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Abstract

Development of a Real-time Cortical
Rhythmic Activity Imaging Technology and

Its Applications

Han-Jeong Hwang
Dept. of Biomedical Engineering
The Graduate School

Yonsei University

The principal aim of this dissertation is to develop a real-time cortical rhythmic
activity imaging technology and to apply this technology to a variety of potentially
practical applications, such as real-time brain activity monitoring, diagnosis of brain
diseases, advanced neurofeedback, brain-computer interface (BCI), and classification

of human thoughts.
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To this end, the author first implemented an EEG-based, real-time, cortical
rhythmic activity monitoring system to investigate whether or not a real-time cortical
rhythmic activity imaging is feasible. In the monitoring system, a frequency domain
inverse operator is preliminarily constructed, considering the subject’s anatomical
information and sensor configurations, and then the spectral current power at each
cortical vertex is calculated for the Fourier transforms of successive sections of
continuous data, when a particular frequency band is given. A preliminary offline
simulation study using four sets of artifact-free, eye-closed, resting EEG data
acquired from two dementia patients and two normal subjects demonstrates that
spatiotemporal changes of cortical rhythmic activity can be monitored at the cortical
level with a maximal delay time of about 200 ms, when 18 channel EEG data are
analyzed under a Pentium4 3.4 GHz environment. The first pilot system is applied to
two human experiments— (1) cortical alpha rhythm changes induced by opening and
closing eyes and (2) cortical mu rhythm changes originated from the arm

movements— and demonstrated the feasibility of the developed system.

The developed real-time cortical rhythmic activity monitoring system was
utilized as a motor imagery training system for EEG-based brain-computer interface
(EEG). Ten healthy participants took part in this study, half of whom were trained by
the suggested training system and the others did not use any training. All participants
succeeded in performing motor imagery after a series of trials to activate their motor

cortex without any physical movements of their limbs. To confirm the effect of the
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suggested system, EEG signals were recorded for the trained group around
sensorimotor cortex while they were imaging either left or right hand movements
according to the experimental design, before and after the motor imagery training. For
the control group, EEG signals were also measured twice without any training
sessions. The participants’ intentions were then classified using a time-frequency
analysis technique, and the results of the trained group showed significant differences
in the sensorimotor rhythms between the signals recorded before and after training.
Classification accuracy was also enhanced considerably in all participants after motor
imagery training, compared to the accuracy before training. On the other hand, the
analysis results for the control EEG data set did not show consistent increment in both
the number of meaningful time-frequency combinations and the classification
accuracy, demonstrating that the suggested system can be used as a tool for training

motor imagery tasks in BCI applications.

With just slight modifications of the real-time cortical rhythmic activity
monitoring system, the author developed an EEG-based, real-time, cortical functional
connectivity imaging system capable of monitoring and tracing dynamic changes in
cortical functional connectivity between different regions of interest (ROIs) on the
brain cortical surface. To verify the implemented system, the author performed three
test experiments in which the author monitored temporal changes in cortical
functional connectivity patterns in various frequency bands during structural face

processing, finger movements, and working memory task. The author also traced the
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changes in the number of connections between all possible pairs of ROIs whose
correlations exceeded a predetermined threshold. The quantitative analysis results
were consistent with those of previous off-line studies, thereby demonstrating the

possibility of imaging cortical functional connectivity in real-time.

The cortical source imaging was used to decode various mental states more
accurately than sensor-level analyses. Eight participants took part in this study; their
EEG data were recorded while they performed four different cognitive imagery tasks.
The spectral power at each preliminarily determined cortical ROIs was estimated, and
then a 2D spatiospectral pattern map was constructed for each task, of which each
element was filled with 1, 0, and -1 reflecting the degree of event-related
synchronization (ERS) and event-related desynchronization (ERD). Consistent
ERS/ERD patterns were observed more frequently between trials in the same class
than those in different classes, indicating that these spatiospectral pattern maps could
be used to classify different mental states. Classification of a specific mental state was
performed through the similarity evaluation between a current 2D pattern map and the
template pattern maps, by taking the inner-product of two pattern matrices. The
classification accuracy was evaluated using the leave-one-out cross-validation
(LOOCV) and that for sensor-level analysis using the raw EEG signals was also
calculated for comparison. An average accuracy of 76.31% (% 12.84%) was attained

for the cortical-level analysis; whereas an average accuracy of 68.13% ( =+ 9.67%) was
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attained for the sensor-level analysis, demonstrating cortical-level analysis can

interpret various human thoughts more correctly than sensor-level analysis.

In summary, the author developed a real-time cortical rhythmic activity imaging
technology and demonstrated the usefulness of the developed technology by

successfully realizing a variety of practical applications.

Key Words: cortical source imaging, real-time neuroimaging, cortical rhythmic
activity, electroencephalography (EEG), inverse problem, brain-computer interface
(BCI), motor imagery, neurofeedback, functional connectivity, diagnosis of

psychiatric disease, mental task classification, mind reading
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Chapter 1: Introduction

Cortical rhythmic activity, which is often called spontaneous brain activity or
oscillatory brain activity, is generated intrinsically rather than as phase-locked
responses to external stimuli [1]. In electroencephalography (EEG) and
magnetoencephalography (MEG), the first recorded signal was the alpha rhythm,

which is a kind of cortical oscillation peaking at about 10 Hz.

Recently, an increasing number of neuroscientists are becoming interested in
cortical rhythmic activity since various in vivo studies in both humans and animals
have revealed that cortical rhythmic activity at various frequencies might be closely
related to information encoding in the brain [2-7]. For instance, cortical rhythmic
activity might reflect specific body movements and behavioral states. The alpha
rhythmic peaking at around 10 Hz becomes strongest when the subject has his eyes
closed and is suppressed when the subject is exposed to visual stimuli [6]. The mu
rhythm, with both 10 Hz and 20 Hz components, is dampened by limb movements or
tactile stimulations [7]. It has also been revealed by numerous studies [2, 3, 5] that
gamma-band activity (30-100 Hz) can be modulated by various behavioral states
such as attention, working memory and associative brain diseases such as

schizophrenia [4] and Alzheimer’s disease [8].



EEG and MEG are excellent tools to investigate human cortical rhythmic
activity noninvasively thanks to their superior temporal resolutions to other
noninvasive brain mapping techniques such as functional magnetic resonance
imaging (fMRI), positron emission tomography (PET), near infrared spectroscopy
(NIRS) and so on. Many studies have been performed to evaluate the coherence
between signals acquired at different scalp EEG electrodes or MEG sensors, and
investigated spatial signal power patterns appearing in the scalp potential maps or
magnetic field maps on the sensor plane [1-9]. However, the EEG or MEG
topographies cannot be directly attributed to the underlying cortical regions since
sensors may contain information from multiple brain sources, some of which might
overlap, and the topographic maps might be smeared out due to the inhomogeneous
conductivity distributions in the human head. A deep tangential source might generate
two distinct peaks on the topographic map, which are hard to distinguish from two
radial sources around the peak locations. Moreover, a very small cortical activation in
some cortical areas could yield widespread filed distribution in the topographic maps,
preventing one from identifying the correct location of the actual cortical source and
investigating the coherence between different sensors. If a subject’s head is tilted
especially in a helmet-type MEG, so that one hemisphere is closer to the sensors than
the other is, one could observe stronger activity at sensors closer to the subject’s head
even when the strengths are equal at the cortical level. Therefore, to overcome these

limitations, source imaging rhythmic activity at the cortical level is necessary.



Over the last decade, several methods for source imaging of cortical rhythmic
activity have been proposed, such as sequential dipole modeling [10], dynamic
imaging of coherent sources (DICS) [11], frequency-domain minimum current
estimation (FD-MCE) [12], synthetic aperture magnetometry (SAM)[13] and spectral
spatiotemporal imaging [14]. Despite the recent progress in the imaging techniques,
source imaging of cortical rhythmic activity has rarely been applied to the real-time
brain activation monitoring system. Congedo et al [10, 15] attempted to apply inverse
solutions to the EEG neurofeedback system for the first time. They applied low-
resolution electromagnetic tomography (LORETA) software

(http://www.unizh.ch/keyinst) to the EEG data which were bandpass-filtered for a

specific frequency band. Their system enhanced the efficiency of conventional
neurofeedback systems which relied only upon the EEG or MEG topographic maps,
by tracking spectral power changes at a region of interest (ROI) in a standard human
brain. Their approach is meaningful enough in that they first implemented a real-time
cortical rhythmic activity monitoring system. Basically, however, the conventional
approach that used LORETA-key software resulted in too widespread low-resolution
images and did not visualize 3D cortical activation changes in real-time. Moreover,
they did not concern themselves about the delay time seriously because their

application could be implemented without a very high temporal resolution.

In this dissertation, the first goal was to realize a real-time cortical rhythmic

activity monitoring system that visualizes instantaneous cortical activation images,



and is generally applicable to a variety of potential applications such as brain
computer interface (BCI), neurofeedback, real-time diagnosis of brain diseases, and
so on, with just slight modifications in the operating software. Before implementing a
pilot system, offline analysis software which simulates the real-time cortical
activation monitoring system was implemented and applied to four sets of artifact-
free, eye-closed, resting EEG data acquired from two dementia patients and two
normal male subjects, in order to investigate if the real-time cortical activity
monitoring system is possible. After confirming the possibility of the system, the
author implemented a first online pilot system which was integrated with a
commercial EEG recording device and applied it to two well-known experiments— (1)
cortical alpha rhythm changes induced by opening and closing eyes and (2) cortical
mu rhythm changes originated from the arm movements— which demonstrate the
validity of the real-time cortical activity monitoring system. The detailed processes of
real-time cortical rhythmic source imaging, experimental procedures, and results will

be presented in Chapter 3 of this dissertation.

After the verification of the real-time cortical rhythmic activity monitoring
system, this real-time source imaging system was used as a motor imagery training
system for brain-computer interface (BCI). Motor imagery, defined as mental
simulation of a kinesthetic movement [16, 17], is one of the widely used effectors in
EEG-based BCI systems. However, many individuals have difficulty in getting used

to the feel of motor imagery because most people do not easily recognize how they



can have a concrete feeling of motor imagery. Therefore, the author proposed a
neurofeedback-based motor imagery training system based on the developed real-time
cortical rhythmic source imaging system, with the expectation that the motor imagery
training system can help individuals to easily get the concrete feeling on the motor
imagery. In the experiment, half of 10 human volunteers, who had no prior
experience of BCI experiments, were asked imagine either left or right hand
movement while they were watching their cortical activation maps through the real-
time monitoring system. During the experiment, the participants were asked to
continuously try to increase their mu rhythm activations (8-12 Hz) around the
sensorimotor cortex areas. The author then investigated changes in the EEG signals
recorded before and after motor imagery training to demonstrate the effect of the
motor imagery training system. The other five control participants did not had any
motor imagery training and the changes in the EEG signals recorded before and after
a 30-min break were investigated. The detailed processes of motor imagery training,

experimental procedures, and results will be found in Chapter 4 of this dissertation.

The author also developed a real-time cortical functional connectivity imaging
system capable of monitoring and tracing temporal changes in source-level
connectivity between different regions of interest (ROIs) on the cortical surface, after
the simple modification of the real-time cortical rhythmic activity motoring system.
To implement this system, scalp EEG signals were converted into frequency domain

data-sets in real-time and mapped onto cortical source space by applying frequency



domain inverse estimation. Then, the cortical signals were spatially grouped for each
ROI and analyzed in order to find the correlations among the ROIls. To demonstrate
the feasibility of the implemented system, the author performed three test experiments
in which the author monitored the changes in cortical functional connectivity patterns
while participants were performing different tasks. The experimental procedures and
results for each test experiment will be fully presented in Chapter 5 of this

dissertation.

Lastly, the cortical source imaging method was applied to decoding various mental
states in order to more accurately interpret individuals® intentions. Eight participants
took part in this mind reading study, and performed four different mental tasks. EEG
signals recorded for each mental task were firstly transformed into the frequency
domain using the fast Fourier transform (FFT), and the spectral power at each cortical
region of interest (ROI) is calculated using preliminarily constructed inverse operator.
Then, the author constructed two-dimensional spatiospectral pattern maps, consisting
of quantized event-related synchronization (ERS) and event-related
desynchronization (ERD) values evaluated at every combination of ROI and
frequency bin. A similarity between the spatiospectral pattern maps was evaluated by
computing the inner-product of two pattern matrices and was then used to classify the
current mental states; the resultant classification accuracy was also compared to that

of the same analysis method using raw EEG signals. The detailed mental state



classification method and experimental results will be found in Chapter 6 of this

dissertation.



Chapter 2: Electroencephalography (EEG)

This chapter briefly introduces basic knowledge on electroencephalography
(EEG) that will help readers to understand this dissertation. Section 2.1 describes how
neurons generate brain signals capable of being measured on the surface of the scalp.
Section 2.2 introduces how EEG activity is recorded on the surface of the scalp.
Finally, Section 2.3 introduces five brain waves divided based on frequency and

explains their characteristics associated with mental states and brain functions.

2.1. Source of EEG

Neurons in the human cerebral cortex are electrically excitable cells that process
and transmit information by means of electrical signals and thus enable the electrical

recordings of their activity.

Figure 2.1 depicts the structure of a cortical neuron. A cortical neuron largely
consists of three main parts: the dendrites, the soma, and the axon. The dendrites of
the neuron are cellular extensions with many branches and receive the electrical
signals from upstream neurons via synapses. The soma containing the nucleus of the

neuron is the central part of the neuron at which the electrical signals from the



dendrites are joined and passed on. The axon is a long and slender projection that

carries the electrical signals away from soma.

Dendrite Axon terminal

Node of
Ranvier

Schwann cell

Myelin sheath
Nucleus

Figure 2.1. Schematic structure of a cortical neuron (source: www.wikipidea.org).

Figure 2.2 shows the arrangement of the cortical neurons generally called
pyramidal neurons. As described in the Figure 2.2, the apical dendrites of the
pyramidal neurons are parallel to each other, and perpendicular to the cortical surface.
The electrical potentials generated by single pyramidal neurons are too small to be
detected extracellularly on the scalp. However, if thousands or millions of neurons are

activated synchronously, the sum of the synchronous activity can be measurable on



the scalp using electrodes. The recorded electrical signals on the scalp are generally

called “electroencephalography (EEG)’.

Figure 2.2. Pyramidal neurons’ arrangement along the cortical surface.
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2.2. Measuring Method

EEG activity can be measured by placing electrodes on the surface of the scalp
with a conductive gel or paste. Figure 2.3 shows an example of an electrode cap used
in EEG recording systems. Electrodes are embedded in the cap that is flexible to fit

into individuals’ head shape.

As for the electrode configuration, the international 10-20 system has been
widely used as an international standard, where electrodes are placed at 10 and 20%
fractions of the distances between anatomical landmarks of the skull, being nasion,
inion, and the pre-auricular points. Figure 2.4(a) and 2.4(b) show the electrode
configuration for the international 10-20 system. EEG activity can be measured at 21
electrode positions guided by the international 10-20 system. Additional electrodes
can be placed to the standard set-up when some clinical and research applications
demand more electrodes. Figure 2.4(c) shows the electrode configuration for the
extended 10-20 system (or 10-10 system) in which intermediate 10% electrode

positions are used and 75 electrodes can be used for EEG recording.
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Figure 2.3. A typical electrode cap used in EEG recording systems (source:

WWW.neuroscan.com).

Nasion

4-@-.
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Figure 2.4. The (extended) international 10-20 system for electrode positioning: (a) left view

and (b) top view for the international 10-20 system, (c) top view for the extended international
10-20 system. The letters A, F, T, C, P, and O stand for Ear lobe, Frontal, Temporal, Central,
Parietal, and Occipital, respectively (source: http://www.bem.fi/book/13/13.htm#03).

-12 -



2.3. Rhythmic EEG Activity

Neuronal networks can reflect different states of neural synchrony and thereby
scalp EEG shows rhythmic oscillations at different frequencies: delta (0-4 Hz), theta
(4-8 Hz), alpha (8-13Hz), beta (13-30 Hz), and gamma (30-100 Hz). It has been
well established that EEG signals of each frequency band are tightly associated with

different states of brain functioning.

A delta rhythm has a frequency of 4 Hz or below. It is the slowest wave and has
the highest amplitude as compared to other brain rhythms. The delta rhythm is
associated with sleep stages 3 and 4 that are the deepest stages of sleep. It has been
also found that the delta wave is also observed during some continuous attention tasks

[18].

A theta rhythm has a frequency of 4 to 8Hz and is classified as ‘slow’ brain
activity. It is generally seen in young children and in drowsiness or arousal in older
children and adults. The theta rhythm is associated with spatial navigation [19] and
creative states [20]. It has been also found that the theta rhythm is involved in
conducting working memory task [20, 21] and the author confirmed this phenomenon
by monitoring theta band connectivity changes during working memory task in this

dissertation (see Chapter 5 for details).
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An alpha rhythm is a pattern of neural oscillation with a frequency range of 8-13
Hz. Since the alpha rhythm is usually seen in the posterior regions of the head, it is
also called the “posterior basic rhythm’ or ‘posterior alpha rhythm’. The alpha rhythm
significantly appears when closing the eyes, and disappears when opening the eyes
[22, 23]. This phenomenon was also observed by the author in the verification
experiments of the real-time cortical activity monitoring system (see Chapter 3 for
more details). In addition to the posterior basic rhythm, there is another alpha wave
that is called the mu rhythm (8-12 Hz) related to motor actions. Since the mu rhythm
can be voluntarily modulated by the imagination of the motor actions [24], it has been
widely used in realizing brain-computer interface (BCI) systems. In this dissertation,
various experiments related to the mu rhythm were conducted and will be introduced

in Chapter 3, 4, and 5.

A Beta rhythm occurs with a frequency between 13 and 30 Hz and has relatively
low amplitude. It has been revealed that the beta rhythm is associated with normal
waking consciousness [25] and motor behavior along with the mu rhythm [24]. In this
dissertation, the author demonstrates the characteristics of the beta rhythm with
respect to power and functional connectivity changes during real and imaginary motor

tasks and the detailed contents will be presented in Chapter 4 and 5.

A gamma rhythm is the fastest brain wave with a frequency between 30 to 100

Hz. It was difficult to record the gamma wave before the development of digital EEG
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systems, and the gamma wave was initially regarded as a noise. However, some
research results have suggested that the gamma wave is associated with conscious
perception [26] and cognitive task execution [27-29]. This fact is also verified by the
author in the real-time cortical functional connectivity (see Chapter 5) and mind

reading (see Chapter 6) studies.
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Chapter 3: An EEG-based Real-time Cortical

Rhythmic Activity Monitoring System

This chapter describes the technical details of the developed real-time cortical
rhythmic activity imaging method and how the method was successfully applied to a

real-time cortical rhythmic activity monitoring system.

3.1. Methods

3.1.1. Concept of a Real-time Cortical Rhythmic Activity

Monitoring System

The suggested real-time cortical rhythmic activity monitoring system consists of
three parts: (1) data acquisition; (2) pre-processing; (3) processing and visualization.
Figure 3.1 shows a schematic diagram to elucidate the concepts of the suggested

system.
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Figure 3.1. Schematic diagram to elucidate the concept of the real-time cortical activation

monitoring system.

In the data acquisition part, a subject’s structural magnetic resonance imaging
(sMRI) data are acquired prior to the EEG data recording. In the present simulation

and pilot studies, however, MNI standard brain  (http://www.mrc-

cbu.cam.ac.uk/Imaging/Common/mnispace.shtml#evans proc) was utilized instead of

the subject’s SMRI, since the individual subject’s SMRI data were not available. After

multi-channel EEG electrodes are attached on the subject’s scalp, the relative
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locations of electrodes and important anatomical landmarks are measured using a 3D
digitizer system. The sMRI data and electrode configurations are then transferred to

the pre-processing part.

The pre-processing part plays a role in constructing an inverse operator in which
the subject’s anatomical information is reflected. Once the linear inverse operator is
constructed and saved to a data-storage unit, spatiotemporal changes of cortical
rhythmic activities can be monitored in real-time by means of a unified processing

and visualization part.

The processing and visualization part is composed of three independent programs—
the FFT program, the frequency domain minimum norm estimation (FD-MNE) solver
and the visualization program— which are executed one after the other at each time

slice.

3.1.2. Forward Calculation and Inverse Estimation

In the present system, a realistic geometry head model was used for accurate EEG
forward calculation [30, 31]. A fist-order node-based boundary element method
(BEM) was applied to construct a lead field matrix which relates source locations to
scalp electrodes. In the present study, three-layer tessellated boundary surfaces,

consisting of inner and outer skull boundaries and scalp surface, were generated using
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CURRYS5 for windows (Compumedics, Inc., El Paso, TX) from structural MRI data.
As stated in the previous section, for all studies, MNI standard brain was utilized. The
relative conductivity values of the brain, skull and scalp were assumed to be 1, 1/16
and 1, respectively [32, 33]. Coordinate transformation and electrode positioning

were performed using in-house software ‘BioEST’, developed in the Computational

Neuroengineering Laboratory of Hanyang University (http://cone.hanyang.ac.kr).

Since synchronously activated pyramidal cortical neurons, which are located
perpendicularly on the cortical surface, are widely believed to be the main EEG and
MEG generators, many recent studies have adopted this physiological phenomenon as
a basic anatomical constraint in EEG or MEG source imaging [34-37]. The source
imaging with such an anatomical constraint, which has often been called cortically
distributed source model or cortical source imaging, resulted in the elimination of
spurious sources [34] as well as the reduction of crosstalk distribution [38], compared

to conventional volume based imaging techniques.

To impose the anatomical constraint, many dipolar sources are placed on the
cortical surface extracted and tessellated from structural MRI data. Although
development of medical image processing and high-resolution structural MRI enabled
us to obtain a high resolution cortical surface with sub-millimeter modeling errors
[39], it is computationally inefficient to use whole cortical surface vertices for the

source reconstruction purpose because of the increased underdetermined relationship
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between the limited numbers of sensors and the larger numbers of source locations.
Therefore, to reduce the number of possible cortical source locations, we first inflated
the cortical surface [40] and generated a down-sampled epi-cortical surface. For the
extraction and tessellation of the cortical surface models, we applied Brain Suite

developed in the University of Southern California, CA, USA [41].

In the present study, about 1000 vertices were down-sampled from more than
400,000 original cortical vertices. Figure 3.2 shows the processes for generating the
cortical source space from standard brain MRI data. Figure 3.2(a) and (b) show the
original and inflated cortical surfaces, respectively. Figure 3.2(c) shows down-
sampled cortical surface on which equivalent dipole sources are placed and Figure
3.2(d) shows the complete boundary element models on which 99 electrodes are
attached. Since we used the inflated cortical surface model as the source space, the

source orientation constraint was not imposed.
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Figure 3.2. Generation of cortical source space and boundary element model: (a) original
tessellated cortical surface; (b) inflated cortical surface; (c) down-sampled cortical surface
model; (d) boundary element model with 99 electrodes. The colors in (a) and (b) represent the
distribution of sulci and gyri.

To reconstruct the cortically distributed brain sources, we used a linear estimation

approach [14, 37]. The expression for the inverse operator W is

W =RA" (ARA" + °C)*, (3.1)
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Where A is a lead field matrix which represents the impulse response of each
source vector component at every measurement site [42], R is a source covariance
matrix representing the inter-source relationship, which is hardly estimated without
using intracranial recordings and C is a nose covariance matrix. If we assume that
both R and C are scalar multiples of the identity matrix, this approach becomes
identical to minimum norm estimation [43]. In this study, the source covariance
matrix R was assumed to be a diagonal matrix, which means that we ignored the
relationships between neighboring sources. The lead field weightings were imposed
on the lead filed matrix to compensate for the sensitivity difference according to the

source depth [44]. In this study, the background environmental noise acquired before
attaching electrodes on the subject’s scalp was used to calculate C [14]. A* is a

regularization parameter and determined systematically using the following equation

[14]:

2 trace (ARA")
trace (C)SNR*

(3.2)

where trace(-) and SNR represent the sum of diagonal terms and the signal-to-
noise ratio, respectively. The signal-to-noise ratio could be determined after some

preliminary recordings of continuous EEG signals.
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3.1.3. Processing and Visualization

The processing and visualization part is composed of three independent programs—
the FFT program, the frequency domain minimum norm estimation (FD-MNE) solver

and the visualization program— which are executed one after another at each time

slice. At a certain time slice, time domain signals in 2" data samples before the time
slice are transformed into frequency domain signals using a self-executable, in-house

FFT program coded based on Netlib library routines (http://www.netlib.org). The

number N could be modified by users (e.g. N =7, 8,9 and 10) according to their
purpose of using the monitoring system. In the present study, we used N =7 for all
simulation and pilot studies. Once a specific frequency band is determined, the FFT
program stores real and imaginary components at all discrete frequencies within the

predetermined frequency band to an ASCII data file. Then, the FD-MNE solver is

executed and load the Fourier transformed signals B(f.)s, and B(f,),, .

i=12,..,n, where Re and Im represent the real and imaginary parts of the
Fourier transformed signals, respectively, as well as the pre-saved inverse operator

W . The real part q;(f;)g and imaginary part q;(f;),, of the current source

vector at the jth cortical vertex with respect to the frequency of interest f, can
then be evaluated by multiplying the corresponding rows (3j—2, 3j—1 and 3jth

rows) in W with the Fourier transformed signals B(f,)s, and B(f;),,. Finally,
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the absolute current source power at the jth cortical vertex with respect to the

frequency band of interest is calculated as

Q=20 () oy (£, (33)

This process is equivalent to the conventional frequency domain minimum current
estimates (FD-MCEs) proposed by Jenson and Vanni [1]. While the conventional FD-
MCEs have used L1 norm-based nonlinear optimization, the FD-MNE approach used
in the present study is based on L2 norm-based linear optimization. We adopted the
FD-MNE approach since L1 norm based optimization requires time-consuming

nonlinear iteration, which is inadequate for the real-time monitoring system.

After the current source power at every cortical vertex is calculated, a 3D
visualization program is executed and visualizes the resultant source distribution at a
given frequency band. The visualization program named MeshViewer, which was
coded with visual C++ under an OpenGL environment, can visualize instantaneous

and/or averaged source power changes in real-time from any 3D viewpoints.
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3.2. Possibility of the Real-time Cortical Rhythmic Activity

Monitoring System: a Preliminary Simulation Study

3.2.1. Simulation Setups and Materials

For the verification of the suggested real-time cortical activation monitoring
system, offline simulations which perfectly simulated the suggested system were
conducted. Four sets of artifact-free, eye-closed, resting EEG data acquired from two
male dementia patients and two normal male subjects were used to show the
possibility of the suggested system. The experimental data were acquired in the
Department of Neuropsychiatry on Inje University llsan-Paik Hospital, Korea.
Written informed consent was obtained from the subjects or their close relatives. The
control subjects had no history of neurological, psychiatric or other severe diseases.
The patients had no history of stroke, head trauma or any other neurological diseases
except gradual decline of cognitive functions and memory. The number of electrodes
used for the recording was 18 (FP1, F3, C3, P3, Fp2, F4, C4, P4, F7, T7, P7, O1, F8,
T8, P8, 02, T1, and T2) and the sampling frequency was 250 Hz. Since the individual
subject’s SMRI data were not available then, a standard cortex-head model extracted
from MNI brain atlas was utilized. For more realistic simulations, the 20 s EEG data
were stored preliminarily in a computer memory and were transferred to a signal

variable array, one after another at every 4 ms. At a specific time slice, time domain

signals in 2" data samples before the time slice are transformed into frequency
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domain signals using the FFT program. We used N =7 and updated the cortical

activation maps at every 500 ms (2 image frames s™). As described before, the linear
inverse operator W in (3.1) was preliminarily constructed and stored in the
computer. Since we had already constructed the standard cortex-head models, the
time required for the construction of the inverse operator was less than 3 min. The
simulation study was performed in an Intel® Pentium4-3.4 GHz personal computer

system with 1 GB memory.

3.2.2. Results of the Simulation Study

Figure 3.3(a) and 3.3(b) show the cortical alpha activity (8 to 13 Hz) changes in
the dementia patients. The figures show cortical activation maps averaged over 20 s
as well as instantaneous screenshots of the cortical activity maps at 1, 2 and 3 s. The
two patients showed similar activation patterns in both instantaneous and averaged
cortical activation maps. Figures 3.4(a) and 3.4(b) show the cortical alpha activity
changes in the normal subjects, acquired under the same conditions. Both normal
subjects showed very typical cortical activations which are located around the
occipital lobe [22, 23], whereas the dementia patients showed additional strong
cortical activations around the right temporal and frontal lobes and relatively weak
additional activations around the left temporal lobe. Such a clear difference in the

cortical activation maps of dementia and normal subjects not only shows that the
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suggested real-time cortical activation monitoring system is working well but also
demonstrates that the monitoring system can be applied to real-time diagnosis of

dementia patients.

Time | Left Hemisphere | Right Hemisphere Time | LeftHemisphere | Right Hemisphere

I

‘ ' low |low

(a) (b)

Figure 3.3. Cortical alpha (8-13 Hz) activity changes of dementia patients during a resting

EEG recording: (a) dementia patient #1; (b) dementia patient #2.
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Figure 3.4. Cortical alpha (8-13 Hz) activity changes of normal subjects during a resting EEG
recording: (a) control subject #1; (b) control subject #2.

The most important issue in realizing the real-time cortical activation monitoring
system is to reduce the delay time. Short delay time implies that one can get more
cortical activation images during limited acquisition time. In the present simulation

study, therefore, some factors influencing the delay time were investigated.

The simulation study was performed in an Intel® Pentium4-3.4 GHz personal

computer system with 1 GB memory. The operating system was Microsoft Window

XP® and the main program including FFT and FD-MNE was executed in the
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command consol window. The independent visualization software was executed at
the first execution and just refreshed at each image frame without closing or opening.
During the test, no applications, including virus vaccine, were executed to reduce the
system load. For the measurement of the delay time, an intrinsic Fortran function
‘date_and_time()’ was used. The FFT program and the main FD-MNE program were
executed repeatedly and each execution time was averaged over 100 times. We could
obtain minimal delay time when 128 data samples were used and the source
distribution was reconstructed at a single frequency. Then, the execution of the FFT
program and the FD-MNE took 43.9 and 94.5 ms, respectively. The maximal
computational load was required in the present study when we repeated source
imaging with 1024 data samples within the whole frequency band of interest (0-30
Hz). Then, the execution times for FFT and FD-MNE were measured as 59.5 and 128
ms, respectively. When considering about 8-times bigger data size and 123-times
more matrix multiplications, the increment of delay time was not significant. The
delay time was monotonically increased by the increment of the number of data
samples or the number of frequencies of interest. The intrinsic delay time for each
program was originated from the CPU time needed for executing programs and time
for loading and saving data files. The average time taken to execute the visualization
program was 15 ms. Thus, this analysis points out that cortical rhythmic source
changes can be monitored at the cortical level with a maximal delay time of about 200

ms when 18 channel EEG data are analyzed.
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For comparison, we also repeated the source imaging with 1024 data samples
within the whole frequency band of interest (0-30 Hz), for 32-channel EEG data
acquired from a different EEG recording system (WEEG-32, Laxtha Inc., Korea).
Then, the execution times for FFT and FD-MNE were measured to be 62.7 and 137

ms, respectively, suggesting that the increment of recording channels does not highly

affect the overall delay time.
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3.3. A First Pilot System: Experimental Results

The first pilot system for the EEG-based real-time cortical rhythmic activity
monitoring was implemented at the Bioelectromagnetics and Neuroimaging
Laboratory of Yonsei University. The EEG was recorded at 16 electrode locations
(Fpz, F3, C3, P3, F4, C4, P4, T7, P7, O1, Cz, T8, P8, O2, T1, and T2) using the
WEEG-32 EEG acquisition system (Laxtha Inc., Daejeon, Korea). The electrodes
were attached on the subject’s scalp according to the extended 10-20 system without
using an electrode cap. The EEG was sampled at 256 Hz and the low- and high-pass
filters were set at 64 and 0.5 Hz cutoffs, respectively. The recorded EEG signals were
transferred to an operating computer in real-time and the values were stored in a two-
dimensional array variable. The acquisition program was coded in the laboratory
using C++. Since the individual subject’s sMRI data were not available then, a
standard cortex-head model extracted from MNI standard brain atlas was utilized to
construct the inverse operator. At a specific time slice, time domain signals in 128
data samples before the time slice are transformed into frequency domain signals
using the FFT program. We updated the cortical activation maps at every 250 ms (4

image frames s%).

Two male subjects (YJ and JJ, 26 and 24 years old respectively) volunteered to

participate in the test experiments in exchange for monetary compensation. Written
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informed consent was obtained from the subjects, who had no history of neurological,

psychiatric or other severe diseases.

The first subject (YJ) was asked to be relaxed, sitting on a comfortable seat. After
the experimental setup is ready, he opened or closed his eyes according to the
experimenter’s instructions. Figure 3.5 shows a photograph of the first experiment,
where the EEG acquisition system is hidden, as well as two screenshots of the cortical
alpha activity (8 to 13 Hz) changes by the subject’s eye closing. When the subject
closed his eyes, a gradual increment of cortical activations around the occipital lobe

was clearly observed, coinciding well with the results of previous studies [22, 23].

Bluzh

lhn

eyes open eves closed

Figure 3.5. Cortical alpha (8-13 Hz) activity changes of subject YJ: The left figure shows a
photograph of the experiment; the center and right figures show the alpha activity changes
when the subject opened and closed his eyes, respectively. Cortical activity maps are viewed
from top. ‘L’ and ‘R’ represent ‘left’ and ‘right’, respectively. Values in the source images
were normalized to a predetermined threshold which was obtained from some preliminary

experiments.
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The other subject (JJ) was asked to slowly raise his right or left arms according to
the experimenter’s instructions, while opening his eyes. Figure 3.6 shows a
photograph of the second experiment as well as two screenshots of the cortical mu
activity (8-12 Hz) changes by the subject’s arm movements. An ipsilateral activity
around motor cortex was observed, which is consistent with previous reports [45, 56].
The results of both experimental studies coincided well with known physiological
phenomena, demonstrating the feasibility of the pilot real-time cortical rhythmic

activity monitoring system.

left hand movement Raght hand movement

Figure 3.6. Cortical alpha (8-12 Hz) activity changes of subject JJ: The left figure shows a
photograph of the experiment; the center and right figures show the mu activity changes when
the subject raised his left and right hand, respectively. Cortical activity maps are viewed from
top. ‘L’ and ‘R’ represent ‘left’ and ‘right’, respectively. Values in the source images were
normalized to a predetermined threshold which was obtained from some preliminary

experiments.
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3.4. Discussions and Summary

In the present study, we implemented a real-time cortical rhythmic activity
monitoring system which can monitor spatiotemporal changes of cortical rhythmic
activity on a subject’s cortical surface with high temporal resolution. In the present
system, a frequency domain inverse operator was constructed a priori and the spectral
current power at each cortical vertex was then calculated for the Fourier transforms of
successive sections of continuous data. An offline simulation study as well as
experimental validation studies demonstrated that cortical rhythmic source changes

can be monitored at the cortical level with a maximal delay time of about 200 ms.

For the simulation study, we have used four sets of artifact-free, eye-closed,
resting EEG data acquired from two dementia patients and two normal male subjects
to show the possibility of the suggested system. The preliminary offline analysis
yielded promising results, suggesting that the real-time cortical activation monitoring
system can be potentially used for the real-time diagnosis of psychiatric brain
diseases such as dementia and schizophrenia. Application of the ‘online’ cortical
activity monitoring system to the real-time diagnosis of psychiatric brain diseases will
be performed in our future studies. For the experimental study, cortical alpha rhythm
changes by closing eyes and cortical mu rhythm changes by arm movements were

observed, which were consistent with previous reports.

-34 -



Another possible application of the real-time cortical activation monitoring system
is the EEG-based brain computer interface (BCI) system. Although such a system has
not been realized yet, some offline simulation studies already demonstrated that the
use of inverse solutions could enhance the classification capability of the EEG-based
BCI system [45-47]. As already introduced in the introduction section, the real-time
cortical activation monitoring system can be applied to neurofeedback systems in
order to enhance the efficiency of detecting the current mental status of a subject.
Moreover, the suggested real-time cortical activation monitoring system can be used
for online monitoring of EEG experiments regarding various cognitive and functional
brain studies. The experimenter can modify the experimental protocols without

stopping the on-going measurement with the aid of the suggested system.
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Chapter 4: Neurofeedback-based Motor Imagery

Training for Brain-Computer Interface (BCI)

In this chapter, the author introduces an effective motor imagery training system
for brain-computer interface (BCI) as one of the applications of the real-time cortical

rhythmic activity monitoring system described in Chapter 3.

4.1. Research Background

There are a great numbers of disabled individuals who cannot freely move or
control specific parts of their body because of serious neurological diseases such as
amyotrophic lateral sclerosis (ALS), brainstem stroke, and so on. Brain-computer
interfaces (BCIs) can help them to drive and control external devices using only their

brain activity, without the need for physical body movements [48].
Diverse types of electrical brain activities have been wused to realize

electroencephalography (EEG)-based BCI systems, e.g., mu rhythm [45, 49-52], slow

cortical potential [53], event-related p300 [54, 55], and steady-state visual evoked
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potential [56, 57]. Among these activities, the one most widely used to monitor brain

activities for BCI applications has been the mu ( z ) rhythm, which is related to motor

actions [49, 58-60]. The mu rhythm can be voluntarily modulated by individuals

unlike event related brain activities.

Motor imagery, defined as mental simulation of a kinesthetic movement [16, 17],
can also modulate mu rhythm activities in the sensorimotor cortex without any
physical movements of the body. It has been well established that the imagination of
each left and right hand movement results in event-related desynchronizaion (ERD)
of mu-band power in the contralateral sensorimotor areas, which is also the case for
physical hand movements [61, 62]. Brain activities modulated by motor imagery of
either the left or right hand are regarded as good features for BCls, because such
activities are readily producible and show consistent EEG patterns on the
sensorimotor cortical areas [63, 64]. Moreover, thanks to the contralateral localization
of the oscillatory activity, the activities evoked from left and right hand motor
imagery are, comparatively, readily discriminated [45, 65, 66]. However, many
individuals have difficulty in getting used to the feel of motor imagery, since most
people do not easily recognize how they can have a concrete feeling of motor imagery
and tend to imagine the images of moving their hands or legs instead [67]. Therefore,
one of the challenging issues in the EEG-based BCI studies has been how one can

efficiently train individuals to perform motor imagery tasks.

-37-



Over the last decade, various feedback methods for motor imagery training have
been proposed, most of which are based on visual [49, 52, 68] or auditory feedbacks
[69, 70]. For example, suppose that a participant is instructed to perform a motor
imagery task involving their left or right hand. Then, reference features of brain
activities evoked from the left and right hand motor imagery are extracted and the
participants’ intentions are classified by comparing the reference features with the
current features. The participants are then provided with visual or auditory feedback
according to the classification results. However, some participants cannot generate
more useful features in their sensorimotor cortex after motor imagery training
processes, compared to the features extracted before the training [49, 55, 70]. One
typical reason to explain the wrong motor imagery is that participants tend to imagine
visual images of the movement (visual-motor imagery: VMI), which generates a type
of brain activity pattern completely different from that of actual motor imagery [67].
Therefore, even when participants attempt the same motor imagery task, individual
differences are often observed, because the results are dependent on their feelings and

perception on the motor imagery task, as described by Annett [71].

The goal of the present study was to develop a motor imagery training system that
can help individuals easily get the feel of motor imagery. To this end, the author
utilized the real-time cortical rhythmic activity monitoring system introduced in
Chapter 3, and participants trained themselves to be accustomed to motor imagery

while they were monitoring their time-varying cortical activation maps in real-time.
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4.2. Materials and Methods

Our experiments consisted of two sessions: motor imagery training session and
EEG recording sessions. In the motor imagery training session, the participants were
trying to increase their mu rhythm activations around the sensorimotor cortex while
they were watching their cortical activation maps through the real-time rhythmic
activity monitoring system. Two EEG recordings were performed each before and
after the motor imagery training session to demonstrate the effect of our

neurofeedback-based motor imagery training system.

4.2.1. Participants and Environment of Experiments

Ten healthy volunteers (all male, all right handed, age 25.1 £ 1.97 years) took part
in this study. None of the participants had a previous history of neurological,
psychiatric, or other server diseases that may otherwise influence the experimental
results. We gave a fully detailed summary of the experimental procedures and
protocols to each of the participants before the experiment. All participants gave
written consent and received adequate reimbursement for their participation. The
study protocol was approved by the Institutional Review Board (IRB) committee of
Yonsei University in Korea. None of the participants had previous background
knowledge or experience with BCls, nor had they ever participated in EEG

experiment. All experiments were conducted in the Bioelectromagnetics and
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Neuroimaging Laboratory of Yonsei University.

Electrodes were attached on the participants’ scalp according to the extended
international 10-20 system. In the motor imagery training session, the EEG signals
were acquired at 16 electrode locations (AF3, FC3, C3, CP3, PO3, FCz, Cz, CPz,
AF4, FC4, C4, CP4, PO4, T7, T8, and Oz) using a multi-channel EEG acquisition
system (WEEG-32, Laxtha Inc., Daejeon, Korea) in a dimly lit, soundproof room. In
the EEG recording sessions, the EEG signals were recorded at 15 electrode locations
(Cz, C1, C2, C3, C4, CPz, CP1, CP2, CP3, CP4, FCz, FC1, FC2, FC3, and FC4)

covering the sensorimotor area, using the same recording system. The sampling rate

was set at 256 Hz in all experiments with a sensitivity of 7 uyV. Facial EMG and

EOG were also recorded during the EEG recordings and used as references in artifact

rejection process.

We used different electrode configurations for the motor imagery training and the
EEG recording sessions. In the training session, we used 16 electrodes broadly
attached on the participants’ scalp because we needed to monitor their brain activity
patterns in the whole brain areas including the sensorimotor cortex. On the other hand,
in the EEG recording sessions, 15 electrodes were focally attached around their
sensorimotor cortex as we were only interested in EEG signals related with motor

functions.
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4.2.2. Motor Imagery Training

During the motor imagery training sessions five volunteers (EK, GS, DK, KS, and
JN) were made to sit on a comfortable armchair facing a 17" monitor and were
presented with time-varying maps of their cortical rhythmic activity that were updated
every 350ms while they were attempting either left or right hand motor imagery.
Figure 4.1 shows screenshots of the experiment, where the subject EK activated his
motor cortex without any physical movements of his hands (see Supplementary

movie file, http://www.sciencedirect.com/science/article/pii/S0165027009000454).

Before the training, we explained to the participants the locations of the sensorimotor
cortex and provided them with a movie that explained the expected cortical activation
changes. The participants were then instructed to continuously attempt to generate
cortical activations around the sensorimotor cortex. In the beginning of the training
session, all participants failed to generate brain activities around the sensorimotor
cortex; however, through repetitive trials, all participants succeeded in generating
brain activity on their sensorimotor cortex without any physical movements.

Participants were given 30 min for the motor imagery training.
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Figure 4.1. Screenshots of real-time mu rhythm activity (8-12 Hz) monitoring. The participant
(EK) was instructed to continuously attempt to generate cortical activations around the
sensorimotor cortex by imagining his left or right hand movement (see Supplementary movie,
http://www.sciencedirect.com/science/article/pii/S0165027009000454). A cortical activation

map at rest state (left) and when the participant was performing motor imagery (right).

4.2.3. EEG Data Acquisition

EEG data were acquired before and after the training session to confirm the effect
of our motor imagery training system. The whole experiments including the
neurofeedback training and the two EEG recordings were conducted on the same day.

For the control group participants (JI, BK, HJ, Tl and SJ), EEG data were recorded
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twice with a 30-min break time. Figure 4.2 shows the experimental paradigm used for
the EEG recordings in the present study. First, we used a gray (RGB: 132, 132, 132)
background, and after presenting a blank screen for 3 s, a circle with a black-and-
white checkerboard pattern appeared randomly on either the left or right side of the
screen for next 0.25 s, indicating which hand movement the participant has to imagine.
After a 1 s preparation time (blank screen), the letter ‘X appeared at the center of the
screen for 0.25 s, at which time, the participant was asked to perform either the left or
right hand motor imagery as indicated. This procedure was repeated 180 times: when
90 trials were performed for the right hand motor imagery, the other 90 trials were

performed for the left hand motor imagery.

3.0s 0.25s 1.0s 0.25s 2.0s
s Data P
start Acquisition end
(3.0s)

Figure 4.2. The experimental paradigm used for EEG recording: after presenting a blank
screen for 3 s, a circle with a black-and-white checkerboard pattern appeared randomly on
either the left or right side of the screen for the next 0.25 s, indicating which hand movement
the participant was to imagine. After a 1 s preparation time (blank screen), the letter ‘X’
appeared at the center of the screen and lasted for 0.25 s. At that time, the participant was to

-43 -



being performing either left or right hand motor imagery. The time period used for the data

analysis (3.0 s) is depicted in the figure.
To confirm if the participants physically moved their hands, we also recorded an

electromyogram (EMG) from electrodes attached on the participant’s both forearms
[72] during the EEG recording sessions. Figure 4.3 shows the changes of EMG
powers recorded both before and while the participants of the trained group were
performing the motor imagery task. No significant difference between the two EMG
data sets (less than 10% variations) were found for all five participants, indicating that
they did not move their hands when they were attempting to perform the motor

imagery task.
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Figure 4.3. Changes in EMG power recorded at both of the participants’ forearms before and
during performing the motor imagery task. No statistically significant difference between the
two EMG data sets (two-tailed paired t-test, p < 0.05) was found for all five participants of the
trained group, indicating that the participants did not move their hands when they were
attempting to perform the motor imagery task. A, B, C, D, and E indicate the EMG power
changes of each participant, EK, GS, DK, KS and JN, respectively. In the figure, ‘before’ and

‘during’ represent ‘before the motor imagery’ and “during the motor imagery’, respectively.
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4.2.4. EEG Data Analysis

We used the 3.0 s time segment marked in Figure 4.2 for the data analysis because
the participant might start the motor imagery before the letter ‘X’ appeared [45, 65].
After data acquisition, the raw EEG signals were converted to a common average
reference (CAR) to compensate for common noise components. The CAR method has
been shown to produce good performance in noise reduction along with surface
Laplacian filtering [73, 74]. EEG epochs highly contaminated by facial muscle
movements were rejected manually by inspecting the simultaneously recorded facial
EMG signals. EOG artifacts were not removed since the influence of eye blinks or
eye-ball movements upon the EEG channels around the sensorimotor area was not

significant.

For the time-frequency analysis we used forth order Butter-worth band-pass filters
in which the span of the frequency bands was 2 Hz with a 50% overlapping. The
selected frequency bands were 6-30 Hz, including mu and beta bands, which are
related to limb movements. After calculating the envelopes of the signals at each
frequency bin, a moving average filter was applied to the time domain signals at 400
ms intervals (50% overlapping) to smooth the envelopes. After all, the frequency
band and time series were evenly divided into 23 frequency bins and 14 time

segments, respectively. We then obtained a time-frequency pattern map by integrating
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the enveloped signals at each time segment and frequency bin. Two-tailed t-tests were
then applied to every possible combination of frequency bins, time segments, and
electrodes in order to find combinations that produced significant differences (p <

0.05) between left and right hand motor imagery.

To evaluate the classification accuracy, the two time-frequency combinations that
had the smallest p-value in the time-frequency pattern maps were selected for each
participant. Among the 180 trials (90 each for right and left hand motor imagery), 90
trials (45 each for right and left hand motor imagery) were randomly selected and
used as a training set, while the remaining motor imagery trails were used as a test set
for calculating the classification accuracy. For each trial of the test set, Euclidean
distances from the two average feature vectors computed on the reference data sets
(45 right and 45 left hand motor imagery trials each) were compared and the trial was

assigned to a class based on whichever had the shorter distance.
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4.3. Results

4.3.1. Changes in Brain Activity after Motor Imagery Training

Figure 4.4 shows the time-frequency pattern maps for the trained group
participants, where the black colored blocks represent time-frequency combinations
that showed significant differences (p < 0.05) between left and right hand motor
imagery. As seen in the figures, where two featured electrodes were selected for each
participant, the time-frequency pattern maps did not show any distinguished features
before the training session. On the contrary, we observed that the number of the
‘black’ blocks was increased and the blocks were clustered around the sensorimotor

rhythm (around 10 and 20 Hz) after the training session.
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Figure 4.4. Time-frequency pattern maps at the two electrode locations. The black colored
blocks represent the time-frequency combinations that showed statistically significant
difference (p < 0.05) between left and right motor imagery tasks. The time-frequency pattern
maps did not show any distinguishable features before the training session, while the number
of the ‘black’ blocks increased and the blocks were clustered around the mu rhythm (around
10 and 20 Hz) after the training session. ‘Before’ and ‘after’ represent the time-frequency
patterns calculated before the training session and those calculated after the training session,

respectively.
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Table 1 shows the number of time-frequency combinations that showed significant
difference between left and right hand motor imagery, demonstrating that meaningful
changes of brain activities occurred in all participants of the trained group after the
training session. On the other hand, for the control group, we could not observe any
consistent changes in the number of significant time-frequency combinations between
the first and second EEG data sets. From these results, we confirmed that it was
possible to train participants to generate specific brain activity pattern on the

sensorimotor cortex using the proposed system.

Table 4.1. The total number of time-frequency combinations showing a significant difference

between left and right hand motor imagery.

Trained Group Control Group
Participant  Before After Participant ~ First Second
EK 220 300 JI 219 207
GS 280 308 BK 269 217
DK 183 275 HJ 379 384
KS 297 446 TI 508 312
JN 275 349 SJ 412 547

‘Before’ and ‘After’ represent the number of significant features obtainable before the motor
imagery training and after the motor imagery training, respectively. ‘First’ and ‘Second’
represent the number of significant features obtainable in the first and second EEG recording

sessions, respectively.

-50 -



4.3.2. Classification Accuracy before and after the Motor Imagery

Training

We also investigated the changes in classification accuracy before and after motor
imagery training. Table 4.2 shows the accuracy of classifying left and right hand
motor imagery of all participants. Since small p-values in the time-frequency pattern
maps meant that there were significant differences between the left and right hand
motor imagery, we selected two time-frequency combinations having smallest p-
values as the features for classifying left and right hand motor imagery. We found that
most of the extracted features corresponded to the mu rhythm which had been used in
the neurofeedback training session (frequency bin and electrode in each participant of
the trained group— EK: 11-13 Hz in FC1 and 11-13 Hz in C4; GS: 10-12 Hz in FC1
and 9-11 Hz in FC2; DK: 13-15 Hz in FC4 and 13-15 Hz in C2; KS: 12-14 Hz in

C3and 11-13 Hz in C2; JN: 7-9 Hz in C2 and 9-11 Hz in CP3).

A simple Euclidean distance algorithm was then used to estimate classification
accuracy. Analysis of the results indicated that the classification accuracy was
enhanced considerably for all five individuals in the trained group after the motor
imagery training; while the analysis results for the control EEG data set did not show
consistent increment in the classification accuracy, demonstrating that the proposed

motor imagery training system could be used to enhance the performance of motor-
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imagery-based BCI systems. These results have a thread of connection with those of
the previous time-frequency analysis, in that the individuals of the trained group were
able to generate distinguishable brain activity patterns between the left and right hand

motor imagery after a short training session that lasted for 30 min.

To test if the number of features affects the computed classification accuracy, we
applied different numbers of features to the same classification algorithm (from 3 to
5). The use of more features enhanced the classification accuracy in most cases, but

the difference was not significant and did not affect the findings of our study.

Table 4.2. Changes in classification accuracy before and after motor imagery training (or first
and second EEG recordings in control group). We first selected the two time-frequency
combinations that had the smallest p-values as the features for classifying left and right hand
motor imagery. A Euclidean distance algorithm was then used to estimate the classification

accuracy.

Trained Group Control Group

Participant Before (%) After (%) Participant  First (%)  Second (%)

EK 60 77 JI 57 52
GS 62 67 BK 60 54
DK 59 72 HJ 73 70
KS 58 72 TI 67 75
JN 55 69 SJ 64 66
Mean 58.8 714 Mean 64.2 63.4
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4.4. Discussions and Summary

For motor imagery training we used a real-time cortical rhythmic activity
monitoring system [75] that visualizes source activation maps on the cortical surface,
rather than the scalp surface, to show the subjects their time-varying brain activities.
The main reason why we chose to use the “cortical’ activity monitoring system was
that EEG topographies cannot be directly attributed to the underlying cortical regions.
In BCI applications, different types of EEG topographies can be observed even for
identical motor imagery tasks [76] because the EEG topography is dependent on
neuronal source orientations. Since most participants of motor imagery experiments
are not familiar with EEG topographies, the use of inverse solutions could help them

easily perform motor imagery training.

Many studies have reported the importance and usefulness of motor imagery in
various applications such as learning complex motor skills in sports [77] and re-
learning motor skills in clinical applications [78]. Ever since Jastrow’s first study of
mental simulation [79], motor imagery, a kind of mental process, has been widely
used for learning motor skills and enhancing players’ performance in sports science.
Indeed, mental imagery, including motor imagery, has been demonstrated to be a
central factor for motor skill acquisition and execution [77]. Motor imagery has been

also been used to diagnose and rehabilitate brain-injured patients [80, 81]. For
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example, Tamir et al. [81] applied motor imagery to patients with Parkinson’s disease
for improving their motor function, and found that the combination of motor imagery
and physical practice is more effective than conventional physical training methods,
especially for reducing bradykinesia. Although in the present study we applied our
proposed motor imagery training system to a noninvasive BCI application, we expect
that it can be applied to other applications, including those described above, in order
to help the individuals get the feel of the motor imagery tasks and consequently,

thereby enhancing efficiency of the relevant studies.

The average classification accuracy in the trained group was 71.4 % after the
motor imagery training, which, although relatively low compared to values reported
in the literatures concerning similar motor imagery classification [45, 65, 68, 82] was
still thought to be an acceptable level for practical BCI applications according to
Perelmouter and Birbaumer’s report [83]. Nonetheless, the increment of the
classification accuracy was thought to be meaningful enough to confirm the effect of
our neurofeedback-based motor imagery training, considering that the main purpose
of the classification was not to obtain a high classification accuracy, but rather to
show how efficiently we were able to train individuals, who were unable to have a

concrete feeling of motor imagery, to perform the motor imagery task.

In the present study, we focused on training motor imagery of both hands.

According to the literature, imagery of feet and tongue (or mouth) movements can be
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also used as effectors in EEG-based BCI systems [51]. Further, it has been reported
that the mu rhythm is blocked or desynchronized at sensorimotor cortex during hand
movement imagery, whereas it increases during foot or tongue motor imagery [51]. In
the same study, it was also reported that EEGs recorded during left hand, right hand,
foot, and tongue motor imagery are classifiable. Based on the previous report, it
seems that individuals should be able generate distinguishable brain activity patterns
of four or more effectors using our motor imagery training system, an exciting

prospect that we will focus on in future studies.

In our neurofeedback-based motor imagery training system, we confined mu
rhythm to 8-12 Hz frequency band, but the frequency band of mu rhythm nay vary
from on individuals to another. Fortunately, in our experimental study, all participants
succeeded in generating brain activity around their sensorimotor cortex in the
neurofeedback training session with the typical frequency band. However, if the
training session fails, the experimenter can adjust the frequency band (e.g. 13-15 Hz)

and repeat training session.

In the present study, we confirmed the effect of our neurofeedback-based motor
imagery training system by comparing two EEG data sets each recorded with a cue-
based (or synchronized) BCI paradigm before and after motor imagery training. Since
asynchronous (or self-paced) BCI systems are becoming popular in recent years, we

will apply our motor imagery training system to such systems in our future studies. In
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addition, we are planning to compare our training method with other conventional

training methods in the near future.

In summary, we developed a type of neurofeedback systems that can help
individuals to get the feel of motor imagery by presenting them with real-time cortical
activation maps on their sensorimotor cortex. Importantly, all of the study participants
succeeded in generating brain activation around the sensorimotor cortex during the
training session. The EEG data recorded after the motor imagery training showed
significant enhancement in both the number of meaningful features and the
classification accuracy, demonstrating the efficiency of our motor imagery training
system. Lastly, we expect that the proposed motor imagery training system will be
useful not only for BCI applications but also for functional brain mapping studies

relevant to motor imagery tasks.
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Chapter 5: An EEG-based Real-time Cortical

Functional Connectivity Imaging System

In this chapter, the author introduces a real-time cortical functional connectivity
imaging system that can monitor and trace dynamic changes in cortical functional
connectivity between different brain regions. Since the real-time functional
connectivity imaging system is based on the real-time cortical rhythmic activity
monitoring system introduced in Chapter 3, the concept of the real-time cortical
functional connectivity imaging system is nearly identical to the real-time cortical

rhythmic activity monitoring system, except for the 3D visualization part.

5.1. Research Background

Traditional neuroimaging studies have focused on either functional mapping of
brain areas or investigation of task-dependent changes in brain activities; however,
such studies can only provide a limited amount of information with respect to
underlying neuronal processes. Recently, an increasing number of neuroscientists

have become interested in describing the communications between different brain
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areas, since such information might be helpful for better understanding the functional
networks of cortical regions [84-90]. Generally, functional interactions among
different cortical areas, typically referred to as functional connectivity, can be
measured using linear or nonlinear analysis of time series extracted from various
brain imaging techniques such as functional magnetic resonance imaging (fMRI) [86],
near infrared spectroscopy (NIRS) [87], electroencephalography (EEG), and

magnetoencephalography (MEG) [84, 85, 88-90].

EEG and MEG are believed to be more suited for studying interactions among
brain areas at the level of cognitive processes due to their superior temporal
resolutions as compared to hemodynamics-based imaging modalities such as fMRI
and NIRS [84, 91]. Indeed, functional connectivity analyses based on scalp EEG and
MEG have been applied extensively to a variety of practical applications including
functional characterization of neuropsychiatric diseases[92-94], noninvasive
diagnosis of psychiatric diseases by quantifying global synchronization [95-97], and
investigation of functional networks associated with various cognitive processes [40,
98]. Further, freely available MATLAB toolboxes for the functional connectivity

analysis are widely available [98, 99].

At present, despite recent advances in technology, estimation of functional

connectivity from sensor level recordings has been met with severe criticism from

many neuroscientists, as these recordings can be corrupted by the effect of volume
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conduction (or field spread). Indeed, simulation studies have shown field spread can
lead to misinterpretation of connectivity estimates between some pairs of sensors [100]
because scalp potentials recorded from scalp EEG are not usually directly attributed
to the underlying cortical regions. However, recent developments in source imaging
techniques have made possible the ability to estimate temporal changes in underlying
cortical sources; functional connectivity can now be estimated at the cortical source
level [101, 102]. Therefore, the functional connectivity estimation at the cortical

source level has been gradually replacing sensor-level analyses.

To the best of our knowledge, however, real-time imaging of cortical functional
connectivity at the cortical source level has not been introduced, despite the rapid
developments in computational neuroimaging. Implementation of such a real-time
imaging of cortical functional connectivity may be a promising tool for practical
applications. For example, such a system could be used as an auxiliary diagnosis tool
to provide a prompt measure reflecting a subject’s brain responses to certain stimuli,
thereby helping patients with neuropsychiatric diseases such as dementia and
schizophrenia as well as their relatives to accept diagnostic results [103], since people
are apt to put more confidence in high-tech medical diagnostic devices than they are
in traditional paper-based diagnosis methods such as the mini-mental state
examination (MMSE) and positive and negative symptom scale (PANSS). Moreover,
the real-time cortical functional connectivity imaging system can be used for EEG

neurofeedback applications, as many researchers have been interested in monitoring
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dynamics of functional connectivity during neurofeedback treatment [104-107].
Potential applications of real-time imaging of cortical functional connectivity will be

discussed more in Sect. 5.4.
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5.2. Methods

5.2.1. Methods for Real-time Connectivity Imaging

The proposed cortical functional connectivity imaging system is based on the
EEG-based real-time cortical rhythmic activity monitoring system [75]. The real-time
cortical rhythmic activity monitoring system could visualize spatiotemporal changes
in cortical rhythmic activity of a specific frequency band on a subject’s cortical
surface, rather than the subject’s scalp surface, with a high temporal resolution.
Recently, the real-time imaging system was successfully applied to a neurofeedback-
based motor imagery training system that can help individuals to more easily become
accustomed to motor imagery tasks [108]. In this section, we will first introduce the
brief concepts of the real-time cortical rhythmic activity monitoring system and then
describe the technical details of the real-time cortical functional connectivity imaging

system.

The EEG-based real-time cortical rhythmic activity monitoring system [75]
consisted of pre-processing and real-time processing parts. In the pre-processing part,
a linear inverse operator was constructed in which the subject’s anatomical
information was reflected. Once the linear inverse operator had been constructed and
saved to a data-storage unit, spatiotemporal changes in cortical rhythmic activities

could be monitored in real-time by means of a unified processing scheme consisting
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of three independent programs, namely, a fast Fourier transform (FFT) program, a
frequency domain minimum norm estimation (FD-MNE) solver, and a 3D

visualization program, which were executed sequentially at each time slice.

The proposed cortical functional connectivity imaging system shares the same
platform with the real-time cortical rhythmic activity monitoring system except for
the 3D visualization program. Instead of calculating the absolute current source
power at cortical vertices with respect to the frequency band of interest, the proposed
system calculates instantaneous source power changes for each frequency of interest.

The detailed processes are described below.

To construct the cortically distributed brain sources, we used a linear estimation

approach. The expression for the inverse operator W was defined as

W =RA" (ARA" + 7’C) ™, (5.1)

where A is a lead field matrix, which represents impulse response of each source
vector component at every measurement site, R is a source covariance matrix
representing inter-source relationship, which is hardly estimated without using
intracranial recordings, and C is a noise covariance matrix [109]. If we assume that

both R and C are scalar multiples of identity matrix, this approach becomes
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identical to minimum norm estimation [43]. In this study, the source covariance
matrix R was assumed to be an identity matrix, which means that we ignored
relationships between neighboring sources. In this study, background environmental

noise acquired before attaching electrodes on the subject’s scalp was used to

calculated C [109]. A is a regularization parameter and was determined

systematically based on the signal-to-noise ratio [109].

Once a specific frequency band was determined, the FFT program calculated
real and imaginary components at all discrete frequencies within the predetermined
frequency band. Instead of using wavelet transformation [109], we used FFT to obtain

constant time-frequency resolution. Then, the FD-MNE solver was executed, which

loads the Fourier transformed signals B(f;)z, and B(f,),,, 1=1 2, ...,n, where
Re and Im represent the real and imaginary parts of the Fourier transformed
signals, respectively, as well as the pre-saved inverse operator W . The real part
q;(f;)g. and imaginary part q;(f;),, of current source vector at the j th cortical
vertex with respect to the frequency of interest f, can then be evaluated by
multiplying the corresponding rows (3j—2, 3j—-1,and 3jthrows)in W with the
Fourier transformed signals B(f;)g, and B(f;),,. We used the FD-MNE method

instead of time-domain MNE method to estimate the current source vectors because

under current computing environment maximally 20-30 source images could be
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calculated per every second due to the computational time required for the inverse
process [75]. Then, the instantaneous source power changes for a frequency (f,)at
the j th cortical vertex can be readily estimated by inverse Fourier transforming each

directional component (x, y, z-directional components) of d;(f;)g and q;(f;),,

into time-domain series (q, ;(t),q,;(t),q,;(t)) and calculating the power of the

source vector Q,(t,) as Q;(t)=0,,(t)*+a,;(t)*+0a,;{t)* at densely
discretized time samples (the subscript k represents k th time sample). After

evaluating the instantaneous source powers at every cortical vertex, the source powers

are averaged over all cortical vertices included in each ROl (see Figure 5.1 in
advance), yielding the instantaneous source power changes of each ROI, RQ,(t,),
where the subscript | represents the Ith ROI. For an ith frequency of interest,
f,, the functional connectivity between the mth and nth ROIs was evaluated by

simply calculating the correlation coefficient (CC) between the two signal power time

series extracted from the two ROIs, CC_  (f;). Finally, the CC values evaluated

for all possible pairs of ROIs were averaged over the frequency band of interest. ROI
pairs in which the connectivity exceeded a predetermined threshold CC value were

visualized as a straight line connecting the two ROIs (see Figure 5.2 in advance).
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5.2.2. EEG Recording Environments

Scalp EEG readings were recorded at 32 electrode locations (Cz, C3, T7, C4, T8,
Fz, F3, F7, F4, F8, AFz, AF7, ARS8, FP1, FP2, FC5, FC1, FC2, FC6, Pz, P7, P3, P4,
P8, CP5, CP1, CP2, CP6, 01, O2, PO3, and PO4) using a 32-channel EEG
acquisition system (WEEG-32, Laxhta Inc., Daejeon, Korea) in a dimly lit,
soundproof room. The electrodes were attached to the subject’s scalp according to the
extended 10-20 system without using an electrode cap. The ground electrode was
placed behind the left ear with the reference electrode on the opposite side. The EEG
signals was sampled at 512 Hz, and the low- and high-pass filters were set at 64 and
0.5 Hz cutoffs (12dB/octave), respectively, in all experiments. To implement the
‘real-time’ imaging system, we did not apply any time-consuming signal

preprocessing methods for noise/artifact removal to the input EEG signals.

5.2.3. Implementation of a Real-time Cortical Connectivity

Imaging System

In the present study, a standard brain atlas [110] provided by the Montreal
Neurological Institute (MNI) and a standard configuration of EEG electrodes were
utilized, since individual magnetic resonance imaging (MRI) data for the subjects

were not available. A first-order node-based boundary element method (BEM) was
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applied to construct a lead field matrix. In the preset study, three-layer tessellated
boundary surface, consisting of inner and outer skull boundaries and scalp surface,
were generated using CURRY6 for windows (Compumedics, Inc., El Paso, TX) from
the standard structural MRI data. The conductivity values of brain, skull, and scalp
were assumed to be 0.22, 0.014, 1.79 S/m, respectively [33, 111]. Coordinate
transformation and electrode positioning were performed using in-house software,

‘BioEST’ (http://cone.hanyang.ac.kr). For the extraction and tessellation of the

cortical surface models, we applied BrainSuite developed in the University of
Southern California, CA, USA [41]. To reduce the number of cortical surface [40]
and generated a down-sampled epi-cortical surface with approximately 1,000 cortical
vertices. Figure 5.1(a) shows the processes for the cortical source space, on which the
equivalent dipole sources were placed, from standard brain MRI data. Since we used
the smoothed cortical surface model as the source space, source orientation
constraints were not imposed. Figure 5.1(b) shows the 12 ROIls, of which the
locations and sizes were determined according to the following two criteria: (1) whole
brain regions have to be taken into account in order to be applicable to a variety of
experimental paradigms; and (2) the number of ROIs should not be too many for the
real-time processing. Considering the above conditions, we selected six ROIls on each
hemisphere: two ROIs in the frontal lobe, two ROIs in the temporal lobe, one ROI in
the parietal lobe, and one ROI in the occipital lobe. The main reason why we used
approximated and downsampled cortical surface as well as assumed relatively small

number of ROIs was that using realistic cortical surface model and many ROIs would
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increase the computational cost, thereby making the ‘real-time’ processing difficult.
Since the computer system is being developed very rapidly, we believe that more

realistic real-time connectivity imaging system would be available in the near future.

Figure 5.2 shows a snapshot of our test experiments. Dual LCD monitors were
connected to a high-performance personal computer system (Intel Core2-6300 1.86
GHz environment) and were separated with a partition not to disturb the participants’
attention. Visual stimuli were presented through an LCD monitor placed in front of
the participant. Cortical functional connectivity patterns as well as the on-going EEG
signals were visualized on the other LCD monitor. During the real-time imaging,
EEG signals were transferred to the operating computer in real-time, and the values
were stored in a two-dimensional array variable. At a specific time slice, time domain
signals in 256 data samples before the time slice were transformed into frequency
domain signals using FFT. After execution of the FD-MNE solver and connectivity
calculation module, ROI pairs whose connectivity exceeded a predetermined
threshold value were visualized as a straight blue line connecting the two ROIs that
were depicted as small red dots in the connectivity monitoring software (see Fig. 5.2).
The real-time cortical connectivity monitoring was designed to store every
instantaneous connectivity pattern as well as the stimulus onset times into the storage
unit. We updated the cortical connectivity maps 250 ms intervals (four image

frames/second).
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Figure 5.1. (a) Process of generating cortical source space: a high-resolution cortical surface
was smoothed and down-sampled for the real-time source imaging. (b) Locations of 12
regions of interest (ROIs): colors represent the ROI number (see the color bar on the right
side).
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Figure 5.2. A snapshot of a test experiment (left), and a screenshot of the real-time cortical
functional connectivity monitoring software (right): dual LCD monitors were connected to a
single computer system and were separated with a partition. The monitoring software can
visualize both the on-going EEG signals and the current connectivity patterns.
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5.3. Results

To verify the feasibility of the implemented system, we monitored the temporal
changes in cortical functional connectivity patterns while participants were
performing different tasks. We performed three test experiments: (Exp. 1) monitoring
gamma band cortical connectivity changes associated with structural face processing;
(Exp. 2) monitoring alpha and beta band connectivity changes during finger
movement; and (Exp. 3) monitoring theta band connectivity changes during working

memory task.

Six healthy volunteers (six males, all right handed, mean age 25.5 years; range
21-29 years) took part in the first experiment (Exp. 1) and three healthy volunteers
(three males, all right handed, mean age 26 years, range 24-28 years) participated in
the second and third experiments (Exp. 2 and Exp. 3). None of the participants had a
previous history of neurological, psychiatric, or other severe diseases that may
otherwise have influenced the experimental results. We gave a fully detailed
summary of the experimental procedures and protocols to each of the participants
before the experiment. The study protocol was approved by the Institutional Review

Board of Yonsei University, Korea.
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5.3.1. Gamma-band Cortical Connectivity Monitoring (Exp. 1)

In our first test experiment, we attempted to track temporal changes in cortical
functional connectivity patterns during structural face recognition. One hundred full
facial images of most famous Koreans (50 males and 50 females) were randomly

presented to the participants through a 17" LCD monitor. Original color pictures were

converted to gray-scale images with identical sizes and resolutions. The facial images
were randomly shuffled and were presented to the participants for 1 s. Every image
appeared only once throughout the whole experiment. The reason why we converted
the color images into gray-scale images was that the face images used for the present
study had various background colors and different chroma characteristics, which
might influence some ERP components such as P1, N1, and selection negativity,
according to the previous relevant studies [112-114]. Therefore, many EEG
experiments associated with face recognition have used gray-scale face images [115-

117].

The inter-stimulus interval (ISI) was set at as 5 s, during which only a gray
(RGB: 132, 132, 132) background was presented (see the Supplementary movie file,

http://www.springerlink.com/content/j077u4422281491a0/11517 2011 Article 791

ESM.html). Recordings were conducted in a single session consisting of 50 trials.

Thus, the entire experiment lasted for approximately 5 min. During the recordings,
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the participants were sat in a comfortable armchair. In order to keep the participants
attention, they were asked to count the number of unfamiliar faces, but were not
required to provide any physical response. After the experiment, we found that the
number of unfamiliar faces was less than five for all of the participants. According to
a previous literature [116] that used similar experimental paradigm, the cortical
connectivity changes were mainly associated with face structural processing. We also
confirmed from some preliminary experiments that counting the number of unfamiliar
faces did not influence the main experimental outcomes. We set the frequency band
of interest as 30-40 Hz to observe the time-varying gamma-band synchronization.
We did not apply any signal processing algorithms [118, 119] for removing artifacts
potentially originated form micro-saccades since those algorithms generally required
significant computational cost and thus did not seem to be adequate for the real-time

signal processing.

Figure 5.3(a) shows some screenshots taken before and after the visual stimulus
onset for one participant (subject JK), captured during the online experiment (see the
Supplementary movie file). Figure 5.3(b) shows an example of the variation in the
number of connections counted at each time slice (every 250 ms), where red arrows
represent the visual stimulus onsets. It can be seen from the figures and the
Supplementary movie file that the number of connections suddenly increased after the

visual stimulus onset.
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The Number of Connections

Figure 5.3. Variations in the number of connection in the first experiment (Exp. 1)
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investigating the dynamics of gamma-band cortical connectivity: (a) Screenshots regularly
sampled from the supplementary movie file (4 frames per second). Numbers in each picture
represent the sequence of the pictures. Visual stimulus appeared in third picture and
disappeared after sixth picture; (b) variation in the number of connections with respect to time:
arrows represent stimulus onset. The threshold was set to 0.96. These examples are parts of

one participant’s data (subject JK).
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The average numbers of connectivity connections observed during a 2—s period
before and after presenting the facial images were counted and the ratios between the
two values are presented in Table 5.1. It can be seen from the table that the number of
connectivity connections after presenting the images were greater than that before
presenting the images for any tested threshold CC values. We also applied a one-tail
paired t test between the average numbers of connectivity connections counted before
and after the stimulus onset, and found statistically significant increment (p < 0.05) in
the number of connections for all cases considered in Table 5.1. In our experiments,
we applied four different threshold CC values to all six subjects and found that the
slight changes in the threshold value did not affect the main trend of the results—
increment in the number of connections after the stimulus onset. Indeed, as presented
in the Table 5.1, the use of higher threshold values seemed to result in more distinct
connectivity changes. However, when we used higher threshold values exceeding
0.99, we could hardly observe the dynamic changes in connectivity patterns visually
since the real-time connectivity imaging system did not show any connections at
many time slices as found in the previous offline analysis studies [116, 120].
Therefore, we set the threshold CC value to 0.96 when we executed the online
monitoring system to generate the results in Figure 5.3. Since one of the main aims of
the present system was to visually monitor the dynamic changes in the connectivity
patterns, we allowed the potential users of our system to adjust the threshold CC

values freely. According to our experience, in the online monitoring, the threshold
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CC value could be readily adjusted without performing any offline analyses by
gradually changing the threshold value and continuously monitoring the changes in

the connectivity patterns during a subject’s resting state.

The results of our first test experiments are similar to the reports in [31] and [53],
which showed the peaked gamma band activity synchronization around 200-400 ms
after face images were presented. Moreover, according to the previous studies, the
gamma band synchronization between different brain areas during the processing of
facial structure is significantly reduced in schizophrenia patients [31, 53]. Based on
the previous studies, we are planning to apply the present system to real-time

diagnoses of schizophrenia, after conducting clinical examinations.

Table 5.1. The ratio of the average numbers of connectivity connections observed duringa 2 s
period after presenting the facial images to those observed during a 2 s period before

presenting the images.

Threshold  YC HJ K MK L IL
o6 1.44 1.43 1.31 131 1.19 1.25
(0.49)  (0.77)  (0.61)  (0.36)  (0.35)  (0.46)

. 1.41 1.47 1.43 1.29 121 1.36
(0.49)  (0.87)  (0.97)  (0.38)  (0.37)  (0.68)

151 1.66 151 1.42 1.22 1.29

098 (0.63)  (0.91)  (L12)  (0.43)  (0.47)  (0.87)
006 155 2.09 3.06 1.75 135 1.40

(0.65) (1.72) (2.86) (1.33) 0.77) (1.19)
YC, HJ, JK, MK, JL, and IL represent initials of the participants. Values in parentheses are

standard deviations.
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5.3.2. Alpha/Beta-band Cortical Connectivity Monitoring (Exp. 2)

In our second test experiment, we tracked the temporal changes in cortical
functional connectivity patterns during finger movements. Since it has been widely
known that finger movements can elicit connectivity increase in alpha/beta frequency
bands [121], we set the frequency band of interest as 8—-30 Hz. The three participants
were sat in a comfortable armchair and were asked to touch the tip of the left thumb
with the tip of the left index finger. Right after a pure tone beep sound was generated
from the computer speaker, they were instructed to detach the two fingers for
approximately 0.5 s and then touch the fingers again (see 4™ figure of Figure 5.4).
The ISI was set as 5 s, during which only a cross fixation (+) was presented at the
center of the computer monitor in front of the participants. The participants were also
asked to stare the fixation mark during the entire experiments. Recordings were

conducted in a single session consisting of 50 trials.

Figure 5.4 shows some screenshots taken before and after the stimulus onset (3"
figure of Figure 5.4) for one participant (subject JI), captured during the online
experiment. In the second and third experiments, we fixed the threshold CC value
to 0.96, based on the experience attained from the first experiment. Then, the average
numbers of connectivity connections observed during a 1.5-s period before and after

the stimulus onset were also counted and the ratios between the two values were
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evaluated. The ratios for subjects JI, JJ, and JH were 2.14+0.67, 2.87£0.81, and
1.96+0.39, respectively. It could be seen from the figure and the resultant ratio
values that the number of connectivity connections was increased after finger
movements, demonstrating that the alpha/beta band cortical connectivity changes

elicited by finger movement could be monitored using the implemented system.

Figure 5.4. Variations in the number of connections in the second experiment (Exp. 2)
investigating the dynamics of alpha/beta-band cortical connectivity: Screenshots regularly
sampled from a movie file (2 frames per second). Numbers in each picture represent the

sequence of the pictures. The subject moved his left fingers in fourth picture.

-76 -



5.3.3. Theta-band Cortical Connectivity Monitoring (Exp. 3)

In our third test experiment, we tracked the temporal changes in cortical
functional connectivity patterns during working memory task. Our paradigm was
devised based on the Sarnthein et al.’s [21] work, where the authors reported
significant enhancement in the theta band (4-7 Hz) connectivity between prefrontal
and posterior areas. During 5-s perception period, the participants were presented
with 6-digit randomly generated characters consisting of capital English letters and

numbers (e.g., SD9FG4) through a 17" LCD monitor located in front of each

participant. During the next 5 s, the participants were instructed to memorize the
given characters while staring the cross fixation (+) located at the center of the
computer screen. Then, the participants were asked to verbally recall the characters
the characters that they memorized. The experimenter checked whether the answer
was correct and then manually started the next trial. Before the new combinations of
characters were presented, black screen was presented to the participants for 5 s.
Recording were conducted in a single session consisting of 50 trials. The correct
rations evaluated for subjects JI, JJ, and JH were 88, 90, 90 %, respectively, which

were similar to the results reported in the previous study [21].

Figure 5.5 shows some screenshots taken during the online experiment of one

participant (subject JJ), captured at every 1.5 s. As mentioned in the previous section,
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we fixed the threshold CC value to 0.96. It could be observed from Figure 5.5 that
the long-range connectivity between prefrontal area and posterior areas was notably
increased during the 5-s retention period, coinciding well with the results of the
previous offline study [21]. The average numbers of connectivity connections
observed during the 5-s resting period and the 5-s retention period were counted and
ratios between the two values were evaluated. The rations for subjects JI, JJ, and JH
were 3.01+1.13, 2.5710.65, and 3.4310.97, respectively, demonstrating that the
theta band cortical connectivity changes associated with working memory could be

monitored using the implemented system.
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Figure 5.5. Variations in the number of connections in the third experiment (Exp. 3)
investigating the dynamics of theta -band cortical connectivity: Screenshots regularly sampled
from a movie file (1.5-s interval). Numbers in each picture represent the sequence of the
pictures. A 6-digit word was presented in third picture and the retention interval started in

sixth picture.
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5.4. Discussions and Summary

In the present study, we introduced an EEG-based, real-time, cortical functional
connectivity imaging system, which can monitor the dynamic changes in cortical
functional connectivity between different ROIs on the cortical surface. To testify the
implemented pilot system, we performed three test experiments in which we could
monitor the real-time changes in cortical connectivity patterns in gamma, alpha/beta,

and theta frequency bands.

Since we adopted a source-level connectivity analysis, our real-time imaging
system is not subject to the hypothesis that EEG synchrony computed from scalp
EEGs may contain spurious synchronizations resulting from volume conduction [100,
122]. Although in the preset study we simply traced the real-time changes in the
overall connectivity patterns, our system can be readily modified for investigating the
changes in the connectivity strength between specific cortical ROIs as well as for
characterizing the specific spatial patterns in the connectivity maps, e.g., hemispheric
lateralization of the connectivity pattern; in either case, the source-level connectivity
analysis is more appropriate than the sensor-level connectivity analysis. In our third
test experiment (Exp. 3), which monitored dynamic cortical connectivity changes
during working memory task, increment of connectivity between prefrontal and

posterior cortical areas was observed, demonstrating the possibility of using our
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system for investigating dynamic spatial patterns in functional connectivity. In
addition, the resultant connectivity patterns obtained from the source-level analysis
can be less dependent upon the changes in the electrode than those from the sensor-
level analysis because the source-level analysis projects the sensor-level recordings to

the cortical source-level signals by solving an inverse problem.

Nevertheless, some issues associated with the source-level connectivity analysis
should be investigated further in future studies. In the present study, we selected a
simple power-to-power correlation for the calculation of functional connectivity
between two ROIs because it was not possible to extract source time series at cortical
vertices when minimum norm estimation was applied without source orientation
constraints. Please note that without using the orientation constraint only the temporal
dynamics of source powers can be obtained because each directional component of a
cortical source vector has independent temporal dynamics. To apply the source
orientation constraints, we need accurate individual anatomical data including
structural MRI data, which unfortunately were not available in our experiments.
Therefore, it will be necessary to develop new indices that can better measure the
cortico-cortical functional connectivity, when the cortical orientation constraints are
not imposed. Since the use of high-quality individual MRI data would make it
possible to apply various functional connectivity measures such as phase coherence
and phase locking value as well as would enhance the reliability of the source

imaging results, we will try to use individual MRI data for real-time cortical
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connectivity imaging in our future studies. In addition, proper identification of ROIs
on the cortical surface should be studied as a general issue in the source-level
connectivity analyses [100]. In the present study, we also determined the locations
and sizes of ROIs without applying a well-established criterion, which should be
studied further. In the present study, we performed the cortical source imaging with
only 32-channel EEG signals because we did not have a higher density EEG
recording system. Since the use of more EEG electrodes would enhanced the source
imaging accuracy, we will apply the implemented software on other EEG systems

with more recording channels.

Functional connectivity patterns associated with various cognitive or sensory
tasks have been extensively investigated to characterize various psychiatric diseases
such as schizophrenia [120, 123], Alzheimer’s disease [124], and alexithymia [125].
Most offline analysis results have shown increased or decreased functional
connectivity for specific frequency bands, thereby demonstrating the possibility of
using connectivity information for noninvasive diagnoses of psychiatric diseases. We
believe that our system also has the potential to be applied to the diagnosis of
psychiatric diseases and further clinical investigations will be conducted in our future
studies in cooperation with psychiatrists. Moreover, since it is known that functional
connectivity is modulated at different sleep stages [126], it may be possible to use our
system as a supplementary tool to monitor subjects’ sleep stages in sleep studies or to

watch if subjects fall asleep while performing a cognitive task. Another potential
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application that we are considering is an EEG-based brain-computer interface (BCI).
Many recent studies on BCI have reported that the complementary use of
conventional power density-based features and functional connectivity-based features
could enhance the overall classification accuracies of BCI systems [127-129]. Since
cortical source imaging is becoming a promising tool for the enhancement of the
performance of EEG-based BCI systems [45, 47], a promising topic will be to
combine the real-time cortical rhythmic activity monitoring system with the real-time

cortical functional connectivity imaging system for extracting new BCI features.

In the present study, we implemented an EEG-based real-time cortical functional
connectivity imaging system, but the same concept can also be applied to MEG
without major modifications. In MEG, source-level analysis is relatively more
important than in EEG because the MEG sensors are not attached directly on the
subject’s scalp surface. For example, if a subject’s head is tilted in a helmet-type
MEG system, so that one hemisphere is close to the sensors than the other is, one
could observe stronger activity at sensors closer to the subject’s head even when the
strengths are equal at the cortical level. Therefore, the real-time cortical functional
connectivity imaging system can also be a useful tool in MEG studies. We are
currently developing new paradigms to diagnose various psychiatric diseases and also
trying to generalize the operating software so as to release it worldwide to potential

users.
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Chapter 6: Brain Fingerprinting: Classification of
Mental States Based on Spatiospectral Patterns of

Brain Electrical Activity

This chapter introduces a mental task classification method to utilize cortical
source information in order to more accurately classify mental states than using scalp
EEG signals, and demonstrates the superiority of using the cortical source imaging in

distinguishing different mental states.

6.1. Research Background

Although efforts to comprehend the human mind began in ancient Greece,
whether the human mind was associated with the brain or heart remained a
controversial issue until a series of modern neuroscience studies demonstrated that
human emotions and behaviors are tightly linked with brain activity. Recently, thanks
to dramatic advances in technologies for recording human brain activity and methods
for statistical pattern recognition, neuroscientists have recognized the possibility of

decoding the human mind based on brain activity recorded via multiple neuroimaging
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modalities, such as functional magnetic resonance imaging (fMRI), near infrared
spectroscopy (NIRS), electroencephalography (EEG), and magnetoencephalography
(MEG) [130-142]. These “mind reading” or “brain reading” technologies have been
explored not only to advance our understanding of neural information processing but
also to develop new applications such as brain-computer interfaces (BCI) [131, 132,
135, 140, 141], lie detection [130, 134, 136, 137, 142], and communication with

severely locked-in patients [133, 138, 139].

Among the neuroimaging modalities, EEG has been widely used in mind reading
studies because of its excellent temporal resolution, usability, and safety. At present,
many EEG-based mind reading studies have succeeded in discriminating different
mental tasks or cognitive states with fairly high classification accuracy [143-152].
The successful results have significantly contributed to realizing several practical BCI

systems and progressing in our knowledge about neural information processing.

Recently, some studies have shown that source imaging analysis methods could
increase the classification accuracy of distinguishing motor imagery tasks rather than
using scalp EEG signals [43, 153, 154]. These results are physiologically plausible
because cortical sources reconstructed from the scalp EEG signals might compensate
the distortion caused by the effect of volume conduction. However, to my best
knowledge, the cortical source imaging method has not yet been tested for a variety of

mental tasks such as mental calculation, internal speech, spatial navigation imagery,
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and so on. It is needed to apply the source imaging method to a diversity of mental
tasks so as to expand our understanding of neural information processing and realize a
high performance BCI system. Thus, the author explored whether the enhanced
accuracy could also be obtained by using the cortical source imaging method instead

of using raw scalp EEG signals.
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6.2. Methods

6.2.1. Participants and Experimental Conditions

Eight healthy volunteers (all male, all right-handed, aged 20-27 vyears)
participated in the present study. None of them had a previous history of neurological,
psychiatric, or other severe diseases that may have influenced the experimental results,
nor had they ever participated in EEG-based experiments. All participants were asked
to abstain from alcohol for 24 hours prior to the experiment in order to maximize
concentration on the experiment. The author provided a fully detailed summary of the
experimental procedures and protocols to all participants prior to the experiment. All
participants gave written consent and received monetary reimbursement for their

participation.

In the EEG data acquisition session, the participant sat on a comfortable
armchair facing a 17" LCD monitor. Electrodes were mounted on their scalp
according to the extended international 10-20 system. A total of 30 electrodes were
evenly and broadly attached to the participants’ scalps covering whole brain areas
(AF3, AF4, Fz, F3, F4, F7, F8, FC1, FC2, FC5, FC6, Cz, C3, C4, CP1, CP2, CP5,
CP6, Pz, P3, P4, P7, P8, POz, PO7, PO8, O1, 02, T7 and T8) and a multi-channel

EEG acquisition system (WEEG-32, Laxtha Inc., Daejeon, Korea) was used for data
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acquisition. The EEG signals were acquired in a dimly lit, soundproof room. The
sampling rate was set at 512 Hz in all experiments. The study protocol was approved

by the Institutional Review Board (IRB) at Yonsei University, South Korea.

6.2.2. Mental Tasks

Four different mental tasks were chosen on the basis of previous studies
associated with EEG-based mind reading [51, 148, 151]. The participants were asked
to use a consistent strategy for each mental task to minimize inter-trial variability

[137]. The following paragraphs provide descriptions of these tasks.

(Task A) Counting the Number of Strokes of Given Chinese Characters

Participants were asked to count the number of strokes of given Chinese characters.
All words used for this task consisted of four Chinese characters with particular
meanings. Prior to the main recording sessions, the participants were asked not to
think about the meanings of the words to avoid the acquisition of unwanted EEG

signals.

(Task B) Mental Mathematical Calculation

Participants were given nontrivial multiplication problems in which they were

asked to multiply a two digit number by a second two digit number, mentally, as fast
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as they could. Participants were also asked not to vocalize the numbers and to make
no movements while solving the problems. The pairs of two digit numbers used in a
session were not repeated to prevent the participants from becoming accustomed to

the problems.

(Task C) Mental Singing of the National Anthem
Participants were required to sing a song internally, without performing
movements to keep the beat. The Korean national anthem was selected as the song to

reduce inter-participant variability of the EEG signals.

(Task D) Motor Imagery of the Tongue
The participants were asked to perform kinesthetic imagination of tongue
movement. Since even small tongue movements may contaminate the EEG signals,

the participants were instructed not to swallow their saliva during the task period.

In addition to these mental tasks, eye-closed, resting state EEG signals were
recorded for three minutes prior to the main recordings; these were used as a baseline
EEG dataset. During the resting EEG recordings, participants were asked to relax and

not to think of anything.
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6.2.3. EEG Data Acquisition

The EEG data were acquired while the participants were performing the four
different mental tasks described in the previous section. Figure 6.1 depicts the
experimental design used in the present study. A gray (RGB: 132, 132, 132) color was
selected as the background to prevent eyestrain [155]. At the beginning of each trail, a
blank screen was presented for a variable duration (three to eight seconds) and then
instructions for the next task appeared in the center of the screen for two seconds for
task A, C, and D (also see Figure 6.1). The preparation period for the mental
mathematical calculation (task B) lasted longer (four seconds) than that for the other
tasks (two seconds) as the participants generally needed a longer time to memorize
the pair of two digit numbers. Immediately after a beeping sound was presented to the
participants for 125 ms, a black cross fixation was presented at the center of the
screen for 10 s for tasks B, C, and D. During this time, participants were to perform
the instructed mental task for 10 s. In the case of task A (counting the number of
strokes of given Chinese character), a Chines word consisting of four Chines
characters appeared for 10 s, as it was not trivial for native Koreans to memorize the
Chinese words. A single experimental session was composed of 20 independent trials,
each of which appeared five times in random order. Seven out of eight participants
performed four sessions; while the other participant (JJ) underwent only three

sessions due to mental fatigue. Consequently, seven participants performed each

-90 -



mental task 20 times and one participant (JJ) performed each 15 times.
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Figure 6.1. Experimental paradigm used in this study. There was a variable delay from 3 s to
8 s before instructing a subject to perform one of the mental tasks. The preparation periods
were set to be 2 s for Task A, Task C, and Task D and 4 s for Task B. The preparation period
for Task B was longer than the others because the subjects had to memorize a pair of two-digit
numbers presented on a screen in order to perform the task. After a warning signal was
presented for 125 ms (a beeping pure tone sound), the subject was asked to perform the
instructed mental task for 10 s. During the data acquisition period, a cross fixation was
presented at the center of the screen, except the Task A for which four Chinese characters

were presented instead of the cross fixation.
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6.2.4. EEG Data Analysis

6.2.4.1. Regions of Interest (ROIs)

The processes for generating the cortical source space were identical to those
described in Chapter 3. Please refer to ‘Section 3.1.2. Forward Calculation and
Inverse Estimation’, for more detailed technical explanations. The whole cortical
source space was divided into 18 ROIs, which were made to cover the whole brain
areas and to have similar sizes as much as possible. Figure 6.2 shows the 18 ROlIs, in

which each color represents each ROI. The author selected six ROIs on the frontal

lobe (ROI1-6), six ROIs on the parietal lobe (ROI7-12), four ROIs on the temporal

lobe (ROI13-16), and two ROIs on the occipital lobe (ROI17-18).
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Figure 6.2. Locations of 18 regions of interest (ROIs): (a) the left hemisphere; (b) the right
hemisphere. The color bar on the right side represents the ROl number in which odd numbers

are for the left hemisphere and even numbers are for the right hemisphere.
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6.2.4.2. Feature Extraction

To classify different mental tasks, the author developed a new feature extraction
method that utilizes the whole spatial and wide spectral information contained in the
reconstructed cortical sources. The cortical source information were converted into
2D spatiospectral pattern maps, of which each element was filled with -1, 0, and 1
reflecting the degrees of ERD and ERS at each ROI and frequency bin. The following
paragraph provides the detailed explanation on how the author constructed the

spatiospectral pattern maps.

Five second epochs (2.5-7.5 s from task onset) were extracted from the ten-second
EEG signals for each trial and were used for analysis. Each epoch was then divided
into one-second segments with 50% overlap, yielding a total of nine time segments in
every epoch. Each segment was transformed into the frequency domain using the fast
Fourier transform (FFT), and then an absolute current source power was evaluated by
solving inverse problem at each cortical vertex (see also ‘Section 3.1.2 Forward
Calculation and Inverse Estimation’ for more detailed explanation of inverse
estimation). After an average source power for each cortical vertex and each
frequency was estimated by averaging the source powers of the nine time segments,
ROI powers at the 18 locations were calculated by averaging all cortical vertices
included in each ROI. Consequently, a two-dimensional spectral source power map

consisting of the spectral source power values at each ROl and frequency was
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obtained for each trial (see Fig. 6.3; denoted as the task map). The frequency
resolution was set at 1 Hz and the frequency band ranged from 4 Hz to 45 Hz,
including theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and low gamma (30-45
Hz) frequency bands [28, 29, 156, 157]. The 2-D spectral source power maps for the
baseline were also constructed by applying inverse estimation with the same analysis
window size (1 s) and overlapping ratio (50%; see Fig. 6.3a, denoted as the baseline
map). The mean value and standard deviation of the spectral source powers during the
baseline period were then evaluated for each ROI-frequency combination. Then, three
signed integer values, +1, 0, and -1, were assigned to each element of the 2-D spectral
source power maps based on the following rules: an event-related synchronization
(ERS) value (+1) was assigned to an element for which the source power value was
larger than ‘mean of baseline source powers + one standard deviation of baseline
source powers’; an event-related desynchronization (ERD) value (-1) was assigned to
an element for which the source power value was smaller than ‘mean of baseline
source powers — one standard deviation of baseline source powers’; and the other
elements, the source powers of which were not significantly different from the
baseline source powers, were filled with zeroes (0). By applying this transformation
to all of the 2-D ROI-frequency power maps, we constructed new 2-D spatiospectral
pattern maps filled with +1, 0, and -1 values for each mental task (see Fig. 6.3a;

denoted as the template ERS/ERD map).
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6.2.4.3. Classification of Mental States

In order to investigate how well the different mental tasks could be classified,
the leave-one-out cross-validation (LOOCV) method was applied, considering the
relatively small number of task trials. The author used a single spatiospectral pattern
map as validation data, and the remaining pattern maps as training (or template) data.
This process was repeated such that every spatiospectral pattern map was used once
as the validation data. For the classification of mental tasks, the author implemented a
simple fitness evaluation technique that measured the similarity between a validation
pattern map and each class of template pattern maps corresponding to each mental
task, and the validation pattern map was assigned to a class that demonstrated the

highest fitness value.

For a given spatiospectral pattern map X, the fitness of X with respect to a set of
template pattern maps corresponding to a specific mental task was evaluated.

Similarity between a validation pattern map X and the n-th template pattern map in a

set corresponding to a specific mental task,Y(”), was defined as:

R F
h(X,Y®)=>>"X, YD (6.1)

r=1 f=1
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where R and F are the number of ROIs and frequencies, respectively, the
subscripts r and f represent the r-th low and f-th column of the ROI-frequency grid,
respectively. As readily seen from (6.1), ‘1’ was assigned to an element at which two
pattern maps had identical ERS/ERD values; ‘-1’ was assigned to an element at which
two pattern maps had opposite ERS/ERD values; and ‘0’ was assigned to an element

at which one or both pattern maps had no significant ERS/ERD values.

The similarity values estimated for all template patterns in a class were then
averaged into a single value measuring fitness between a validation pattern map X and

a set of template pattern maps Y, F(X, Y), as given below:
1 N
F(X,Y):WZh(X,Y(”)) (6.2)
=1

The fitness values between the validation pattern map X and the other sets of
template pattern maps were also calculated by applying the same procedure. Finally, a
certain validation pattern map corresponding to a specific mental task was assigned to
the class that demonstrated the greatest fitness value. Figure 6.3 is a schematic
illustration of the proposed mental task classification method. Figure 6.3a depicts the
process of constructing spatiospectral pattern maps for different mental tasks. Figure
6.3b describes the process for classifying an input pattern map. For comparison, both

feature extraction and classification methods were applied to the scalp EEG data.
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Figure 6.3. Schematic illustration of the proposed mental task classification method: (a) A
two-dimensional source power pattern map for a specific mental task was constructed by
calculating spectral source power at each ROI and frequency. The 2D source power pattern
map (denoted as “Task Map”) was converted into a 2D spatiospectral pattern map consisting
of event-related (de)synchronization (ERD/S) values (ERS: red color; ERD: blue color), based
on the 2D source power pattern map constructed for the resting state (denoted as “Baseline
Map”). This procedure was applied to all trials of four mental tasks, Tasks A-D, and template
ERD/S maps for each mental task were obtained. (b) When a new 2D spatiospectral pattern
map was fed into the proposed classification algorithm, this pattern map was compared with
the template pattern maps constructed from the process described in (a). The input pattern map

was then assigned to the class with the highest fitness value.
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6.3. Results

Figures 6.4 and 6.5 show two examples of the 2D spatiospectral maps obtained
from two subjects, IU and DK, respectively, who demonstrated the highest
classification accuracy (see Appendix A for the other six participants’ spatiospectral
maps), where the tasks A, B, C, and D indicate the four mental tasks described in the
previous section. It is evident from visual inspection of Figure 6.4 and 6.5 that the
pattern maps obtained while a subject was performing the same mental task exhibited
similar and consistent trends, and those corresponding to different mental tasks
showed discriminable patterns, demonstrating the possibility of using these
spatiospectral pattern maps for classifying different mental tasks. Unfortunately,
however, the author did not observe clear inter-subject similarities for specific mental
tasks, thought to be secondary to different levels of baseline activities for each
participant. Among the eight participants, subject IU had the most consistent intra-
class similarity, also reflected in the overall classification accuracy provided in the
next paragraph. Compared to subjects IU and DK, subject JI demonstrated the least
consistent spatiospectral patterns, which also resulted in the lowest classification

accuracy (see Fig. 6.6, in advance).
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Figure 6.4. Two-dimensional spatiospectral pattern maps for all mental tasks performed by
subject 1U. Event-related synchronization (ERS) is plotted in red while event-related
desynchronization (ERD) is plotted in blue. Consistent intra-class similarity was commonly

observed for each task.
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Figure 6.5. Two-dimensional spatiospectral pattern maps for all mental tasks performed by
subject DK. Event-related synchronization (ERS) is plotted in red while event-related
desynchronization (ERD) is plotted in blue. Consistent intra-class similarity was commonly

observed for each task.
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The proposed classification method was applied to both the raw EEG data and the
reconstructed cortical source data in order to compare performance in classifying
different mental tasks; results are summarized in Figure 6.6. The analysis
demonstrated that the classification accuracy was considerably enhanced in all
participants except the subject WH using the cortical source information. All
classification accuracy values exceeded the chance level (25%) for correct
classification. The average classification accuracies were 76.31% (% 12.84) for the

cortical level analysis and 68.13% (=% 9.64) for the sensor level analysis.
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Figure 6.6. Comparison of classification accuracies between cortical level and sensor level

analyses.
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6.4. Discussions and Summary

In order to more accurately interpret individuals’ intentions, the author utilized
spatiospectral pattern maps of cortical source information reconstructed from scalp
EEG signals. The author referred to the proposed approach as ‘brain fingerprinting’
since the author was able to obtain distinct two-dimensional spatiospectral patterns
corresponding to different mental tasks, similar to fingerprint patterns. The
experimental results suggest that the cortical source imaging method can be used to
enhance the accuracy of detecting individuals® various intentions, which is in line
with the previous motor imagery classification studies [45, 153, 154]. Based on these
results, a real-time mind reading system will be developed by using the real-time

cortical source imaging technology in the future studies.

Besides classification accuracy, the proposed classification approach has also
advantage over the conventional methods in that the feature extraction and
classification methods do not require complex procedures for selecting specific
feature sets and training a classifier. Instead of selecting an optimal combination of
feature vectors, the author converted full spatial and spectral information into
spatiospectral pattern matrices and classified the patterns by calculating inner-product

of two pattern matrices.
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Although clear inter-subject similarity did not be found in the spatiospectral
patterns, well-known physiological findings were frequently observed in most of the
participants’ pattern maps. The increment of gamma band brain activity is widely
believed to be tightly linked with cognitive task execution [28], and this phenomenon
was also replicated in the current study; a widespread increment of gamma band
activities was observed in most of the participants’ spatiospectral pattern maps for
most cognitive tasks. Moreover, the augmentation of theta band power along with
gamma ERS was also observed in a large number of frontal and central sites for all
subjects, excluding subject DS, while performing the numerical multiplication task
(task B). This observation agreed with previous studies [28, 158] that reported
increased frontal and central theta powers while one was performing specific mental
tasks requiring high levels of attention, such as mental arithmetic and reasoning.
Additionally, most participants’ spatiospectral maps, excepting subject JI,
demonstrated significant increases in alpha power (alpha ERS) around the
sensorimotor cortex during the tongue motor imagery task (task D), agreeing with a
previous study that reported dominant alpha ERS in the sensorimotor (central) cortex
during tongue motor imagery [51]. Since characterizing patterns of brain activity
associated with specific mental states is still thought to be an important issue that may
expand our understanding of how a specific mental task is encoded in the brain [159-

162], we will further investigate this issue in future studies.
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Some parameters used in the present study were selected empirically. First the
spectral source powers were evaluated with a one second time window with a 50%
overlap and were averaged across all time windows in each epoch. The author varied
the analysis window sizes and picked the optimal window size (1,000 ms) from trials
of 500, 750, 100, 1,500, and 2,000 ms. Second, the threshold values of ERD and ERS
were set to represent the ‘mean of baseline source powers = one standard deviation
of baseline source powers’ for all participants. This threshold value was also

determined empirically, but these values need to be optimized in future studies.

One of the promising applications of this study would be in developing brain-
computer interface (BCI) technology. BCI is cutting edge technology that may help
the disabled control external devices and communicate with the outside world. The
most widely studied mental task has been motor imagery defined as the mental
simulation of a kinesthetic movement [16, 17]. The motor imagery task is believed to
be particularly effective for controlling external devices, since it does not require any
external stimuli, as in the steady-state visual evoked potential (SSVEP) and P300-
based BCI paradigms. However, motor imagery tasks may not always be the best
effectors, as some people do not develop a concrete feel for performing motor
imagery even after extensive training [49, 55, 163]. It has also been reported that
people who have been paralyzed or undergone amputations are generally less capable
of performing motor imagery tasks; sometimes called the chaotic motor imagery

phenomenon [164, 165]. There the non-motor imagery tasks used in this study may
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represent alternative effectors that could be potentially applied to BCI applications.
Prior studies have already demonstrated that it is possible to classify non-motor

imagery tasks with an acceptable classification accuracy [143, 144, 150-152, 166].
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Chapter 7: Conclusion

In this dissertation, a real-time cortical rhythmic activity imaging technology
was developed and its usefulness was demonstrated by various practical applications,
i.e. the real-time cortical rhythmic activity and functional connectivity monitoring,

neurofeedback-based motor imagery training, and classification of mental states.

The real-time cortical rhythmic activity imaging technology was first applied to
monitoring individuals’ brain activation states. Both offline simulations and online
human experiments demonstrated that the developed monitoring system could
correctly visualize instantaneous cortical activation images reflecting current brain

states in real-time.

The developed real-time cortical rhythmic activity monitoring system was
utilized to efficiently train individuals to perform motor imagery tasks for brain-
computer interface (BCI). After the motor imagery training for approximately 30 min,
all participants in the trained group succeeded in performing motor imagery to
activate their motor cortex without any physical movements. The analysis results of
EEG data recorded before and after training showed significant differences in the
sensorimotor rhythms, and classification accuracy was also enhanced considerably in

all participants after the motor imagery training. On the other hand, the analysis
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results of the control group did not show any meaningful changes in both mu rhythm
and classification accuracy, demonstrating that the suggested system can be used as a

tool for training motor imagery task in BCI applications.

The real-time cortical functional connectivity monitoring system was also
implemented as one of the applications of the real-time cortical activity imaging
technology. For the verification of the developed system, the author performed three
test experiments: 1) structural face processing in gamma band, 2) finger movements
in alpha/beta bands, and 3) working memory task in theta band. The online
experiment results were consistent with the results of previous offline studies. These
results demonstrated the possibility of imaging cortical functional connectivity in

real-time.

To more accurately interpret human intentions, the cortical rhythmic activity
imaging technology was applied to classifying different mental tasks. Two-
dimensional spatiospectral pattern maps were first constructed from cortical source
information and classified through the similarity evaluation. The above procedure was
repeated for raw scalp EEG signals for comparison. The average classification
accuracies were 76.31% (£ 12.84) for the cortical level analysis and 68.13% (+ 9.64)
for the sensor level analysis. The analysis result demonstrated that the classification
accuracy can be considerably enhanced by using the cortical source information.

Based on this preliminary offline experiment, the author will implement a real-time
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mind reading system that utilizes the developed real-time cortical activity imaging

technology.

Besides the applications mentioned in this dissertation, the proposed real-time
cortical activity imaging technology can be applied to other potentially practical
applications such as real-time lie detection, diagnosis of psychiatric brain diseases,
neurofeedback-based autism and attention deficit hyperactivity disorder (ADHD)
treatment, sleep stages monitoring and so on. In the future, these applications will be
investigated in cooperation with medical doctors. Also, the author has a plan to
increase the temporal resolution of the real-time cortical activity imaging technology
by not only developing a high speed inverse solution, but introducing parallel
computing methods, in order to more accurately detect fast-changing brain activities.
Lastly, the author will generalize the application software, which would enable
worldwide researchers to easily utilize the proposed real-time cortical rhythmic

activity imaging technology for their studies.
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Appendix

Appendix A: Two-dimensional Spatiospectral Pattern Maps

This chapter will show the two-dimensional spatiospectral pattern maps of the

other six participants, which are not suggested in Chapter 6.

A.1. Two-dimensional Spatiospectral Pattern Maps for Subject DS

Frequency
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A.2. Two-dimensional Spatiospectral Pattern Maps for Subject HK
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A.3. Two-dimensional Spatiospectral Pattern Maps for Subject JI

Frequency
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A.4. Two-dimensional Spatiospectral Pattern Maps for Subject SK
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A.5. Two-dimensional Spatiospectral Pattern Maps for Subject WH
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A.6. Two-dimensional Spatiospectral Pattern Maps for Subject JJ

Frequency
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