응급환자를 위한 실시간 모바일 원격진료 시스템의 설계

연세대학교 대학원
생체공학협동과정
김 상 용
응급환자를 위한 실시간 모바일 원격진료 시스템의 설계

지도교수 유선국 교수

이 논문을 석사 학위논문으로 제출함

2008년 12월 일

연세대학교 대학원
생체공학협동과정
김상용
김상용의 석사 학위논문을 인준함

심사위원 _______________ 인
심사위원 _______________ 인
심사위원 _______________ 인

연세대학교 대학원

2008년 12월 1일
감사의 글

복이 있는 사람은
악한 사람들의 과를 따라가지 않고
죄인들의 길에 서지 않으며
남을 업신여기는 사람들과 자리를 함께하지 않고
오직 여호와의 율법을 즐겨워하고
그 율법을 받납으로 깊이 생각하는 자로다.
그는 시냇가에 심은 나무가 계절에 따라 열매를 맺고
그 잎이 시들지 않은 것처럼 하는 일마다 모두 잘되리라.

악인은 그렇지 않으니
그저 바람에 날려가는 겨와 같도다.
그리므로 악인들이 심판을 받을 때
죄인들은 의인의 모임에 참석하지 못하리라.

의인의 길은 여호와께서 보호하시나 악인의 길은 망하리라.
- 시편 1편 -
차례

<table>
<thead>
<tr>
<th>채</th>
<th>권</th>
<th>표</th>
<th>약어표</th>
<th>국문 요약</th>
<th>제1장 서론</th>
<th>제2장 시스템 환경</th>
<th>제3장 시스템 설계</th>
</tr>
</thead>
<tbody>
<tr>
<td>그림 차례</td>
<td>i</td>
<td>표 차례</td>
<td>v</td>
<td>약어표</td>
<td>vi</td>
<td>국문 요약</td>
<td>viii</td>
</tr>
<tr>
<td>제1장 서론</td>
<td>1</td>
<td>제2장 시스템 환경</td>
<td>2</td>
<td>2.1 개발환경</td>
<td>2</td>
<td>2.1.1 환경설정(PC)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1.2 모바일 디바이스</td>
<td>3</td>
<td>2.1.3 네트워크</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.1.4 네트워크 보안</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>제3장 시스템 설계</td>
<td>8</td>
<td>3.1 소켓통신</td>
<td>8</td>
<td>3.2 채팅 다이얼로그</td>
<td>10</td>
<td>3.3 파일 다이얼로그</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4 생체신호 다이얼로그</td>
<td>12</td>
<td>3.4.1 GDI와 DC</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.4.2 비지어 곡선(Bezier curve)</td>
<td>16</td>
<td>3.5 비디오 다이얼로그</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.5.1 모바일용 Xvid 비디오 코덱 제작</td>
<td>19</td>
<td>3.5.2 모바일용 DirectShow 필터개발</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3.6 Triage 다이얼로그</td>
<td>25</td>
<td>3.6.1 응급환자 중증도 분류</td>
<td>25</td>
</tr>
</tbody>
</table>
그림 차 례

그림 1. 클라이언트가 서버에 접속하여 데이터를 주고 받는 과정 8
그림 2. 채팅 다이얼로그 블록 다이어그램 10
그림 3. 파일 다이얼로그 블록 다이어그램 11
그림 4. 생체신호 다이얼로그 블록 다이어그램 12
그림 5. 모눈종이 영역 14
그림 6. 그래프 영역 14
그림 7. 생체신호를 그리기 전에 모눈종이를 복사 15
그림 8. 비디오 코덱을 적용한 예 16
그림 9. 비디오 다이얼로그 블록 다이어그램 19
그림 10. MPEG-4 코덱의 흐름도 20
그림 11. DirectShow 필터그래프 구성도 22
그림 12. 변환필터 데이터 흐름 23
그림 13. 트랜스폼 필터-코덱파일 간 데이터 교환 과정 24
그림 14. Triage 다이얼로그 블록 다이어그램 25
그림 15. 시스템 구성도 27
그림 16. 프레임 레이트에 따른 비디오 스트리밍의 데이터량 변화 28
그림 17. 비디오 다이얼로그 29
그림 18. PSNR 공식 30
그림 19. MSE 공식 30
그림 20. PSNR 값 31
그림 21. L2TP/IPsec을 이용한 PC-PDA간 보안 네트워크 구성 32
그림 22. VPN Server1에 접속한 PDA 33
그림 23. 보안 프로토콜 환경에서 비디오 전송 33
그림 24. 환자-의사간 패킷 분석 34
그림 25. 연결 다이얼로그 .. 35
그림 26. 채팅 다이얼로그 .. 36
그림 27. 파일 다이얼로그 .. 36
그림 28. 그림 파일 실행 .. 36
그림 29. 생체신호 다이얼로그 .. 37
그림 30. 실시간 ECG .. 37
그림 31. 저장한 ECG .. 37
그림 32. 비디오 다이얼로그 ... 38
그림 33. Triage 1 .. 38
그림 34. Triage 2 .. 38
그림 35. Triage 3 .. 39
그림 36. Triage 4 .. 39
그림 37. Triage 5 .. 39
그림 38. Triage 결과 전송 .. 40
그림 39. 저장된 Triage 결과 .. 40
표 1. 모바일 디바이스에서의 응용 프로그램 개발을 위한 지원 도구  2
表 2 개발에 사용된 PDA들의 기본사항  3
表 3. 네트워크의 성능 비교  5
表 4. DC 생성  14
表 5. 메모리에 가상의 비트맵 생성  14
表 6. 비지어 공식  16
表 7. 비지어 공식을 함수로 제작  17
表 8. 비지어 곡선을 그리는 함수  18
表 9. 비지어 함수의 좌표값을 넘겨주는 부분  18
表 10. 중증도 분류지표  26
表 11. PSNR 측정 환경 및 PSNR 값  31
약 어 표

PDA : Personal Digital Assistants
GSM : Global System for Mobile communications
PC : Personal Computer
VB : Visual Basic
WM : Windows Mobile
AP : Access Point
HSDPA : High Speed Downlink Packet Access
IMT-2000 : International Mobile Telecommunication 2000
WiBro : Wireless Broadband
L2TP : Layer Two Tunneling Protocol
PPP : Point-to-Point Protocol
IPsec : Internet Protocol Security Protocol
IKE : Internet Key Exchange
AH : Authentication Header
ESP : Encapsulating Security Payload
ASCII : American Standard Code for Information Interchange
ECG : Electrocardiogram
HR : Heart Rate
GDI : Graphics Device Interface
DC : Device Context
UMPC : Ultra Mobile Personal Computer
SDK : Software Development kit
PSNR : Peak Signal-to-Noise Ratio
MSE : Mean squared err
VPN : Virtual Private Network
QOS : Quality of Service
응급환자를 위한 실시간 모바일 원격진료 시스템의 설계

원격진료의 목표는 시간과 공간에 제한을 받지 않고 환자-의사간 원격진료 시스템을 구축하여, 의사가 원격으로 환자의 상태를 진단하고 처방을 내리는 것에 있다. 최근에는 무선통신 기술과 모바일 디바이스의 발전에 따라 PDA(Personal Digital Assistants)에서도 원격 진료 시스템을 구현할 수 있게 되었다. 의사가 환자에게 언제, 어디서나 원격 진료 서비스를 제공하기 위해선 휴대성과 사용성이 뛰어난 스마트폰에 시스템을 탑재하는 것이 가장 적합할 것이다.

본 논문에서는 PC(환자) - PDA(의사)간에 채팅 메시지, 그림파일, 생체신호, 실시간 비디오 데이터를 전송하는 모바일 원격진료 시스템을 개발하였다. PDA에서 원격진료 시스템을 사용하는데 있어서 가장 중요한 문제는 효율적인 프로세스 관리이다. PDA는 휴대용 PC에 비해 CPU 성능과 메모리 용량이 좋지 않기 때문에 시스템을 사용하는데 제한적인 수밖에 없다. 모바일 디바이스에서 비디오 데이터를 디스플레이하기 위해 Windows Mobile 플랫폼 기반의 Xvid 비디오 코덱을 제작하였고, 코덱이 DirectShow 기반에서 동작할 수 있도록 디코더 필터 형태로 구현하였다.

설계한 시스템을 사용하는데 필요한 대역폭을 측정하여 현재 상용화된 무선망인 Wi-Fi, WiBro, HSDPA에서 동작할 수 있는지 확인하였다. 또한, VPN서버와 연동하여 네트워크 보안성을 확보할 수 있는지 실험하였다. 마지막으로, 모바일 원격진료 시스템을 여러 시간동안 사용하여 안정성을 테스트하였다.

핵심되는 말 : 원격진료, PDA, 스마트폰, 모바일, 비디오 코덱, DirectShow

기존의 모바일 원격진료에 관한 연구들은 최대 전송속도가 9.6kbps로 낮은 GSM (Global System for Mobile communications) 망이나, 최대 전송거리가 50m 미만인 Bluetooth에서 진행되었기 때문에 생체신호, 정지 영상 사진 등 진료에 필요한 환자의 정보를 얻는데 제한적일 수 밖에 없었다. [4-8]

본 연구는 평균 데이터 수신 속도가 1Mbps 이상인 Wi-Fi, HSDPA, WiBro와 같은 초고속 무선인터넷 망을 사용하는 모바일 디바이에서 실시간 비디오 영상, 생체신호, 채팅 메시지, 그리고 Triage (중증도 분류) 데이터와 같이 보다 다양하고 신뢰성 있는 환자의 정보를 이용할 수 있도록 시스템을 설계하였다. 그리고, 각 무선망의 특징들을 살펴보고, 모바일 원격진료 시스템에 필요한 대역폭을 측정하여 적합한 무선망을 고려해 보았다. 또한 무선망을 사용할 때 발생할 수 있는 보안문제를 고려하여 VPN 서버를 이용한 L2TP/IPsec 기술을 적용하였다. [9]
제 2 장 시스템 환경

2.1 개발환경

2.1.1 환경 설정(PC)

모바일 디바이스에서의 응용 프로그램 개발은 데스크탑에서의 개발 방법과 차이가 난다. 개발하는 응용프로그램은 모바일 디바이스에서 실행해야 하기 때문에 이를 위한 지원 도구가 반드시 필요하다.

<table>
<thead>
<tr>
<th>구분</th>
<th>취득 경로</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveSync</td>
<td>공개 사이트</td>
</tr>
<tr>
<td>Windows Mobile 5, 6 SDK</td>
<td>공개 사이트(MS)</td>
</tr>
</tbody>
</table>

표 1. 모바일 디바이스에서의 응용 프로그램 개발을 위한 지원 도구

2.1.2 모바일 디바이스

<table>
<thead>
<tr>
<th>모델명</th>
<th>운영체제</th>
<th>플랫폼</th>
<th>프로세서</th>
<th>램(MB)</th>
<th>네트워크</th>
<th>해상도</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH-M480</td>
<td>CE5.2</td>
<td>WM6.1</td>
<td>PXA311</td>
<td>128</td>
<td>HSDPA</td>
<td>240x320</td>
</tr>
<tr>
<td>SCH-M8200</td>
<td>CE5.1</td>
<td>WM5.0</td>
<td>PXA27x</td>
<td>64</td>
<td>WiBro</td>
<td>240x320</td>
</tr>
<tr>
<td>iPAQ 212</td>
<td>CE5.2</td>
<td>WM6.0</td>
<td>MARVELL</td>
<td>128</td>
<td>Wi-Fi</td>
<td>480x640</td>
</tr>
</tbody>
</table>

표. 2 개발에 사용된 PDA들의 기본사항

Windows CE는 32비트용 가상 메모리를 사용하면서 사용자 영역에 총 2GB의 공간을 64개의 슬롯으로 나누어 작업을 한다. 그중 32개를 사용자가 사용할 수 있다. 이론적으로는 32개의 프로그램 실행이 가능하지만 이 중에서 중복 실행과 시스템에서 사용하면 프로그램, DLL 로드 등을 담당하느라 실제 사용자가 실행할 수 있는 응용프로그램의 숫자는 20여 개정도가 된다. 이때, 1개의 응용프로그램이 차지하는 메모리 공간은 최대 32MB로 제한되어 있다.[10]

2.1.3 네트워크

1) Wi-Fi

보통, 와이어리스랜이라 불린다. Wi-Fi는 무선접속장치(Access Point)가 설치된 곳을 중심으로 일정거리 이내에서 PDA나 노트북 컴퓨터를 통해 인터넷을 이용할 수 있게 해주는 기술이다. 따라서 가정과 사무실에서는 물론, 이동 중에도 신
속하고 간편하게 온라인에 접속할 수 있다. Wi-Fi 네트워크에 액세스할 수 있는 곳을 핫스폿이라 한다. Wi-Fi(또는 802.11b)는 2.4Ghz 스펙트럼에서 동작하며 최대 11Mbps의 속도를 지원한다. 802.11 영역에는 (a)와 (g)라는 두 가지 공개된 프로토콜이 더 있지만, 802.11b가 가장 널리 사용되고 있다.

Wi-Fi 핫스폿은 인터넷 연결 액세스 지점을 설치하여 만든다. 액세스 지점은 대개 50m를 아우르는 단거리 내에서 무선 신호를 전송한다. PDA와 같은 Wi-Fi 기능 단말기가 핫스폿과 만나면 단말기는 해당 네트워크에 무선으로 연결할 수 있다. 대부분의 핫스폿은 공항, 커피숍, 호텔, 대형 서점 및 대학 캠퍼스 같은 공공 지역에서 액세스할 수 있는 위치에 설치되어 있다.

2) HSDPA(High Speed Downlink Packet Access)

HSDPA기술은 IMT-2000(International Mobile Telecommunication 2000)을 의미하는 비동기식 방식의 WCDMA가 진화한 기술이다. 하향 링크에서 최대 14Mbps(기지국 기준)의 전송속도를 제공하여 WCDMA에 비해 최대 3~7배 이상 빨라진 통신기술이다.[4]

FDD 모드 및 광대역 TDD 모드 HSDPA는 5MHz대역내에서 3.84Mcps의 칩율(Chip rate)을 사용하는 기존의 FDD 모드 또는 광대역 TDD 모드 시스템과 동일한 채널화 부호(Channelization code) 자원을 사용함으로써 상호 공존이 가능하도록 설계되어 있다.

마찬가지로 협대역 TDD 모드 HSDPA는 기존의 1.28Mcps의 칩율을 사용하는 협대역TDD 모드 시스템과 동일한 주파수 대역에서 공존이 가능하도록 설계되어 있다. HSDPA가 기존의 WCDMA의 발전된 형태임을 감안하여 HSDPA는 WCDMA Release 5의 일부로 포함되어 표준이 제정되었다.[11]

3) WiBro(Wireless Broadband)

WiBro는 대한민국 삼성전자와 한국전자통신연구원이 개발한 무선 광대역 인터넷 기술이다. 처음엔 고속 데이타 통신 기술을 가리키는 용어로 창안된 것이지만, 통신업체에서 기술명을 서비스명으로 이용하면서 기술 이름보다 서비스 이름으로
더 잘 알려져 있다.

현재 한국 내 사업자로 KT와 SK텔레콤이 선정되어, 2006년 6월 30일부터 대한민국 서울과 경기도의 일부지역에서 세계 최초로 상용화 서비스가 시작되었다. 2007년 10월, 인천광역시와 부산광역시 일부에까지 확장되었다.

2007년 10월 18일, 한국이 세계 최초로 개발한 와이브로 기술이 국제전기통신연합 전파총회에서 ‘IMT-2000’으로 통칭되는 3세대 이동통신(3G)의 6번째 국제표준으로 채택됐다.

와이브로는 무선 인터넷 접속 규격의 하나이다. 와이브로는 동시 송수신을 위해 TDD를, 다중 접속을 위해 OFDMA를 채택했으며, 한 채널에 8.75MHz의 대역 너비를 가진다. CDMA 1x와 같은 휴대 전화가 데이터 속도에 제한을 받는 것을 극복하기 위해 고안되었으며 ADSL이나 무선랜과 같은 광대역 인터넷 접속에 휴대성을 더한 것이다.

WiBro의 가장 큰 기술적 특징은 무선 인터넷 접속에 이동성을 더하였다는 것이다. WiBro는 이동통신의 다중접속(CDMA) 기술을 응용하여 서비스 셀을 구성하고 이동하면서 인터넷에 접속할 수 있게 하였다.

인텔에서 추진하는 무선 광대역 인터넷 서비스 WiMAX는 최근 이동성을 제공할 수 있는 규격 개선을 진행하고 있으며 이에 따라 WiBro의 규격이 WiMAX와 호환되도록 개선하려고 노력하고 있다.[12]

<table>
<thead>
<tr>
<th>Wi-Fi</th>
<th>HSDPA</th>
<th>WiBro</th>
</tr>
</thead>
<tbody>
<tr>
<td>사용 주파수 대</td>
<td>2.4GHz</td>
<td>5MHz</td>
</tr>
<tr>
<td>전송속도(하향)</td>
<td>11Mbps</td>
<td>1Mbps</td>
</tr>
</tbody>
</table>

표 3. 네트워크의 성능 비교
2.1.4 네트워크 보안

PC-PDA간 통신을 할 때 발생할 수 있는 문제를 고려하여 L2TP/IPsec을 적용해 보았다.

1) L2TP(Layer Two Tunneling Protocol)

이 자료에서는 IP 네트워크 혹은 IP 상에서의 L2TP 트래픽 보호를 위해 IPsec 프로토콜 기능 사용을 제안한다. 이 자료는 end-to-end 보안 방법 내용과 이를 표준화 할 수 있는 방안을 기술한 것은 아니므로 특별히 end-to-end 보안을 위해 필요한 시는 L2TP 터널 보안 외에 터널 내에서 사용될 부가적인 보안 메커니즘이 필요할 것으로 고려된다.

2) IPsec을 이용한 L2TP

L2TP 터널링은 L2TP 제어 패킷과 패킷 기밀성, 무결성, 그리고 인증성이 보장되지 않아 보안 측면에서 취약성을 갖고 있다. 또 L2TP가 터널 인증 기능을 갖
고 있지만, 이것은 터널 생성 시 통신 양방(L2TP 클라이언트와 서버)의 인증에만 사용되고 있으며 통신 도중 데이터나 제어 패킷의 인증에는 적용되지 않는다. 그리고 L2TP에 PPP가 포함되어 있지만, PPP 인증 기능과 암호 기능 역시 L2TP 패킷 레벨에는 적용되지 않는다. 이러한 L2TP 프로토콜 보안의 취약점은 IPsec 프로토콜을 적용함으로써 보완될 수 있다. (그림 1)은 L2TP/IPsec 프로토콜의 패킷 포맷을 나타낸다. 즉, IPsec의 ESP와 AH 프로토콜에 L2TP/PPP 프로토콜 스택을 의무적으로 포함하고 모든 알고리즘을 포함하며, Null encryption option도 의무 사항으로 처리하므로 L2TP가 갖고 있는 보안 취약성을 보완할 수 있게 된다. [11]
제 3 장 시스템 설계

3.1 소켓통신

소켓 통신은 환자(PC)와 의사(PDA)가 원격진료에 필요한 데이터들(정보, 채팅, 파일, 생체신호, 비디오)을 송수신 할 수 있도록 네트워크로 연결해 주는 역할을 한다.[13]

그림 1. 클라이언트가 서버에 접속하여 데이터를 주고 받는 과정
클라이언트가 서버에 접속하는 과정은 그림 2와 같다. 클라이언트가 서버에 접속하여 데이터를 주고받기 위해서는 모두 12개의 소켓이 필요하다. 서버와 클라이언트가 데이터를 주고받기 위해 각각 소켓을 5개씩(정보, 채팅, 파일, 생체신호, 비디오) 가지고 있어야 하며, 서로의 연결을 관리하는 소켓을 별도로 1개씩 가지고 있어야 한다.

먼저, PDA는 Create 함수를 호출하여 서버 소켓을 생성하고, Listen함수를 호출하여 PC의 접속 요청을 감지하기 시작한다. Listen함수를 호출하고 나면 그때부터 클라이언트의 접속 요청을 받아들일 수 있는 상태가 된다.

클라이언트가 서버에 접속하기 위해서는 역시 Create함수를 호출하여 소켓을 생성하고 서버의, IP주소와 포트 번호를 지정하여 Connect 함수를 호출하여 서버에 접속을 요청한다. 클라이언트로부터 접속 요청을 받은 서버 소켓은 별도의 데이터 소켓을 생성하고, Accept함수를 호출하여 새로 생성된 소켓과 클라이언트를 연결시켜 준다.
3.2 채팅 다이얼로그

채팅 다이얼로그는 환자와 의사간에 메시지 송수신하는 기능을 한다. 또한 이후에 설명한 Triage에서도 채팅을 이용하여 환자-의사간에 정보를 전달한다. 채팅창을 이용한 문자 데이터 교환은 데이터량이 매우 작으므로, 전송망의 상태에 관계없이 쉽게 양단의 정보를 교환할 수 있는 장점이 있다.

그림 2. 채팅 다이얼로그 블록 다이어그램

채팅 다이얼로그가 생성되면 메시지 전송 Thread와 메시지 수신 Thread가 생성된다. 채팅 다이얼로그에서 컨트롤에 데이터를 입력하고 전송 함수를 호출하면 데이터는 WCHAR형에서 CHAR형으로 형변환이 이루어진 뒤 메시지 전송 Thread로 전달되어 Socket으로 전송된다. 그리고 클라이언트로부터 수신받은 메시지는 메시지 수신 Thread에 전달되어 CHAR형으로 형변환이 이루어진 뒤 채팅 다이얼로그 컨트롤에 디스플레이 된다.

Windows 플랫폼에서는 문자열을 표시할 때 ASCII(American Standard Code for Information Interchange)를 기본으로 사용하고 있어서 CHAR와 CString 간에 메모리 병목에서의 형변환이 자유롭다. 하지만 Windows Mobile 플랫폼에서는 문
자열을 표시할 때 UNICODE(Universal Code)를 기본으로 사용하고 있어서 CHAR와 CString 간에 형변환을 변환하려면 중간에 WCHAR로 변환시키켜 준 뒤에 변환해야 한다. 만일, 중간에 WCHAR로 변환해주기 과정을 생략할 경우에는 비 정상적인 데이터가 입력되어 프로그램에 오류가 발생한다. 이때, WCHAR에서 CHAR로 변환 할 때에는 WCHAR는 한문자당 2Byte의 메모리를 차지하고, CHAR는 한문자당 1Byte의 메모리 차지한다. 만약, 배열로 선언한 CHAR형 변수에 할당된 메모리보다 더 많은 WCHAR형 변수를 대입할 경우, 아무런 경고없이 프로그램이 자동으로 종료되는 오류가 발생할 수 있다.

3.3 파일 다이얼로그

파일 다이얼로그는 의사가 원격지로부터 환자와 관련된 사진이나 문서를 받을 수 있고, 동시에 서로가 같은 문서를 볼 수 있는 기능을 한다.

![그림 3. 파일 다이얼로그 블록 다이어그램](image)

파일 다이얼로그가 생성되면 File Socket Class로부터 파일 데이터를 수신 받을 수 있다. WM 플랫폼에서는 절대경로만을 인식하기 때문에 저장할 경로를 절대경로로 지정해 주어야한다. 수신된 파일을 클릭하면 파일 환경에서 패키지 이외 프로그램과 연결되어 실행된다. 또한, 원격지로 해당 파일을 실행하고 있음을 알림으로서 원격지에서도 같은 파일을 볼 수 있게 한다.
3.4 생체신호 다이얼로그

생체신호는 신체 내부의 변화를 다양한 종류의 전극을 통해 전기적 신호로 바꾸어 파형으로 나타낸 것이다. 생체 신호는 환자의 계속적인 상태 변화를 파악하기 위한 객관적 수치 데이터이다. 본 논문에서는 가장 널리 사용되고 있는 ECG(Electrocardiogram)을 중심으로 SPO2, Respiration, 맥박수 등의 신호를 이용하였다.[14]

생체신호 다이얼로그는 의사가 원격지로부터 환자의 생체신호(EGC, SpO2, HR, Respiration, NIMP, Temp등등)를 받아 그래프, 혹은 수치로 PDA화면에 디스플레이 하는 기능을 한다. 생체신호 중 ECG 데이터는 나중에 다시 볼 수 있게 파일로 저장된다.

생체신호 다이얼로그는 생체신호 다이얼로그의 확장형 기능으로서 생체신호 중 ECG 신호를 보다 정확히 확인할 수 있게 하는 기능이다. ECG 다이얼로그는 텔비
주된 형태로 실시간 ECG 다이얼로그와 저장한 ECG 다이얼로그와 연결되어 있다. 실시간 ECG 다이얼로그는 현재 입력되고 있는 ECG신호를 그래프로 디스플레이하고, 저장한 ECG 다이얼로그는 저장된 ECG신호를 그래프로 디스플레이한다.

일반 PC보다 CPU 및 메모리 성능이 낮은 모바일 디바이스에서 압축영상 디코딩, 소켓통신 쓰레드 그리고 생체신호 디스플레이까지 처리할 때 CPU 과부하가 무리가 생길 수 있다. 특히, 그중에서도 CPU 프로세스가 가장 많이 차지하는 기능이 바로 생체신호 디스플레이이다. 본 연구에 사용한 페이션트 모니터의 프로토타입에 따르면 ECG 신호는 1초당 300 샘플링 주기로 데이터가 들어오고 SpO2의 경우는 1초당 75 샘플링 주기로 데이터가 들어온다. 이 데이터들은 어떻게 처리하는지의 문제는 전체 시스템 성능을 크게 좌우한다.

3.4.1 GDI와 DC

윈도우즈 운영체제는 윈도우즈 응용 프로그램의 그래픽 사용을 위해 GDI(Graphics Device Interface)를 제공한다. GDI는 어떤 종류의 하드웨어에도 구현되지 않고 모든 그래픽 하드웨어에 동일하게 작동한다. 또한 윈도우즈 운영체제는 DC(Device Context)라는 개념을 제공한다. DC는 운영체제가 디스플레이 장치와 프린터, 메모리에 대한 접근을 관리하기 위한 일종의 도구이다. 개발자가 출력하려는 정보를 해당 DC에 넘겨주면 운영체제가 그 정보를 바탕으로 출력한다. 따라서 개발자가 디스플레이 장치에 그래픽 기능을 구사하려면 그래픽이 표시될 출력 장치의 DC를 먼저 획득해야 한다.[15]

BitBlt는 비트맵을 화면에 1:1로 출력해 주는 기능을 한다. 비트맵에 있는 비트 하나 하나가 그대로 출력에 대응되는 것이다. 비트맵 이미지를 출력하기 위해서는 출력할 화면과 같은 형태로 비트맵 이미지를 준비해야 한다. 서로 다른 색상을 지원하나 가능하나 배턴이 다르면 이를 출력할 수가 없다. Bitmap 출력을 위해 화면과 호환이 되는 DC를 CreateCompatibleDC를 통해 만들었다.
생체신호의 보다 빠른 디스플레이와 정확한 판독을 위하여 모눈종이 눈금이 있는 메모리 영역을 생성하고 메모리 영역에 그림을 그린 후 화면으로 복사하는 더블버퍼링 기술을 사용하였다. 모눈종이의 눈금은 3픽셀마다 가는 실선, 15픽셀마다 굵은 실선으로 표시하였다.

속도향상을 위하여 실제의 비트맵 대신 가상의 비트맵을 메모리에 만들고 화면과 호환이 되는 DC로 변환하였다.

표 4. DC 생성

생체신호의 보다 빠른 디스플레이와 정확한 판독을 위하여 모눈종이 눈금이 있는 메모리 영역을 생성하고 메모리 영역에 그림을 그린 후 화면으로 복사하는 더블버퍼링 기술을 사용하였다. 모눈종이의 눈금은 3픽셀마다 가는 실선, 15픽셀마다 굵은 실선으로 표시하였다.

속도향상을 위하여 실제의 비트맵 대신 가상의 비트맵을 메모리에 만들고 화면과 호환이 되는 DC로 변환하였다.

표 5. 메모리에 가상의 비트맵 생성
그래프를 그릴 때마다 함수를 호출하여 모눈종이 눈금을 새로 그린다면 CPU 프로세스에 무리가 생긴다. 따라서 DC에 모눈종이를 그리고, 그래프를 그릴 때마다 DC에 그린 모눈종이를 불러와 그래프가 그리질 또 다른 DC에 복사한 후 그래프를 그린다. 다음 샘플을 그릴 때에는 이전에 그러진 DC를 좌측으로 1픽셀 이동시켜 그리고, 또 다음 샘플을 그릴 때에는 이러한 작업을 반복한다.

앞에서 기술하였듯이 생체신호 다이얼로그는 1초 375개(ECG : 300, SpO2 : 75)의 샘플링 된 데이터를 처리해야 한다. 1개의 샘플데이터를 그릴 때마다 함수를 호출하여 그래프를 그리면 CPU 프로세스 문제로 인해 딜레이 현상이 발생된다. 따라서 CPU 프로세스 사용률을 줄일 수 있는 다른 방법이 필요할 뿐만 아니라 그 방법으로 배열에 여러 포인트를 저장해 두었다가 PolyBezier 함수를 사용하여 한 번에 그리는 방법이 있다. 하지만 Windows GDI에는 PolyBezier 함수가 지원되지만 Windows CE GDI에는 PolyBezier 함수가 포함되어 있지 않다. 따라서, WM 플랫폼에서 Bezier를 사용하려면 그것을 대체할 만한 함수를 만들어야 한다.
2.4.2 비지어 곡선(Bezier curve)

\[
\begin{align*}
 f_1(U) &= (1 - U)^3 \\
 f_2(U) &= 3U(1 - U)^2 \\
 f_3(U) &= 3U^2(1 - U) \\
 f_4(U) &= U^3
\end{align*}
\]

\(0 \leq U \leq 1\)

표 6. 비지어 공식

그림 8. 비지어 곡선을 적용한 예
다음 코드는 비지어 공식을 코드로 옮긴 함수이다. 한변에 4포인트씩 처리한다. 실질적으로는 3포인트를 처리한다. 입력값으로 4포인트씩 받지만 선과 선을 이어서 처리하려면 한 포인트씩 겹쳐서 처리해야 한다.

```c
struct fPoint{float x, y};  // float형의 포인트 선언
void BezierComputePoint(float fU, fPoint* pDstPoint, CPoint* pSrcPoints)
{
    float fBlend;
    float f1subu = 1.0f - fU;

    // 첫 번째 포인트 (1-u)^3
    fBlend = f1subu * f1subu * f1subu;
    pDstPoint->x = fBlend * pSrcPoints[0].x;
    pDstPoint->y = fBlend * pSrcPoints[0].y;

    // 두 번째 포인트 3u(1-u)^2
    fBlend = 3 * fU * f1subu * f1subu;
    pDstPoint->x += fBlend * pSrcPoints[1].x;
    pDstPoint->y += fBlend * pSrcPoints[1].y;

    // 세 번째 포인트 3u^2 * (1-u)
    fBlend = 3 * fU * fU * f1subu;
    pDstPoint->x += fBlend * pSrcPoints[2].x;
    pDstPoint->y += fBlend * pSrcPoints[2].y;

    // 네 번째 포인트 u^3
    fBlend = fU * fU * fU;
    pDstPoint->x += fBlend * pSrcPoints[3].x;
    pDstPoint->y += fBlend * pSrcPoints[3].y;
}
```

표 7. 비지어 공식을 함수로 제작
다음은 비지어 수식을 이용하여 비지어 곡선을 그리는 함수이다.

```c
#define ROUND(x) ((int) (x + 0.5f)) //계산된 좌표값의 반올림

void DrawBezier(CDC *pDC, CPoint *pPoints, int nSegments) {
    pDC->MoveTo(pPoints[0]); //그래프의 시작점 설정
    fPoint fPointBezier;
    for(int i = 0; i < nSegments; i++) //nSegments만큼 좌표값 계산
    {
        BezierComputePoint(i / (float)nSegments, &fPointBezier);
        pDC->LineTo(ROUND(fPointBezier.x), ROUND(fPointBezier.y));
    }
    pDC->LineTo(pPoints[3]); //그래프의 마지막 점까지 그리줌
}
```

표 8. 비지어 곡선을 그리는 함수

여기서 nSegments값이 클수록 그래프의 곡선이 부드러워지며 nSegments값이 작을수록 그래프의 곡선이 날카로워진다. 그리고 CPU프로세스는 nSegments값에 비례하여 증가한다. 본 시스템을 구현할 때는 nSegments값을 3으로 설정하였다. nSegments값을 3으로 설정한 이유는 프로세스의 효율과 생체신호의 정확성을 감안하여 그래프가 수치적으로 왜곡이 없는 최소값으로 설정하였다. 다음은 그래프 좌표 값을 받아 DrawBezier함수에 넘겨주는 부분이다.

```c
void DrawBeziers(CDC *pDC, CPoint *pPoints, int nPoints, int nSegments) {
    VERIFY(pPoints != NULL); // 포인터가 비어있으면 오류
    ASSERT(nSegments > 0); // nSegments > 0이면 경고
    for(int i = 0; i < nPoints; i += 3) //DrawBezier는 4포인트씩처리
    {
        DrawBezier(pDC, &pPoints[i], nSegments);
    }
}
```

표 9. 비지어 함수에 좌표값을 넘겨주는 부분
3.5 비디오 다이얼로그

비디오 다이얼로그는 의사가 원격지로부터 실시간으로 촬영하는 카메라 영상을 받아 PDA화면에 디스플레이 하는 기능을 한다.

먼저, 비디오 다이얼로그가 생성되면 비디오 데이터 수신 Thread를 생성한다. 그리고 DirectShow 필터 그래프를 구성하여 수신 받은 비디오 데이터를 디코딩하여 화면에 디스플레이할 준비를 한다.

3.5.1 모바일용 Xvid 비디오 코덱 제작

MPEG-4는 MPEG에 의해 개발된 ISO표준으로서 멀티미디어 환경에서 영상의 효율적인 저장, 전송, 수정을 위한 도구와 알고리즘을 제공한다. 또한 MPEG-4는 에러에 강한 영상 전송을 위해 에러 강화性 도구들을 지원하여 무선망에서의 에러를 효과적으로 보상한다. 영상을 압축하기 위해 영상 정보의 양을 줄이기 위해 사용하는 필수적인 접근은 불필요한 정보와 중복되는 정보를 줄이는 것이다. 대부분의 압축된 영상은 이러한 정보들을 줄이기 위한 predictive coding에 의해 사공
간적으로 강하게 관련되어 있게 된다. 따라서, 압축된 영상 비트스트림에 에러가 발생할 경우 그것의 영향은 이웃하는 프레임과 블록으로 전파되기 쉽다. MPEG-4는 에러 강인성 도구들을 제공하여 에러의 전파를 보다 작은 범위로 제한한다.

그림 10. MPEG-4 코덱의 흐름도

Sub sampling은 고해상도의 원본이미지를 사람 눈에 차이가 없는 정도의 범위 내에서 해상도를 낮추는 과정이다. 대부분의 모바일 장치에서는 압축률을 높이기 위해 YCbCr 4:2:0 포맷을 주로 사용한다. Pre Filtering은 MPEG-4 표준의 필수과정은 아니지만, 일반적으로 모바일 제품에서는 압축효율을 높이기 위해 인코딩 전에 사용한다. 손실 압축 방법인 DCT(Discrete Cosine Transform)는 시간 영역의 데이터를 주파수 영역으로 변환해준다. 이 작업이 끝나면 고주파 성분을 제거하기 위해 Quantization과정이 수행되고, 다음은 P frame이나 B frame 인코딩을 위한
Motion Estimation과 디코딩을 위한 Motion Compensation과정이 실행된다. 모든 압축과정이 끝나면 이 데이터를 무손실 압축기법인 통계적 방법에 의해 압축이 수행되는 과정인 Entropy Coding이 시작된다. 이 과정에서는 DCT 및 Quantization과정이 수행한 둘 직접 계산 값과 AC/DC Prediction된 결과에 대해 Run Length coding과 Huffman Coding이 사용된다.[16]

Xvid(이전 명칭은 XviD)는 MPEG-4 표준을 따르는 영상 코덱 라이브러리이다. Xvid는 b-프레임, 전체화 1/4 화소 움직임 보상, 루미 마스크, 격자 양자화와 같은 MPEG-4 진보된 단순 프로필 기능을 지원한다. H.263, MPEG과 커스텀 양자화 메트릭스 등도 지원한다. Xvid는 자유/오픈 소스 소프트웨어이며, 다양한 플랫폼과 운영 체제에서 사용될 수 있다.[17]

코덱(인코더 + 디코더)은 H/W단에서 처리되는 S/W이기 때문에 Device와 플랫폼의 특성에 맞게 컴파일해야 사용할 수 있다. 일반적인 PC(Windows계열의 O/S를 사용하는 데스크탑, 노트북, U MPC)에서 인코딩(압축) 된 비디오 영상을 볼 때에는 PC에서 사용할 수 있도록 디코더가 제작되어 있다. 하지만 모바일 디바이스의 경우에는 기기마다 다양한 CPU를 사용하기 때문에 모바일 디바이스에서 비디오를 디코딩 하려면 그에 맞는 코덱을 제작해야 한다.

WM 플랫폼은 arm을 기반으로 하는 CPU에서 동작한다. 본 논문에서는 Xvid 코덱 라이브러리를 이용하여 arm CPU에 최적화된 Xvid 코덱을 제작하고 DirectShow 트랜스플 필터에서 사용할 수 있도록 동적 라이브러리 파일(DLL)로 컴파일 하였다.

3.5.2 모바일용 DirectShow 필터개발

DirectShow는 윈도우즈 플랫폼에서 스트리밍 미디어를 다루는 기술이다. 다양한 파일 포맷을 지원하고 H/W에서 해당되는 멀티미디어 컨트롤을 지원하는지 자동으로 인식하고 동작한다. Windows XP 플랫폼에서 DirecShow를 개발하려면 DirectShow SDK(Software Development kit)를 별도로 설치해야 하지만 Windows Mobile SDK에는 DirectShow SDK가 포함되어있다.[18] 하지만 필터를
만들 때 사용하는 Baseclass 라이브러리(DirectShow SDK에 포함)는 WM 플랫폼에서 사용할 수 있도록 코드를 수정해 주어야한다.

그림 11. DirectShow 필터그래프 구성도

DirectShow를 이용하여 미디어 파일을 출력할 때에는 일반적으로 3단계의 필터링 과정이 필요하다. 소스필터, 변환필터, 랜더필터가 바로 그것인데 랜더필터는 MS에서 기본적으로 제공해 주는 것을 사용하였고, 소스필터와 프랜스폼 필터는 직접 제작하였다.

PDA는 PC와의 소켓 통신으로부터 스트리밍 데이터를 받고, 받은 데이터를 실시간으로 DirectShow 소스필터에 입력한다. 소스필터는 데이터를 변환 필터에 넘겨주고, 변환 필터는 비디오 디코딩 작업을 수행하여 랜더필터로 보낸다. 마지막으로 랜더 필터는 변환필터로부터 받은 디코딩된 스트리밍 데이터를 DirectDraw를 이용하여 화면에 출력한다.
그림 12는 변환 필터의 데이터 처리 과정이다. 변환필터가 필터메니저 그래프에 생성되고 소스필터와 연결이 되면 CheckInputType 함수가 실행된다. CheckInputType 함수는 입력된 미디어의 Type이 비디오인지 체크하고 인코딩된 코덱이 Xvid인지를 체크한다. GetMediaType 함수는 비디오 데이터의 화면크기와 데이터크기, 그리고 코덱 방식이 YUY인지 RGB 구별한다. 마지막으로 트랜스포그 함수는 소스필터-변환필터-렌더필터가 모두 연결되었을 때 실행되는 함수로 모든 필터연결이 성공적으로 맺어지면 무한 반복을 한다. 트랜스포그 함수는 Xvid.dll을 로딩하여 인코딩된 데이터를 디코딩하는 기능을 수행한다.
그림 13은 변환 필터가 코덱 라이브러리와 연결하여 디코딩하는 과정을 나타낸 것이다. 변환 필터는 소스필터로부터 받은 인코딩된 비디오 데이터가 있는 메모리 주소와 렌더필터에 넘겨질 비디오 데이터 메모리 주소를 Xvid.dll에 보낸다. Xvid.dll은 받은 메모리 주소로부터 인코딩된 데이터를 읽어 들인 뒤 디코딩하여 다시 트랜스폼 필터로 보내준다. 이 과정을 모두 마친다면 PDA화면을 통해 원격지의 비디오 영상을 볼 수 있게 된다.
3.6 Triage 다이얼로그

Triage 다이얼로그는 응급환자의 현재 증상을 파악하고 그러한 증상들이 어느 정도의 중증도를 보이고 있는지를 분류하여 원격지에 알리는 기능이다.[19]

그림 14. Triage 다이얼로그 묘사 다이어그램

Triage의 결과를 채팅 다이얼로그를 이용해서 전송하기 때문에 Triage 다이얼로그가 생성되기 전에 채팅 다이얼로그 생성유무를 먼저 체크한 후 Triage 다이얼로그를 생성한다. Triage 다이얼로그가 생성되면 그림 14와 같은 과정을 따라 환자의 증중도를 분류하게 된다. 중증도 분류를 마치면 Triage 데이터를 PDA에 텍스트 파일 형태로 저장함과 동시에 채팅 다이얼로그를 통해 원격지로 전송한다.

3.6.1 응급환자 중증도 분류

응급 환자가 다른 일반 환자와 구별되는 가장 큰 특징은 즉각적인 치료를 받

| 긴급(urgent)환자 | 1. 활력 징후가 불안정한 환자
1) 수축기 혈압이 90mmHg 미만인 환자
2) 맥박 수가 160회 이상인 성인
2. 갑작스런 의식의 변화가 있는 환자
(뇌출혈, 뇌경색, 간성 혼수, 당뇨병성 혼수, 요독증, 기타 절환, 의심으로 인한 혼수 등)
3. 급성 흉통을 호소하는 환자
(급성 심근 경색, 박리성 대동맥류, 간장성 기흉, 심장압전 등)
4. 주요부 괴상이 개방 골절 및 다발성 골절
(골반골, 대퇴골, 다발성 늑골 골절이 있는 Flail chest 등)
5. 급성 호흡 부진을 보이는 환자
(천식 및 만성 호흡 질환 환자의 급성 증세, 대량의 객혈을 보이는 환자 등)
6. 산후 자궁 무력으로 인한 출혈 등 |
| 응급(emergent)환자 | 1. 심한 복통을 호소하는 환자
(활력 징후가 안정한 복막염, 결석 때문에 생긴 급성 종제 등)
2. 장골의 분쇄 골절
3. 횡수 손상이 의심되는 횡추 골절
4. 활력 징후가 안정한 위장관 출혈 |
| 비응급(non-emergent)환자 | 1. 이미 알고 있는 만성 절환 증세
2. 활력 징후가 안정한 단순 골절 및 열상
3. 활력 징후가 안정한 복통 |

표 10. 중증도 분류지표
제 4 장 실험 및 결과

4.1 시스템 성능 평가

4.1.1 데이터별 대역폭 측정 평가

본 시스템은 PC(환자)-PDA(의사)간 무선 네트워크를 연결하여 원격 진료에 필요한 정보를 받아 환자의 상태를 진단하고 처방을 내리는 것을 목표로 하고 있다. PDA는 유선망에 비해 상대적으로 대역폭이 낮은 Wi-Fi, HSDPA, WiBro와 같은 무선 인터넷 환경에서 사용된다. 따라서 본 시스템이 상용 무선망 환경에서 동작할 수 있는지 대역폭을 측정하여 검증하였다.

![시스템 구성도](그림 15. 시스템 구성도)
MPEG-4 코덱은 I-frame(Intra-coded frame), P-frame(Predictive-coded frame), B-frame(Bidirectionally predictive-coded frame)의 3가지 종류의 프레임이 있는데 I frame의 경우 이미지 전체를 코딩하고, P frame의 경우 이전에 코딩되었던 I frame 또는 P frame을 조사하여 공통점을 찾고 공통되지 않은 부분에 대해서만 코딩을 한다. B frame의 경우 이전 I/P frame 그리고 다음 I/P frame을 조사하여 공통된 부분을 찾아 다른 부분에 대해서만 코딩을 한다. 따라서 MPEG-4 코덱은 움직임이 많은 영상일수록 B-frame과 P-frame의 데이터의 크기가 커짐으로 전체 데이터량도 많아진다. 물체의 움직임은 정량적으로 측정할 수 없고 다른 프레임 레이트에서 같은 조건 데이터를 제시해야 했기 때문에 움직이지 않는 물체를 촬영하였다. 실험은 초당 비디오 프레임을 1프레임부터 15프레임까지 올려가며 변화하는 데이터량을 측정하였다.

다음의 그래프는 각 프레임당 1분씩 측정한 값의 평균값을 정리한 것이다.

그림 16. 프레임 레이트에 따른 비디오 스트리밍의 데이터량 변화
프레임 레이트가 1-15까지 증가하는 동안 대역폭은 55Kbps부터 204Kbps까지 증가하였다. KT 와이브로 공식 홈페이지에는 WiBro가 3Mbps, HSDPA가 1Mbps로 명시되어 있으나 실질적으로 두 무선망을 테스트 할 경우 안정적인 상황에서 WiBro는 1Mbps, HSDPA는 300kbps 정도로 측정된다. 따라서 안정적인 상황에서 상용 무선망을 사용할 경우, 1-15프레임 안에서 비디오 스트리밍을 제공하는 데에는 대역폭에 문제가 발생하지 않았다.

생체신호 데이터는 평균 11.17kbps의 대역폭을 차지한다. 이는 비디오 데이터에 비해 극히 작은 것으로서 대역폭 실험에 큰 영향을 미치지 못하였다. 파일데이터는 정지 영상 전송을 목표로 삼고 있고, 320 X 240 해상도에 맞는 정지 영상은 최대 80Kbyte를 넘지 않는다. 또한 지속적이지 않기 때문에 이 역시 대역폭 실험에 큰 영향을 미치지 못하였다.
4.1.2 영상품질 평가

앞서 보고한 영상의 전송이 이루어졌는지를 판단하는 기준으로 전송된 영상의 품질을 비교하였다. 영상 품질 비교의 척도로 압축되지 않은 원본 영상과 전송된 영상 사이의 PSNR(Peak Signal-to-Noise Ratio)가 사용되었다. 인간의 시각 체계가 색상보다 휘도에 훨씬 민감하기 때문에 영상포맷인 YUV 중 휘도성분인 Y의 PSNR을 사용한다.

\[
PSNR = 10 \cdot \log_{10} \left(\frac{MAX^2}{MSE} \right) = 20 \cdot \log_{10} \left(\frac{MAX}{\sqrt{MSE}} \right)
\]

그림 18. PSNR 공식

변수가 i, j 2개인 것은 영상처리를 기준으로 식을 쓰기 때문에 가로, 세로를 표현하기 위해 2개다. (음성처리에서는 1개) 하지만 영상처리에서도 실제로는 속도 향상을 위해 1개를 사용한다.

\[
MSE = \frac{1}{mn} \sum_{i=0}^{m-1} \sum_{j=0}^{n-1} ||I(i,j) - K(i,j)||^2
\]

그림 19. MSE 공식

MSE는 Mean squared error의 약자로 오차 제곱의 평균을 뜻한다.
표 11. PSNR 측정 환경 및 PSNR 값

논문에 따르면 30dB가 넘으면 두 영상의 차이를 눈으로 구분하기 어렵다고 한다.[22-23]
4.2 보안 네트워크 구성

그림 21. L2TP/IPsec을 이용한 PC-PDA간 보안 네트워크 구성

- VPN(Virtual Private Network) : 실제로 존재하는 아이피가 아니라 가상으로 만들어낸 사설 네트워크

L2TP / IPsec 보안 시스템을 구성하기 위해 2대의 서버PC(라우터 역할), 2대의 AP, 1대의 노트북PC(환자), 1대의 PDA(의사)를 준비하였다. 환자는 VPN 서버1과 네트워크를 형성한다. 의사와는 VPN 서버2를 경유하여 VPN 서버1에 네트워크를 연결한다. 의사의 VPN 서버1로부터 가상의 VPN IP를 받아 환자와 네트워크를 형성하게 된다. 이때, 의사와는 실제로는 VPN 서버1에 속해 있지 않지만 VPN서버로부터 가상의 IP를 얻어낸으로서 환자는 의사가 자신과 같은 네트워크상에 위치한 것처럼 인식하게 된다. 이 때, 환자부터 VPN 서버1까지는 보통의 패킷을 전송하고 VPN 서버1부터 의사까지는 IPsec으로 암호화된 패킷이 전송된다.
그림 22. VPN Server1에 접속한 PDA

그림 23. 보안 프로토콜 환경에서 비디오 전송
프로토콜에 기록된 ESP(Encapsulating Security Payload)는 암호화된 패킷이 전송되었음을 의미한다. 192.168.3.108은 의사의 IP이고, 192.168.0.2는 VPN 서버1의 IP다. 결과적으로, 의사와 VPN 서버1과는 암호화된 프로토콜 아래에서 네트워크가 형성된 것이 관찰되었다.
4.3 시스템 UI

그림 25. 연결 다이얼로그

연결 다이얼로그는 환자와 의사간에 소켓통신을 할 수 있도록 설정해주는 역할을 한다. 연결을 클릭하면 자동으로 PDA의 IP가 표시된다.
그림 26. 채팅 다이얼로그

- PC와 채팅을 하고 있는 화면

그림 27. 파일 다이얼로그

그림 28. 그림 파일 실행
그림 29. 생체신호 다이알로그

그림 30. 실시간 ECG

그림 31. 저장한 ECG
- 화면의 콤보박스를 이용하여 원격지의 프레임 레이트를 조절할 수 있다.
그림 35. Triage 3

그림 36. Triage 4

그림 37. Triage 5

- Triage 다섯 단계를 모두 마치고 전송버튼을 클릭하면 Triage 데이터의 저장 및 전송이 이루어지고, 창이 닫힌다.
- Triage 데이터는 채팅창을 통해 원격지로 전송된다.
- 그림 39는 텍스트 파일 형태로 저장된 Triage 데이터를 읽어 들인 화면이다.
제 5 장 결론

본 논문에서는 모바일 디바이스를 기반으로 진료에 필요한 생체신호, 비디오 데이터, 이미지 파일, 채팅 메시지, Triage 데이터를 원격으로 전송받아 처리하는 원격 진료 시스템을 설계하였다. 원격 진료 시스템을 위해 Wi-Fi, HSDPA, WiBro와 같은 고속 무선 인터넷 망을 지원하는 PDA를 이용하여 네트워크를 구성하였다.

설계된 시스템의 효용성을 확인하기 위해 각 기능에 필요한 대역폭을 실험하였다. 또한 비디오 송수신 기능의 비디오 QOS를 확인하기 위해 PSNR 값을 측정하였다. 마지막으로 신뢰성 있는 데이터 보안을 위해 VPN 서버를 이용한 L2TP/IPsec 보안기술을 적용하였다.

모바일 디바이스 환경에서 원격 진료 시스템을 구현할 때에는 성능적인 부분에서 제한이 있다. Wi-Fi, HSDPA, WiBro와 같은 고속 무선 인터넷 망은 PDA에서 실시간 비디오 데이터를 전송하는데 필요한 대역폭(204kbps)을 제공한다. 하지만 실질적으로 PDA에서는 320 x 240 해상도의 영상을 1초에 12프레임 이상 처리할 경우에 영상이 조금씩 지연되는 현상이 발생되었다. 또한 생체신호와 함께 비디오 데이터를 처리할 경우에는 1초당 6프레임 이상을 처리할 경우에 영상이 지연되었다.

어떤 한가지의 의료정보만을 중심으로 구현되었던 과거의 모바일 원격 진료 시스템과는 달리 다양한 의료정보들을 지원하는 모바일 원격 진료 시스템을 구현하였다. PC로부터 환자에 대한 다양한 정보 획득을 하는 PDA를 원격지에서도 환자 상태를 쉽게 파악할 수 있게 되었다. 또한 전송속도의 변화가 많은 무선 인터넷망 환경에서 대역폭 상황에 맞추어 실시간으로 비디오 데이터의 프레임 레이트를 조절함으로서 효과적인 대응을 할 수 있었다.

앞으로, 모바일 원격진료 시스템 연구를 더욱 진행한다면 모바일용 오디오 앰코더와 오디오 디코더를 개발하여 PC-PDA간 음성대화 기능이 추가 될 것이다. 그리고 모바일 디바이스의 성능이 지속적으로 발전함에 따라 원격진료 시스템이
요구하는 다양한 기능들이 모바일 디바이스에도 적용 될 수 있을 것으로 전망한 다.
참 고 문 헌

1. 김광민, 고품질 멀티미디어 기반 실시간 원격 시스템의 설계, 연세대학교, 2002
6. Yan Xiao1, David Gagliano2, Marian LaMonte1, Peter Hu1, Wade Gaasch1, Ruwani Gunawadan1, Colin Mackenzie1
7. Design and evaluation of a real-time mobile telemedicine system for ambulance transport[1]Work reported here was partially supported by National Library of Medicine, Journal of High Speed Networks, Volume 9, 2000
10. 고재관, Windows Embedded CE Programming, 정보문화사, 2006

- 43 -
12. 김문구, 지경용, 박종현, 디지털 컨버전스 시대의 모바일 브로드밴드 전개: 와이브로와 HSDPA, 한국통신학회지, 23권 4호, 2006
15. 고재관, 임지영, 윈도우즈 임베디드 CE 프로그래밍 입문, 정보문화사, 2008
16. 박기현, 코덱의 세계로의 초대 : 이론과 실무의 조화, 홍릉과학출판사, 2006
17. http://www.xvid.org
18. 김영찬, Windows CE 모바일 프로그래밍, 한빛미디어, 2007
19. 한동훈, 모바일 디바이스와 생체계측 모니터링 시스템 기반 응급기록의 컴퓨터 인터페이스 설계, 연세대학교, 2007
20. 박인철, 이경용, 이승재, 구급차를 이용한 응급환자의 중증도 분류, 대한응급의학회지, volume:7, No.1, 1996
ABSTRACT

Design of a Real-Time Mobile Telemedicine System for Emergency Patients

The purpose of telemedicine is make between patient and doctor telemedicine system without limitation of time and space, doctor inform patient accurate prescription. Recently, it is possible to build telemedicine system on PDA, according as developing wireless communication technique and mobile device technique. May be, doctor provide telemedicine service to patient anytime and anywhere, using smartphone is the suitable way because it is portable and many people use it.

In this paper, I develop mobile telemedicine system that transmit chatting message, picture files, real-time video data, triage data between PC(patient) and PDA(doctor). Efficient process management is the most important problem in using telemedicine system on PDA. Using system on PDA is limited, because CPU perfomance and memory volume of PDA is not good more than desktop PC. I design system for variety function of mobile device. I build Xvid video CODEC in mobile device for video display and make decoder filter for operating based on Directshow.

I try to identify measuring of the bandwidth using the designed system to work in wireless Wi-Fi, WiBro, HSDPA. As well as, I made an experiment in insurance of the network security connected with VPN server. Finally, I do test the stability using mobile remote medical treatment for several times.

Keywords: Telemedicine, PDA, smartphone, mobile, video, CODEC, DirectShow