]. The real-time 

cortical rhythmic activity monitoring system could visualize spatiotemporal changes 

in cortical rhythmic activity of a specific frequency band on a subject’s cortical 

surface, rather than the subject’s scalp surface, with a high temporal resolution. 

Recently, the real-time imaging system was successfully applied to a neurofeedback-

based motor imagery training system that can help individuals to more easily become 

accustomed to motor imagery tasks [108]. In this section, we will first introduce the 

brief concepts of the real-time cortical rhythmic activity monitoring system and then 

describe the technical details of the real-time cortical functional connectivity imaging 

system.  

 

The EEG-based real-time cortical rhythmic activity monitoring system [75] 

consisted of pre-processing and real-time processing parts. In the pre-processing part, 

a linear inverse operator was constructed in which the subject’s anatomical 

information was reflected. Once the linear inverse operator had been constructed and 

saved to a data-storage unit, spatiotemporal changes in cortical rhythmic activities 

could be monitored in real-time by means of a unified processing scheme consisting 
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of three independent programs, namely, a fast Fourier transform (FFT) program, a 

frequency domain minimum norm estimation (FD-MNE) solver, and a 3D 

visualization program, which were executed sequentially at each time slice.  

 

The proposed cortical functional connectivity imaging system shares the same 

platform with the real-time cortical rhythmic activity monitoring system except for 

the 3D visualization program. Instead of calculating the absolute current source 

power at cortical vertices with respect to the frequency band of interest, the proposed 

system calculates instantaneous source power changes for each frequency of interest. 

The detailed processes are described below.  

 

To construct the cortically distributed brain sources, we used a linear estimation 

approach. The expression for the inverse operator W  was defined as  

 

,)( 12 −+= CARARAW TT λ    (5.1)  

 

where A  is a lead field matrix, which represents impulse response of each source 

vector component at every measurement site, R  is a source covariance matrix 

representing inter-source relationship, which is hardly estimated without using 

intracranial recordings, and C  is a noise covariance matrix [109]. If we assume that 

both R  and C  are scalar multiples of identity matrix, this approach becomes 
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identical to minimum norm estimation [43]. In this study, the source covariance 

matrix R  was assumed to be an identity matrix, which means that we ignored 

relationships between neighboring sources. In this study, background environmental 

noise acquired before attaching electrodes on the subject’s scalp was used to 

calculated C  [109]. 2λ  is a regularization parameter and was determined 

systematically based on the signal-to-noise ratio [109].  

 

Once a specific frequency band was determined, the FFT program calculated 

real and imaginary components at all discrete frequencies within the predetermined 

frequency band. Instead of using wavelet transformation [109], we used FFT to obtain 

constant time-frequency resolution. Then, the FD-MNE solver was executed, which 

loads the Fourier transformed signals Re)( ifB  and Im)( ifB , ni ...,,2,1= , where 

Re  and Im  represent the real and imaginary parts of the Fourier transformed 

signals, respectively, as well as the pre-saved inverse operator W . The real part 

Re)( ij fq  and imaginary part Im)( ij fq  of current source vector at the j th cortical 

vertex with respect to the frequency of interest if  can then be evaluated by 

multiplying the corresponding rows ( j3 – 2, j3 – 1, and j3 th rows) in W  with the 

Fourier transformed signals Re)( ifB  and Im)( ifB . We used the FD-MNE method 

instead of time-domain MNE method to estimate the current source vectors because 

under current computing environment maximally 20–30 source images could be 
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calculated per every second due to the computational time required for the inverse 

process [75]. Then, the instantaneous source power changes for a frequency )( if at 

the j th cortical vertex can be readily estimated by inverse Fourier transforming each 

directional component (x, y, z-directional components) of Re)( ij fq  and Im)( ij fq  

into time-domain series ( )(),(),( ,,, tqtqtq jzjyjx ) and calculating the power of the 

source vector )( kj tQ as 2
,

2
,

2
, )()()()( kjzkjykjxkj tqtqtqtQ ++=  at densely 

discretized time samples (the subscript k  represents k th time sample). After 

evaluating the instantaneous source powers at every cortical vertex, the source powers 

are averaged over all cortical vertices included in each ROI (see Figure 5.1 in 

advance), yielding the instantaneous source power changes of each ROI, )( kl tRQ , 

where the subscript l  represents the l th ROI. For an i th frequency of interest, 

if , the functional connectivity between the m th and n th ROIs was evaluated by 

simply calculating the correlation coefficient (CC) between the two signal power time 

series extracted from the two ROIs, )(, inm fCC . Finally, the CC  values evaluated 

for all possible pairs of ROIs were averaged over the frequency band of interest. ROI 

pairs in which the connectivity exceeded a predetermined threshold CC  value were 

visualized as a straight line connecting the two ROIs (see Figure 5.2 in advance).  
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5.2.2. EEG Recording Environments 

 

Scalp EEG readings were recorded at 32 electrode locations (Cz, C3, T7, C4, T8, 

Fz, F3, F7, F4, F8, AFz, AF7, AF8, FP1, FP2, FC5, FC1, FC2, FC6, Pz, P7, P3, P4, 

P8, CP5, CP1, CP2, CP6, O1, O2, PO3, and PO4) using a 32-channel EEG 

acquisition system (WEEG-32, Laxhta Inc., Daejeon, Korea) in a dimly lit, 

soundproof room. The electrodes were attached to the subject’s scalp according to the 

extended 10–20 system without using an electrode cap. The ground electrode was 

placed behind the left ear with the reference electrode on the opposite side. The EEG 

signals was sampled at 512 Hz, and the low- and high-pass filters were set at 64 and 

0.5 Hz cutoffs (12dB/octave), respectively, in all experiments. To implement the 

‘real-time’ imaging system, we did not apply any time-consuming signal 

preprocessing methods for noise/artifact removal to the input EEG signals. 

 

5.2.3. Implementation of a Real-time Cortical Connectivity 

Imaging System 

 

In the present study, a standard brain atlas [110] provided by the Montreal 

Neurological Institute (MNI) and a standard configuration of EEG electrodes were 

utilized, since individual magnetic resonance imaging (MRI) data for the subjects 

were not available. A first-order node-based boundary element method (BEM) was 



 - 66 -

applied to construct a lead field matrix. In the preset study, three-layer tessellated 

boundary surface, consisting of inner and outer skull boundaries and scalp surface, 

were generated using CURRY6 for windows (Compumedics, Inc., El Paso, TX) from 

the standard structural MRI data. The conductivity values of brain, skull, and scalp 

were assumed to be 0.22, 0.014, 1.79 S/m, respectively [33, 111]. Coordinate 

transformation and electrode positioning were performed using in-house software, 

‘BioEST’ (http://cone.hanyang.ac.kr). For the extraction and tessellation of the 

cortical surface models, we applied BrainSuite developed in the University of 

Southern California, CA, USA [41]. To reduce the number of cortical surface [40] 

and generated a down-sampled epi-cortical surface with approximately 1,000 cortical 

vertices. Figure 5.1(a) shows the processes for the cortical source space, on which the 

equivalent dipole sources were placed, from standard brain MRI data. Since we used 

the smoothed cortical surface model as the source space, source orientation 

constraints were not imposed. Figure 5.1(b) shows the 12 ROIs, of which the 

locations and sizes were determined according to the following two criteria: (1) whole 

brain regions have to be taken into account in order to be applicable to a variety of 

experimental paradigms; and (2) the number of ROIs should not be too many for the 

real-time processing. Considering the above conditions, we selected six ROIs on each 

hemisphere: two ROIs in the frontal lobe, two ROIs in the temporal lobe, one ROI in 

the parietal lobe, and one ROI in the occipital lobe. The main reason why we used 

approximated and downsampled cortical surface as well as assumed relatively small 

number of ROIs was that using realistic cortical surface model and many ROIs would 



 - 67 -

increase the computational cost, thereby making the ‘real-time’ processing difficult. 

Since the computer system is being developed very rapidly, we believe that more 

realistic real-time connectivity imaging system would be available in the near future.  

 

Figure 5.2 shows a snapshot of our test experiments. Dual LCD monitors were 

connected to a high-performance personal computer system (Intel Core2-6300 1.86 

GHz environment) and were separated with a partition not to disturb the participants’ 

attention. Visual stimuli were presented through an LCD monitor placed in front of 

the participant. Cortical functional connectivity patterns as well as the on-going EEG 

signals were visualized on the other LCD monitor. During the real-time imaging, 

EEG signals were transferred to the operating computer in real-time, and the values 

were stored in a two-dimensional array variable. At a specific time slice, time domain 

signals in 256 data samples before the time slice were transformed into frequency 

domain signals using FFT. After execution of the FD-MNE solver and connectivity 

calculation module, ROI pairs whose connectivity exceeded a predetermined 

threshold value were visualized as a straight blue line connecting the two ROIs that 

were depicted as small red dots in the connectivity monitoring software (see Fig. 5.2). 

The real-time cortical connectivity monitoring was designed to store every 

instantaneous connectivity pattern as well as the stimulus onset times into the storage 

unit. We updated the cortical connectivity maps 250 ms intervals (four image 

frames/second).  
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5.3. Results  

 

To verify the feasibility of the implemented system, we monitored the temporal 

changes in cortical functional connectivity patterns while participants were 

performing different tasks. We performed three test experiments: (Exp. 1) monitoring 

gamma band cortical connectivity changes associated with structural face processing; 

(Exp. 2) monitoring alpha and beta band connectivity changes during finger 

movement; and (Exp. 3) monitoring theta band connectivity changes during working 

memory task.  

 

Six healthy volunteers (six males, all right handed, mean age 25.5 years; range 

21–29 years) took part in the first experiment (Exp. 1) and three healthy volunteers 

(three males, all right handed, mean age 26 years, range 24–28 years) participated in 

the second and third experiments (Exp. 2 and Exp. 3). None of the participants had a 

previous history of neurological, psychiatric, or other severe diseases that may 

otherwise have influenced the experimental results. We gave a fully detailed 

summary of the experimental procedures and protocols to each of the participants 

before the experiment. The study protocol was approved by the Institutional Review 

Board of Yonsei University, Korea.  
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5.3.1. Gamma-band Cortical Connectivity Monitoring (Exp. 1) 

 

In our first test experiment, we attempted to track temporal changes in cortical 

functional connectivity patterns during structural face recognition. One hundred full 

facial images of most famous Koreans (50 males and 50 females) were randomly 

presented to the participants through a 17" LCD monitor. Original color pictures were 

converted to gray-scale images with identical sizes and resolutions. The facial images 

were randomly shuffled and were presented to the participants for 1 s. Every image 

appeared only once throughout the whole experiment. The reason why we converted 

the color images into gray-scale images was that the face images used for the present 

study had various background colors and different chroma characteristics, which 

might influence some ERP components such as P1, N1, and selection negativity, 

according to the previous relevant studies [112-114]. Therefore, many EEG 

experiments associated with face recognition have used gray-scale face images [115-

117].  

 

The inter-stimulus interval (ISI) was set at as 5 s, during which only a gray 

(RGB: 132, 132, 132) background was presented (see the Supplementary movie file, 

http://www.springerlink.com/content/j077u4422281491q/11517_2011_Article_791_

ESM.html). Recordings were conducted in a single session consisting of 50 trials. 

Thus, the entire experiment lasted for approximately 5 min. During the recordings, 
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the participants were sat in a comfortable armchair. In order to keep the participants 

attention, they were asked to count the number of unfamiliar faces, but were not 

required to provide any physical response. After the experiment, we found that the 

number of unfamiliar faces was less than five for all of the participants. According to 

a previous literature [116] that used similar experimental paradigm, the cortical 

connectivity changes were mainly associated with face structural processing. We also 

confirmed from some preliminary experiments that counting the number of unfamiliar 

faces did not influence the main experimental outcomes. We set the frequency band 

of interest as 30–40 Hz to observe the time-varying gamma-band synchronization. 

We did not apply any signal processing algorithms [118, 119] for removing artifacts 

potentially originated form micro-saccades since those algorithms generally required 

significant computational cost and thus did not seem to be adequate for the real-time 

signal processing.  

 

Figure 5.3(a) shows some screenshots taken before and after the visual stimulus 

onset for one participant (subject JK), captured during the online experiment (see the 

Supplementary movie file). Figure 5.3(b) shows an example of the variation in the 

number of connections counted at each time slice (every 250 ms), where red arrows 

represent the visual stimulus onsets. It can be seen from the figures and the 

Supplementary movie file that the number of connections suddenly increased after the 

visual stimulus onset.  
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The average numbers of connectivity connections observed during a 2–s period 

before and after presenting the facial images were counted and the ratios between the 

two values are presented in Table 5.1. It can be seen from the table that the number of 

connectivity connections after presenting the images were greater than that before 

presenting the images for any tested threshold CC values. We also applied a one-tail 

paired t test between the average numbers of connectivity connections counted before 

and after the stimulus onset, and found statistically significant increment (p < 0.05) in 

the number of connections for all cases considered in Table 5.1. In our experiments, 

we applied four different threshold CC  values to all six subjects and found that the 

slight changes in the threshold value did not affect the main trend of the results– 

increment in the number of connections after the stimulus onset. Indeed, as presented 

in the Table 5.1, the use of higher threshold values seemed to result in more distinct 

connectivity changes. However, when we used higher threshold values exceeding 

0.99, we could hardly observe the dynamic changes in connectivity patterns visually 

since the real-time connectivity imaging system did not show any connections at 

many time slices as found in the previous offline analysis studies [116, 120]. 

Therefore, we set the threshold CC value to 0.96 when we executed the online 

monitoring system to generate the results in Figure 5.3. Since one of the main aims of 

the present system was to visually monitor the dynamic changes in the connectivity 

patterns, we allowed the potential users of our system to adjust the threshold CC  

values freely. According to our experience, in the online monitoring, the threshold 
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CC  value could be readily adjusted without performing any offline analyses by 

gradually changing the threshold value and continuously monitoring the changes in 

the connectivity patterns during a subject’s resting state.  

 

The results of our first test experiments are similar to the reports in [31] and [53], 

which showed the peaked gamma band activity synchronization around 200–400 ms 

after face images were presented. Moreover, according to the previous studies, the 

gamma band synchronization between different brain areas during the processing of 

facial structure is significantly reduced in schizophrenia patients [31, 53]. Based on 

the previous studies, we are planning to apply the present system to real-time 

diagnoses of schizophrenia, after conducting clinical examinations.  

 
Table 5.1. The ratio of the average numbers of connectivity connections observed during a 2 s 

period after presenting the facial images to those observed during a 2 s period before 

presenting the images.  

Threshold YC HJ JK MK JL IL 

0.96 
1.44 

(0.49) 

1.43 

(0.77) 

1.31 

(0.61) 

1.31 

(0.36) 

1.19 

(0.35) 

1.25 

(0.46) 

0.97 
1.41 

(0.49) 

1.47 

(0.87) 

1.43 

(0.97) 

1.29 

(0.38) 

1.21 

(0.37) 

1.36 

(0.68) 

0.98 
1.51 

(0.63) 

1.66 

(0.91) 

1.51 

(1.12) 

1.42 

(0.43) 

1.22 

(0.47) 

1.29 

(0.87) 

0.99 
1.55 

(0.65) 

2.09 

(1.72) 

3.06 

(2.86) 

1.75 

(1.33) 

1.35 

(0.77) 

1.40 

(1.19) 

YC, HJ, JK, MK, JL, and IL represent initials of the participants. Values in parentheses are 

standard deviations. 
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5.3.2. Alpha/Beta-band Cortical Connectivity Monitoring (Exp. 2) 

 

In our second test experiment, we tracked the temporal changes in cortical 

functional connectivity patterns during finger movements. Since it has been widely 

known that finger movements can elicit connectivity increase in alpha/beta frequency 

bands [121], we set the frequency band of interest as 8–30 Hz. The three participants 

were sat in a comfortable armchair and were asked to touch the tip of the left thumb 

with the tip of the left index finger. Right after a pure tone beep sound was generated 

from the computer speaker, they were instructed to detach the two fingers for 

approximately 0.5 s and then touch the fingers again (see 4th figure of Figure 5.4). 

The ISI was set as 5 s, during which only a cross fixation (+) was presented at the 

center of the computer monitor in front of the participants. The participants were also 

asked to stare the fixation mark during the entire experiments. Recordings were 

conducted in a single session consisting of 50 trials.  

 

Figure 5.4 shows some screenshots taken before and after the stimulus onset (3rd 

figure of Figure 5.4) for one participant (subject JI), captured during the online 

experiment. In the second and third experiments, we fixed the threshold CC  value 

to 0.96, based on the experience attained from the first experiment. Then, the average 

numbers of connectivity connections observed during a 1.5-s period before and after 

the stimulus onset were also counted and the ratios between the two values were 
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5.3.3. Theta-band Cortical Connectivity Monitoring (Exp. 3) 

 

In our third test experiment, we tracked the temporal changes in cortical 

functional connectivity patterns during working memory task. Our paradigm was 

devised based on the Sarnthein et al.’s [21] work, where the authors reported 

significant enhancement in the theta band (4–7 Hz) connectivity between prefrontal 

and posterior areas. During 5-s perception period, the participants were presented 

with 6-digit randomly generated characters consisting of capital English letters and 

numbers (e.g., SD9FG4) through a 17" LCD monitor located in front of each 

participant. During the next 5 s, the participants were instructed to memorize the 

given characters while staring the cross fixation (+) located at the center of the 

computer screen. Then, the participants were asked to verbally recall the characters 

the characters that they memorized. The experimenter checked whether the answer 

was correct and then manually started the next trial. Before the new combinations of 

characters were presented, black screen was presented to the participants for 5 s. 

Recording were conducted in a single session consisting of 50 trials. The correct 

rations evaluated for subjects JI, JJ, and JH were 88, 90, 90 %, respectively, which 

were similar to the results reported in the previous study [21].  

 

Figure 5.5 shows some screenshots taken during the online experiment of one 

participant (subject JJ), captured at every 1.5 s. As mentioned in the previous section, 
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we fixed the threshold CC  value to 0.96. It could be observed from Figure 5.5 that 

the long-range connectivity between prefrontal area and posterior areas was notably 

increased during the 5-s retention period, coinciding well with the results of the 

previous offline study [21]. The average numbers of connectivity connections 

observed during the 5-s resting period and the 5-s retention period were counted and 

ratios between the two values were evaluated. The rations for subjects JI, JJ, and JH 

were 3.01± 1.13, 2.57± 0.65, and 3.43± 0.97, respectively, demonstrating that the 

theta band cortical connectivity changes associated with working memory could be 

monitored using the implemented system.  
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5.4. Discussions and Summary 

 

In the present study, we introduced an EEG-based, real-time, cortical functional 

connectivity imaging system, which can monitor the dynamic changes in cortical 

functional connectivity between different ROIs on the cortical surface. To testify the 

implemented pilot system, we performed three test experiments in which we could 

monitor the real-time changes in cortical connectivity patterns in gamma, alpha/beta, 

and theta frequency bands.  

 

Since we adopted a source-level connectivity analysis, our real-time imaging 

system is not subject to the hypothesis that EEG synchrony computed from scalp 

EEGs may contain spurious synchronizations resulting from volume conduction [100, 

122]. Although in the preset study we simply traced the real-time changes in the 

overall connectivity patterns, our system can be readily modified for investigating the 

changes in the connectivity strength between specific cortical ROIs as well as for 

characterizing the specific spatial patterns in the connectivity maps, e.g., hemispheric 

lateralization of the connectivity pattern; in either case, the source-level connectivity 

analysis is more appropriate than the sensor-level connectivity analysis. In our third 

test experiment (Exp. 3), which monitored dynamic cortical connectivity changes 

during working memory task, increment of connectivity between prefrontal and 

posterior cortical areas was observed, demonstrating the possibility of using our 
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system for investigating dynamic spatial patterns in functional connectivity. In 

addition, the resultant connectivity patterns obtained from the source-level analysis 

can be less dependent upon the changes in the electrode than those from the sensor-

level analysis because the source-level analysis projects the sensor-level recordings to 

the cortical source-level signals by solving an inverse problem.  

 

Nevertheless, some issues associated with the source-level connectivity analysis 

should be investigated further in future studies. In the present study, we selected a 

simple power-to-power correlation for the calculation of functional connectivity 

between two ROIs because it was not possible to extract source time series at cortical 

vertices when minimum norm estimation was applied without source orientation 

constraints. Please note that without using the orientation constraint only the temporal 

dynamics of source powers can be obtained because each directional component of a 

cortical source vector has independent temporal dynamics. To apply the source 

orientation constraints, we need accurate individual anatomical data including 

structural MRI data, which unfortunately were not available in our experiments. 

Therefore, it will be necessary to develop new indices that can better measure the 

cortico-cortical functional connectivity, when the cortical orientation constraints are 

not imposed. Since the use of high-quality individual MRI data would make it 

possible to apply various functional connectivity measures such as phase coherence 

and phase locking value as well as would enhance the reliability of the source 

imaging results, we will try to use individual MRI data for real-time cortical 
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connectivity imaging in our future studies. In addition, proper identification of ROIs 

on the cortical surface should be studied as a general issue in the source-level 

connectivity analyses [100]. In the present study, we also determined the locations 

and sizes of ROIs without applying a well-established criterion, which should be 

studied further. In the present study, we performed the cortical source imaging with 

only 32-channel EEG signals because we did not have a higher density EEG 

recording system. Since the use of more EEG electrodes would enhanced the source 

imaging accuracy, we will apply the implemented software on other EEG systems 

with more recording channels.  

 

Functional connectivity patterns associated with various cognitive or sensory 

tasks have been extensively investigated to characterize various psychiatric diseases 

such as schizophrenia [120, 123], Alzheimer’s disease [124], and alexithymia [125]. 

Most offline analysis results have shown increased or decreased functional 

connectivity for specific frequency bands, thereby demonstrating the possibility of 

using connectivity information for noninvasive diagnoses of psychiatric diseases. We 

believe that our system also has the potential to be applied to the diagnosis of 

psychiatric diseases and further clinical investigations will be conducted in our future 

studies in cooperation with psychiatrists. Moreover, since it is known that functional 

connectivity is modulated at different sleep stages [126], it may be possible to use our 

system as a supplementary tool to monitor subjects’ sleep stages in sleep studies or to 

watch if subjects fall asleep while performing a cognitive task. Another potential 
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application that we are considering is an EEG-based brain-computer interface (BCI). 

Many recent studies on BCI have reported that the complementary use of 

conventional power density-based features and functional connectivity-based features 

could enhance the overall classification accuracies of BCI systems [127-129]. Since 

cortical source imaging is becoming a promising tool for the enhancement of the 

performance of EEG-based BCI systems [45, 47], a promising topic will be to 

combine the real-time cortical rhythmic activity monitoring system with the real-time 

cortical functional connectivity imaging system for extracting new BCI features.  

 

In the present study, we implemented an EEG-based real-time cortical functional 

connectivity imaging system, but the same concept can also be applied to MEG 

without major modifications. In MEG, source-level analysis is relatively more 

important than in EEG because the MEG sensors are not attached directly on the 

subject’s scalp surface. For example, if a subject’s head is tilted in a helmet-type 

MEG system, so that one hemisphere is close to the sensors than the other is, one 

could observe stronger activity at sensors closer to the subject’s head even when the 

strengths are equal at the cortical level. Therefore, the real-time cortical functional 

connectivity imaging system can also be a useful tool in MEG studies. We are 

currently developing new paradigms to diagnose various psychiatric diseases and also 

trying to generalize the operating software so as to release it worldwide to potential 

users.   
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Chapter 6: Brain Fingerprinting: Classification of 

Mental States Based on Spatiospectral Patterns of 

Brain Electrical Activity  

 

 

This chapter introduces a mental task classification method to utilize cortical 

source information in order to more accurately classify mental states than using scalp 

EEG signals, and demonstrates the superiority of using the cortical source imaging in 

distinguishing different mental states.  

 

 

6.1. Research Background 

 

Although efforts to comprehend the human mind began in ancient Greece, 

whether the human mind was associated with the brain or heart remained a 

controversial issue until a series of modern neuroscience studies demonstrated that 

human emotions and behaviors are tightly linked with brain activity. Recently, thanks 

to dramatic advances in technologies for recording human brain activity and methods 

for statistical pattern recognition, neuroscientists have recognized the possibility of 

decoding the human mind based on brain activity recorded via multiple neuroimaging 
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modalities, such as functional magnetic resonance imaging (fMRI), near infrared 

spectroscopy (NIRS), electroencephalography (EEG), and magnetoencephalography 

(MEG) [130-142]. These “mind reading” or “brain reading” technologies have been 

explored not only to advance our understanding of neural information processing but 

also to develop new applications such as brain-computer interfaces (BCI) [131, 132, 

135, 140, 141], lie detection [130, 134, 136, 137, 142], and communication with 

severely locked-in patients [133, 138, 139]. 

 

Among the neuroimaging modalities, EEG has been widely used in mind reading 

studies because of its excellent temporal resolution, usability, and safety. At present, 

many EEG-based mind reading studies have succeeded in discriminating different 

mental tasks or cognitive states with fairly high classification accuracy [143-152]. 

The successful results have significantly contributed to realizing several practical BCI 

systems and progressing in our knowledge about neural information processing.   

 

Recently, some studies have shown that source imaging analysis methods could 

increase the classification accuracy of distinguishing motor imagery tasks rather than 

using scalp EEG signals [43, 153, 154]. These results are physiologically plausible 

because cortical sources reconstructed from the scalp EEG signals might compensate 

the distortion caused by the effect of volume conduction. However, to my best 

knowledge, the cortical source imaging method has not yet been tested for a variety of 

mental tasks such as mental calculation, internal speech, spatial navigation imagery, 
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and so on. It is needed to apply the source imaging method to a diversity of mental 

tasks so as to expand our understanding of neural information processing and realize a 

high performance BCI system. Thus, the author explored whether the enhanced 

accuracy could also be obtained by using the cortical source imaging method instead 

of using raw scalp EEG signals.   
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6.2. Methods 

 

6.2.1. Participants and Experimental Conditions 

 

Eight healthy volunteers (all male, all right-handed, aged 20-27 years) 

participated in the present study. None of them had a previous history of neurological, 

psychiatric, or other severe diseases that may have influenced the experimental results, 

nor had they ever participated in EEG-based experiments. All participants were asked 

to abstain from alcohol for 24 hours prior to the experiment in order to maximize 

concentration on the experiment. The author provided a fully detailed summary of the 

experimental procedures and protocols to all participants prior to the experiment. All 

participants gave written consent and received monetary reimbursement for their 

participation.  

 

In the EEG data acquisition session, the participant sat on a comfortable 

armchair facing a 17" LCD monitor. Electrodes were mounted on their scalp 

according to the extended international 10–20 system. A total of 30 electrodes were 

evenly and broadly attached to the participants’ scalps covering whole brain areas 

(AF3, AF4, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, CP1, CP2, CP5, 

CP6, Pz, P3, P4, P7, P8, POz, PO7, PO8, O1, O2, T7 and T8) and a multi-channel 

EEG acquisition system (WEEG-32, Laxtha Inc., Daejeon, Korea) was used for data 
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acquisition. The EEG signals were acquired in a dimly lit, soundproof room. The 

sampling rate was set at 512 Hz in all experiments. The study protocol was approved 

by the Institutional Review Board (IRB) at Yonsei University, South Korea.  

 

6.2.2. Mental Tasks 

 

Four different mental tasks were chosen on the basis of previous studies 

associated with EEG-based mind reading [51, 148, 151]. The participants were asked 

to use a consistent strategy for each mental task to minimize inter-trial variability 

[137]. The following paragraphs provide descriptions of these tasks.  

 

(Task A) Counting the Number of Strokes of Given Chinese Characters 

Participants were asked to count the number of strokes of given Chinese characters. 

All words used for this task consisted of four Chinese characters with particular 

meanings. Prior to the main recording sessions, the participants were asked not to 

think about the meanings of the words to avoid the acquisition of unwanted EEG 

signals.  

 

(Task B) Mental Mathematical Calculation 

Participants were given nontrivial multiplication problems in which they were 

asked to multiply a two digit number by a second two digit number, mentally, as fast 
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as they could. Participants were also asked not to vocalize the numbers and to make 

no movements while solving the problems. The pairs of two digit numbers used in a 

session were not repeated to prevent the participants from becoming accustomed to 

the problems.  

 

(Task C) Mental Singing of the National Anthem  

Participants were required to sing a song internally, without performing 

movements to keep the beat. The Korean national anthem was selected as the song to 

reduce inter-participant variability of the EEG signals.  

 

(Task D) Motor Imagery of the Tongue 

The participants were asked to perform kinesthetic imagination of tongue 

movement. Since even small tongue movements may contaminate the EEG signals, 

the participants were instructed not to swallow their saliva during the task period.  

 

In addition to these mental tasks, eye-closed, resting state EEG signals were 

recorded for three minutes prior to the main recordings; these were used as a baseline 

EEG dataset. During the resting EEG recordings, participants were asked to relax and 

not to think of anything.  
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6.2.3. EEG Data Acquisition  

 

The EEG data were acquired while the participants were performing the four 

different mental tasks described in the previous section. Figure 6.1 depicts the 

experimental design used in the present study. A gray (RGB: 132, 132, 132) color was 

selected as the background to prevent eyestrain [155]. At the beginning of each trail, a 

blank screen was presented for a variable duration (three to eight seconds) and then 

instructions for the next task appeared in the center of the screen for two seconds for 

task A, C, and D (also see Figure 6.1). The preparation period for the mental 

mathematical calculation (task B) lasted longer (four seconds) than that for the other 

tasks (two seconds) as the participants generally needed a longer time to memorize 

the pair of two digit numbers. Immediately after a beeping sound was presented to the 

participants for 125 ms, a black cross fixation was presented at the center of the 

screen for 10 s for tasks B, C, and D. During this time, participants were to perform 

the instructed mental task for 10 s. In the case of task A (counting the number of 

strokes of given Chinese character), a Chines word consisting of four Chines 

characters appeared for 10 s, as it was not trivial for native Koreans to memorize the 

Chinese words. A single experimental session was composed of 20 independent trials, 

each of which appeared five times in random order. Seven out of eight participants 

performed four sessions; while the other participant (JJ) underwent only three 

sessions due to mental fatigue. Consequently, seven participants performed each 
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6.2.4.2. Feature Extraction 
 

To classify different mental tasks, the author developed a new feature extraction 

method that utilizes the whole spatial and wide spectral information contained in the 

reconstructed cortical sources. The cortical source information were converted into 

2D spatiospectral pattern maps, of which each element was filled with -1, 0, and 1 

reflecting the degrees of ERD and ERS at each ROI and frequency bin. The following 

paragraph provides the detailed explanation on how the author constructed the 

spatiospectral pattern maps.  

 

Five second epochs (2.5–7.5 s from task onset) were extracted from the ten-second 

EEG signals for each trial and were used for analysis. Each epoch was then divided 

into one-second segments with 50% overlap, yielding a total of nine time segments in 

every epoch. Each segment was transformed into the frequency domain using the fast 

Fourier transform (FFT), and then an absolute current source power was evaluated by 

solving inverse problem at each cortical vertex (see also ‘Section 3.1.2 Forward 

Calculation and Inverse Estimation’ for more detailed explanation of inverse 

estimation). After an average source power for each cortical vertex and each 

frequency was estimated by averaging the source powers of the nine time segments, 

ROI powers at the 18 locations were calculated by averaging all cortical vertices 

included in each ROI. Consequently, a two-dimensional spectral source power map 

consisting of the spectral source power values at each ROI and frequency was 
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obtained for each trial (see Fig. 6.3; denoted as the task map). The frequency 

resolution was set at 1 Hz and the frequency band ranged from 4 Hz to 45 Hz, 

including theta (4–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and low gamma (30–45 

Hz) frequency bands [28, 29, 156, 157]. The 2-D spectral source power maps for the 

baseline were also constructed by applying inverse estimation with the same analysis 

window size (1 s) and overlapping ratio (50%; see Fig. 6.3a, denoted as the baseline 

map). The mean value and standard deviation of the spectral source powers during the 

baseline period were then evaluated for each ROI-frequency combination. Then, three 

signed integer values, +1, 0, and -1, were assigned to each element of the 2-D spectral 

source power maps based on the following rules: an event-related synchronization 

(ERS) value (+1) was assigned to an element for which the source power value was 

larger than ‘mean of baseline source powers + one standard deviation of baseline 

source powers’; an event-related desynchronization (ERD) value (-1) was assigned to 

an element for which the source power value was smaller than ‘mean of baseline 

source powers – one standard deviation of baseline source powers’; and the other 

elements, the source powers of which were not significantly different from the 

baseline source powers, were filled with zeroes (0). By applying this transformation 

to all of the 2-D ROI-frequency power maps, we constructed new 2-D spatiospectral 

pattern maps filled with +1, 0, and -1 values for each mental task (see Fig. 6.3a; 

denoted as the template ERS/ERD map).  
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6.2.4.3. Classification of Mental States 
 

In order to investigate how well the different mental tasks could be classified, 

the leave-one-out cross-validation (LOOCV) method was applied, considering the 

relatively small number of task trials. The author used a single spatiospectral pattern 

map as validation data, and the remaining pattern maps as training (or template) data. 

This process was repeated such that every spatiospectral pattern map was used once 

as the validation data. For the classification of mental tasks, the author implemented a 

simple fitness evaluation technique that measured the similarity between a validation 

pattern map and each class of template pattern maps corresponding to each mental 

task, and the validation pattern map was assigned to a class that demonstrated the 

highest fitness value.  

 

For a given spatiospectral pattern map X, the fitness of X with respect to a set of 

template pattern maps corresponding to a specific mental task was evaluated. 

Similarity between a validation pattern map X and the n-th template pattern map in a 

set corresponding to a specific mental task, )(nY , was defined as: 

 

∑∑
= =

=
R

r

F

f

n
frfr

n YXYXh
1 1

)(
,,

)( ),( ,    (6.1) 

 



 - 96 -

where R and F are the number of ROIs and frequencies, respectively, the 

subscripts r and f represent the r-th low and f-th column of the ROI-frequency grid, 

respectively. As readily seen from (6.1), ‘1’ was assigned to an element at which two 

pattern maps had identical ERS/ERD values; ‘-1’ was assigned to an element at which 

two pattern maps had opposite ERS/ERD values; and ‘0’ was assigned to an element 

at which one or both pattern maps had no significant ERS/ERD values.  

 

The similarity values estimated for all template patterns in a class were then 

averaged into a single value measuring fitness between a validation pattern map X and 

a set of template pattern maps Y, F(X, Y), as given below: 

 

∑
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The fitness values between the validation pattern map X and the other sets of 

template pattern maps were also calculated by applying the same procedure. Finally, a 

certain validation pattern map corresponding to a specific mental task was assigned to 

the class that demonstrated the greatest fitness value. Figure 6.3 is a schematic 

illustration of the proposed mental task classification method. Figure 6.3a depicts the 

process of constructing spatiospectral pattern maps for different mental tasks. Figure 

6.3b describes the process for classifying an input pattern map. For comparison, both 

feature extraction and classification methods were applied to the scalp EEG data.  
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6.3. Results  

 

Figures 6.4 and 6.5 show two examples of the 2D spatiospectral maps obtained 

from two subjects, IU and DK, respectively, who demonstrated the highest 

classification accuracy (see Appendix A for the other six participants’ spatiospectral 

maps), where the tasks A, B, C, and D indicate the four mental tasks described in the 

previous section. It is evident from visual inspection of Figure 6.4 and 6.5 that the 

pattern maps obtained while a subject was performing the same mental task exhibited 

similar and consistent trends, and those corresponding to different mental tasks 

showed discriminable patterns, demonstrating the possibility of using these 

spatiospectral pattern maps for classifying different mental tasks. Unfortunately, 

however, the author did not observe clear inter-subject similarities for specific mental 

tasks, thought to be secondary to different levels of baseline activities for each 

participant. Among the eight participants, subject IU had the most consistent intra-

class similarity, also reflected in the overall classification accuracy provided in the 

next paragraph. Compared to subjects IU and DK, subject JI demonstrated the least 

consistent spatiospectral patterns, which also resulted in the lowest classification 

accuracy (see Fig. 6.6, in advance).  
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6.4. Discussions and Summary 

 

In order to more accurately interpret individuals’ intentions, the author utilized 

spatiospectral pattern maps of cortical source information reconstructed from scalp 

EEG signals. The author referred to the proposed approach as ‘brain fingerprinting’ 

since the author was able to obtain distinct two-dimensional spatiospectral patterns 

corresponding to different mental tasks, similar to fingerprint patterns. The 

experimental results suggest that the cortical source imaging method can be used to 

enhance the accuracy of detecting individuals’ various intentions, which is in line 

with the previous motor imagery classification studies [45, 153, 154]. Based on these 

results, a real-time mind reading system will be developed by using the real-time 

cortical source imaging technology in the future studies.  

 

 Besides classification accuracy, the proposed classification approach has also 

advantage over the conventional methods in that the feature extraction and 

classification methods do not require complex procedures for selecting specific 

feature sets and training a classifier. Instead of selecting an optimal combination of 

feature vectors, the author converted full spatial and spectral information into 

spatiospectral pattern matrices and classified the patterns by calculating inner-product 

of two pattern matrices.  
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Although clear inter-subject similarity did not be found in the spatiospectral 

patterns, well-known physiological findings were frequently observed in most of the 

participants’ pattern maps. The increment of gamma band brain activity is widely 

believed to be tightly linked with cognitive task execution [28], and this phenomenon 

was also replicated in the current study; a widespread increment of gamma band 

activities was observed in most of the participants’ spatiospectral pattern maps for 

most cognitive tasks. Moreover, the augmentation of theta band power along with 

gamma ERS was also observed in a large number of frontal and central sites for all 

subjects, excluding subject DS, while performing the numerical multiplication task 

(task B). This observation agreed with previous studies [28, 158] that reported 

increased frontal and central theta powers while one was performing specific mental 

tasks requiring high levels of attention, such as mental arithmetic and reasoning. 

Additionally, most participants’ spatiospectral maps, excepting subject JI, 

demonstrated significant increases in alpha power (alpha ERS) around the 

sensorimotor cortex during the tongue motor imagery task (task D), agreeing with a 

previous study that reported dominant alpha ERS in the sensorimotor (central) cortex 

during tongue motor imagery [51]. Since characterizing patterns of brain activity 

associated with specific mental states is still thought to be an important issue that may 

expand our understanding of how a specific mental task is encoded in the brain [159-

162], we will further investigate this issue in future studies.  
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Some parameters used in the present study were selected empirically. First the 

spectral source powers were evaluated with a one second time window with a 50% 

overlap and were averaged across all time windows in each epoch. The author varied 

the analysis window sizes and picked the optimal window size (1,000 ms) from trials 

of 500, 750, 100, 1,500, and 2,000 ms. Second, the threshold values of ERD and ERS 

were set to represent the ‘mean of baseline source powers ± one standard deviation 

of baseline source powers’ for all participants. This threshold value was also 

determined empirically, but these values need to be optimized in future studies.  

 

One of the promising applications of this study would be in developing brain-

computer interface (BCI) technology. BCI is cutting edge technology that may help 

the disabled control external devices and communicate with the outside world. The 

most widely studied mental task has been motor imagery defined as the mental 

simulation of a kinesthetic movement [16, 17]. The motor imagery task is believed to 

be particularly effective for controlling external devices, since it does not require any 

external stimuli, as in the steady-state visual evoked potential (SSVEP) and P300-

based BCI paradigms. However, motor imagery tasks may not always be the best 

effectors, as some people do not develop a concrete feel for performing motor 

imagery even after extensive training [49, 55, 163]. It has also been reported that 

people who have been paralyzed or undergone amputations are generally less capable 

of performing motor imagery tasks; sometimes called the chaotic motor imagery 

phenomenon [164, 165]. There the non-motor imagery tasks used in this study may 
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represent alternative effectors that could be potentially applied to BCI applications. 

Prior studies have already demonstrated that it is possible to classify non-motor 

imagery tasks with an acceptable classification accuracy [143, 144, 150-152, 166].  
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Chapter 7: Conclusion 

 

In this dissertation, a real-time cortical rhythmic activity imaging technology 

was developed and its usefulness was demonstrated by various practical applications, 

i.e. the real-time cortical rhythmic activity and functional connectivity monitoring, 

neurofeedback-based motor imagery training, and classification of mental states.  

 

The real-time cortical rhythmic activity imaging technology was first applied to 

monitoring individuals’ brain activation states. Both offline simulations and online 

human experiments demonstrated that the developed monitoring system could 

correctly visualize instantaneous cortical activation images reflecting current brain 

states in real-time.  

 

The developed real-time cortical rhythmic activity monitoring system was 

utilized to efficiently train individuals to perform motor imagery tasks for brain-

computer interface (BCI). After the motor imagery training for approximately 30 min, 

all participants in the trained group succeeded in performing motor imagery to 

activate their motor cortex without any physical movements. The analysis results of 

EEG data recorded before and after training showed significant differences in the 

sensorimotor rhythms, and classification accuracy was also enhanced considerably in 

all participants after the motor imagery training. On the other hand, the analysis 
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results of the control group did not show any meaningful changes in both mu rhythm 

and classification accuracy, demonstrating that the suggested system can be used as a 

tool for training motor imagery task in BCI applications.  

 

The real-time cortical functional connectivity monitoring system was also 

implemented as one of the applications of the real-time cortical activity imaging 

technology. For the verification of the developed system, the author performed three 

test experiments: 1) structural face processing in gamma band, 2) finger movements 

in alpha/beta bands, and 3) working memory task in theta band. The online 

experiment results were consistent with the results of previous offline studies. These 

results demonstrated the possibility of imaging cortical functional connectivity in 

real-time.  

 

To more accurately interpret human intentions, the cortical rhythmic activity 

imaging technology was applied to classifying different mental tasks. Two-

dimensional spatiospectral pattern maps were first constructed from cortical source 

information and classified through the similarity evaluation. The above procedure was 

repeated for raw scalp EEG signals for comparison. The average classification 

accuracies were 76.31% (± 12.84) for the cortical level analysis and 68.13% (± 9.64) 

for the sensor level analysis. The analysis result demonstrated that the classification 

accuracy can be considerably enhanced by using the cortical source information. 

Based on this preliminary offline experiment, the author will implement a real-time 
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mind reading system that utilizes the developed real-time cortical activity imaging 

technology.  

 

Besides the applications mentioned in this dissertation, the proposed real-time 

cortical activity imaging technology can be applied to other potentially practical 

applications such as real-time lie detection, diagnosis of psychiatric brain diseases, 

neurofeedback-based autism and attention deficit hyperactivity disorder (ADHD) 

treatment, sleep stages monitoring and so on. In the future, these applications will be 

investigated in cooperation with medical doctors. Also, the author has a plan to 

increase the temporal resolution of the real-time cortical activity imaging technology 

by not only developing a high speed inverse solution, but introducing parallel 

computing methods, in order to more accurately detect fast-changing brain activities. 

Lastly, the author will generalize the application software, which would enable 

worldwide researchers to easily utilize the proposed real-time cortical rhythmic 

activity imaging technology for their studies.  
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Abstract in Korean  

 

실시간 피질 리듬 활동 영상화 기술의 
개발 및 활용 

 
연세대학교 대학원 

의공학과 
황 한 정 

 

본 학위 논문의 목적은 실시간 피질 리듬 활동 영상화 기술의 개발과 
이를 실시간 뇌 활동 관찰, 뇌 질환 진단, 뉴로피드백, 뇌-컴퓨터 접속, 
인간 의도의 분류와 같이 다양하고 실용적인 분야에 적용하는 것이다.  

 
실시간 피질 리듬 활동 영상화 기술의 구현 가능성 여부를 조사하기 

위해, 먼저 뇌파 기반 실시간 뇌활동 모니터링 시스템을 개발하였다. 
개발된 실시간 뇌활동 모니터링 시스템에서는 피험자 뇌의 해부학적인 
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정보와 실험에 사용하는 전극 구성 정보를 이용하여 주파수 영역의 역산 
연산자를 사전에 계산하여 저장하였다. 피질의 각 위치에서의 특정 주파수 
신호원의 변화는 실시간으로 획득되는 뇌파 신호를 퓨리에 변환을 
이용하여 주파수 영역의 신호로 변환 한 후, 이를 기구축한 역산 
연산자와의 실시간 곱을 통해서 추정하였다. 예비 연구로 수행한 오프라인 
시뮬레이션에서는 두 명의 치매 환자와 두명의 정상인 피험자가 눈을 감고 
편안한 상태에서 측정한 노이즈가 없는 뇌파 신호를 이용하였다. 예비 
실험을 통해 18 채널 뇌파 데이터를 이용할 경우, 뇌활동의 시공간적 
변화를 약 200 ms 의 지연 시간으로 관찰 할 수 있음을 증명하였다. 예비 
실험을 바탕으로 한 온라인 실험에서는 2 명의 피험자를 대상으로 눈을 
감고 뜰 때의 알파 리듬의 변화와 팔 움직임과 관련된 뮤(mu) 리듬의 
변화를 각각 관찰 하였으며, 개발된 시스템의 유용성을 증명할 수 있었다.  

 
검증이 완료된 실시간 뇌활동 모니터링 시스템은 뇌파 기반 뇌-

컴퓨터 접속 연구에서 중요한 연구 주제 중 하나인 운동 상상 (motor 
imagery) 훈련에 활용하였다. 10 명의 피험자가 본 실험에 참가하였으며, 
그 중 5 명은 실시간 뇌활동 모니터링 시스템을 이용하여 운동 상상 
훈련을 수행하였으며, 나머지 5 명은 어떠한 훈련도 수행하지 않았다. 운동 
상상 훈련을 수행한 5 명의 피험자는 신체적인 움직임 없이 상상만으로 
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그들의 운동 피질 영역을 활성화 시키는데 성공하였다. 제안한 운동 상상 
훈련 시스템의 효과를 검증하기 위해, 운동 상상 훈련 전, 후의 뇌파 
신호를 피험자가 왼손과 오른손 운동 상상을 수행할 때 운동 피질 
영역에서 획득하였다. 운동 상상 훈련을 받지 않은 나머지 피험자들의 
뇌파 신호는 약간의 휴식 시간과 함께 2 번에 나눠서 동일한 방법으로 
측정하였다. 측정된 모든 뇌파 신호는 시간-주파수 분석 기법을 이용하여 
분석을 하였다. 운동 상상 훈련을 받은 피험자들의 운동 상상 전, 후에 
측정한 뇌파 신호를 분석한 결과, 운동 상상 훈련 후에 왼손과 오른손 
운동 상상을 수행 할 때 운동 피질 영역의 뇌파가 두드러지게 차이가 
났으며, 이는 분류 정확도가 향상되는 결과로 나타났다. 이와 반대로, 운동 
상상 훈련을 수행하지 않은 피험자들의 뇌파 데이터를 분석한 결과, 운동 
피질 영역의 뇌파 신호와 분류 정확도의 두드러진 변화를 확인 할 수 
없었다. 이상의 연구 결과를 통해, 제안한 운동 상상 훈련 시스템이 운동 
상상을 훈련하는 좋은 도구가 될 수 있음을 증명할 수 있었다.  
 

실시간 뇌활동 모니터링 시스템의 일부를 수정하여, 서로 다른 뇌 
영역 사이의 기능적 연결성 변화를 실시간으로 영상화할 수 있는 시스템을 
개발 하였다. 개발한 시스템을 검증하기 위해, 구조적 얼굴 처리, 손가락 
움직임, 작업 기억 (working memory) 태스크를 이용하여 다양한 
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주파수에서 검증 실험을 수행하였다. 만약, 특정 2 개 뇌 영역 신호의 
상관도 (correlation)가 기설정된 역치값을 넘을 경우 이 2 개 뇌 영역은 
연결성이 있는 것으로 간주하였으며, 실험을 수행하는 동안 실시간으로 
변화하는 뇌 영역 사이의 연결성 개수를 기록하였다. 정량적 분석 결과는 
과거 동일한 실험을 수행한 오프라인 연구 결과와 일치하는 경향을 
보였으며, 피질상에서 실시간으로 기능적 연결성을 도시화할 수 있음을 
증명하였다.  

 
피질 리듬 영상화 기술은 인간의 다양한 의도를 두피 표면에서 측정한 

뇌파 신호를 이용할 때 보다 높은 정확도로 분류하는데에도 활용되었다. 
실험에 참가한 8 명의 피험자가 서로 다른 4 가지 인지 과제를 수행하는 
동안 그들의 뇌파를 측정하였다. 기설정된 각 뇌 영역에서 뇌 신호원을 
추정하였으며, 2 차원 시공간 패턴 맵을 각 태스크 별로 구축하였다. 2 차원 
시공간 패턴 맵은 -1, 0, 1 의 3 개의 값을 가지며 이는 사건-관련 
(비)동기화 (event-related (de)synchronization: ERS/ERD) 정도를 
반영하여 결정하였다. 같은 인지 과제를 수행할 때 그렇지 않은 경우보다 
일정한 ERS/ERD 패턴을 보였으며, 이는 구축한 시공간 패턴 맵이 서로 
다른 인간의 의도를 구분할 수 있음을 암시하였다. 피험자의 의도는 특정 
인지 과제를 수행할 때 측정한 뇌파 신호로 부터 구축한 2 차원 시공간 
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패턴 맵과 데이터베이스에 저장된 시공간 패턴 맵들 사이의 내적 계산을 
수행하는 유사성 평가를 통해 분류되었다. 분류 정확도는 leave-one-out 
cross-validation (LOOCV) 기법을 이용하여 계산하였다. 비교 평가를 
위해, 두피 표면에서 측정된 뇌파 신호를 이용하여 앞서 언급한 분석 
방법과 동일한 절차를 거쳐 분류 정확도를 계산하였다. 피질 리듬 영상화 
기술을 이용하여 분석한 분류 정확도는 평균 76.31% (± 12.84%) 였으며, 
두피 표면에서 측정한 뇌파를 이용하여 분석한 평균 분류 정확도는 68.13% 
( ± 9.67%) 였다. 본 결과를 통해 피질 리듬 영상화 기술이 인간의 다양한 
의도를 보다 높은 분류 정확도로 분류할 수 있음을 확인 할 수 있었다.  
 

본 학위 논문에서 저자는 실시간 피질 리듬 활동 이미징 기술의 
개발에 대해 소개하였으며, 실용적이고 다양한 응용 분야에 개발한 기술을 
성공적으로 적용함으로써 개발한 기술의 유용성과 우수함을 입증할 수 
있었다.  
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뇌전도, 역문제, 뇌-컴퓨터 접속, 운동 상상, 뉴로피드백, 기능적 연결성, 
뇌 질환 진단, 인지 과제 분류, 독심술 


