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ABSTRACT 

Korea red ginseng restores impaired endothelial function in aged 

mice through inhibition of arginase activity 

 

Korean red ginseng water extract (KRGE) has reported beneficial effects on the 

cardiovascular system. Cardiovascular disease is the leading cause of morbidity and 

mortality and the incidence of cardiovascular disease is predicted to increase as the 

population ages. There is accumulating evidence that arginase upregulation is associated 

with impaired endothelial function in aged vasculature. Here, we demonstrate that oral 

administration of KRGE to aged mice inhibits increased arginase activity, restores NO 

generation, and reduces ROS production via enhancement of endothelial nitric oxide 

synthase coupling. In vascular tension assay, attenuated vasorelaxation responses to 

acetylcholine and reduced vasoconstriction responses to phenylephrine in aged vessels 

were significantly improved following administering KRGE. Furthermore, KRGE 

showed a preventative effect on formation of peroxynitrite in plasma of aged mice. Taken 

together, these results suggest that KRGE may exert vasoprotective effects through 

augmentation of NO signaling by inhibiting arginase activity. Therefore, KRGE may be 

useful in the treatment of vascular diseases associated with aging. 

 

Keywords: Panax ginseng, Korean red ginseng extract, Aging, Arginase, Endothelial 

Nitric Oxide Synthase, Nitric Oxide, Vasorelaxation 
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I. INTRODUCTION 

 

Cardiovascular diseases are the leading cause of morbidity and mortality in both 

industrialized and developing countries. The occurrence of cardiovascular disease is 

predicted to increases as population ages, although effective treatments for several 

established cardiovascular risk factors, such as hypertension and hypercholesterolemia. 

The hallmark of the aging cardiovascular system is decrease in nitric oxide (NO) 

bioavailability 
1, 2

 and increase in reactive oxygen species (ROS) production 
3, 4

. 

Superoxide (O2
·-
) is a free radical that rapidly scavenges NO, thereby decreasing NO 

bioavailability. NO and O2
·-
 may react to produce peroxynitrite (ONOO

-
), a highly 

damaging ROS molecule. Thus, simultaneous generation of NO and O2
·- 

can raise ONOO
-
 

to levels potentially detrimental to vascular cell function and viability 
5
. This nitroso-

redox imbalance contributes to age-related endothelial dysfunction and vascular stiffness 

6
. 
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Korean red ginseng water extract (KRGE) has been extensively studied and its 

consumption progressively increased. Ginseng has shown beneficial effects to various 

diseases, including thrombosis, hyperlipidemia, cancer, and atherosclerosis 
7-11

. In 

vascularture, it is well documented that KRGE has vasoprotective effects by eliminating 

superoxide derived from NADPH oxidase 
12

, promoting endothelial cells proliferation 

and protecting from H2O2-dependent cell death 
8, 13

, and inducing heme oxygenase-1 

expression 
14

. Ginseng extract exerts a direct vasodilatory effect by releasing NO in 

endothelium-dependent manner 
15

. Furthermore, the beneficial effect of ginseng on 

vascular system may be dependent on activation of phosphoinositide 3-kinase (PI3K)/Akt 

signal transduction in endothelial cells 
16

. 

 

Vascular changes associated with aging have been investigated in humans and a 

number of other species 
17

. However, the relative contributions of dysregulated 

mechanisms to age-related vascular pathology remain to be elucidated, because the 

contribution of vascular control mechanisms in health, aging, and disease conditions is 

influenced by vessel type and size 
17

. In previous study, we demonstrated that KRGE 

inhibited arginase activity and reciprocally regulates NO production and enhanced NO-

dependent vasorelaxation in wild type young mice 
18

. Therefore, we, here, investigated 

which mechanisms contribute to age-related endothelial dysfunction in mice and 

determined whether orally administered-KRGE improves impaired endothelial function 

in aged mice. 
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II. MATERIALS AND METHODS 

 

1. Materials 

KRGE (solid extract 64%, gensenosideRg1+Rb1 4 mg/g) was obtained from Korea 

Ginseng Corporation (chuncheon, Korea) and directly dissolved in distilled water. 

MnTBAP(Mn(III) Tetra(4-benzoic acid) porphyrin chloride) and L-NAME(N
G
-nitro-L-

arginine methyl ester) were obtained from Calbiochem. All reagents were purchased from 

Sigma unless otherwise stated. 

2. Animal protocol 

Young (10±3 weeks) and aged (55±5 weeks) mice (C57BL/6J) were used for all 

experiments. Mice were housed at 23°C under a 12-h light/12-h dark cycle. The dark 

period was from10:00 to 22:00. All animals had access ad libitum to water and food 

(Nara Biotech.). The study protocols were in accordance with the Guide for the Care and 

Use of Laboratory Animals (Institutional Review Board, Kangwon National University). 

KRGE was orally administered for 4 weeks. Given that each mouse consumed 

approximately 10 ml water/day, this represented a daily dose of ~20 mg/mouse/day of 

KRGE 

3. Arginase activity assay 

Tissue lysates were prepared using lysis buffer (50 mM Tris-HCl, pH7.5, 0.1 mM 

EDTA and protease inhibitors) by homogenization at 4°C followed by centrifugation for 

20 min at 14,000 x g at 4°C. The supernatants were used to assay for arginase activity as 

previously described 
19

.  

4. Western blotting analysis 

Aortic vessels from C57BL/6 mice were homogenized in the buffer (50 mM Tris-HCl, 

150 mM NaCl, 1% Nonidet P-40, 1 mM EDTA, 1 g/ml of leupeptin, 1 g/ml of 

pepstatin, 1 g/ml of aprotinin, 1 mM phenylmethylsulfonylflouride, 1 mM sodium 

orthovanadate, and 1 mM NaF) and centrifuged for 30min at 14,000 x g. The protein 
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amount of the supernatant was analyzed by the Bradford method. Protein (100 μg) were 

separated in a 10% SDS-PAGE and then transferred to a nitrocellulose membrane (Bio-

Rad). The blots were incubated with a polyclonal anti-arginase II (Santa Cruz), anti-

endothelial nitric oxide synthase (eNOS, BD Bioscience), or anti-actin (Santa Cruz) 

antibodies followed by the secondary antibody (Amersham). The signals were detected 

using an enhanced chemiluminescence detection reagent with X-ray films. 

5. Determination of eNOS dimerization 

Dimers and monomers of eNOS were separated using low-temperature SDS-PAGE as 

previously described 
20

. Band intensities were analyzed using NIH ImageJ Software. 

6. Estimation of NO or ROS generation in isolated mice aorta using 4-amino-5-

methylamino-2’,7’-difluorescein diacetate (DAF-FM) or dihydroethidine (DHE) 

NO and ROS production were estimated using microscope by measuring change of 

fluorescence intensity at different time intervals as described previously 
21

. 

 

7. Aortic vascular tension assay 

The study was approved in accordance with Guide for the Care and Use of Laboratory 

Animals (Institutional Review Board, Kangwon national University). Male mice 

C57BL/6J were anesthetized using isoflurane and the thoracic aorta was rapidly removed. 

The aorta were placed on ice-cold oxygenated Krebs-Ringer bicarbonate solution (NaCl 

118.3, KCl 4.7, MgSO4 1.2, KH2PO4 1.2, CaCl2 1.6, NaHCO3 25, glucose 11.1 (in 

mM)) and cleared off adherent connective tissues. The mouse aorta was cut into 1.5-mm 

rings and suspended between two wire stirrups (150 μm) in a myograph (Multi myograph 

system DMT-620) in 10 ml Krebs-ringer (95% O2-5%CO2, pH7.4, 37 ˚C). One stirrup 

was connected to a three-dimensional micromanipulator, and the other to a force 

transducer. The rings were passively stretched at 10-minutes intervals in increments of 

100 mg to reach optimal tone (600 mg). After the arterial rings had been stretched to their 

optimal resting tone, the contractile response to 100 mM KCl was determined. For 

constriction assay, phenylephrine (PE) was applied at different concentrations (10
-9

-10
-5

) 
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and cumulative responses were recorded. For NO-dependent relaxation responses, vessels 

were pre-constricted with PE (10
-6

) for 15 minutes and acetylcholine (Ach, 10
-9

-10
-5

) was 

then added to determine relaxation activities. To further confirm the vasorelaxation 

activity in a NO-dependent manner, the inhibitor of guanylate cyclase (1H-

[1,2,4]oxadizolo[4,3-a]quinoxalin-1-one, ODQ, 1 μM) was added at the end of 

experiments.  

8. Determination of thiobarbituric acid-reactive substances (TBARS)  

Plasma samples were mixed with trichloroacetic acid (20%) and the precipitate was 

dispersed in H2SO4 (0.05 M). TBA (0.2% in 2 M sodium sulfate) was added and heated 

for 30 min in boiling water bath. TBARS adducts were extracted by n-butanol and 

absorbance was measured at 532 nm 
22

. Malondialdehyde (MDA) was used as a standard.  

 

 

9. Statistics 

All data are represented as mean ± S.D. of at least four independent
 
experiments. An 

unpaired Student's t-test or 1–way ANOVA was used to assess
 
significant differences. A 

value
 
of p<0.05 was accepted as significant. 
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III. RESULTS 

 

1. Effect of KRGE on arginase activity in aortas of aged mice 

With the previous report that KRGE inhibits arginase activity 
18

, mice were orally 

administered KRGE at 10 or 20 mg/mouse/day for 4 weeks. At first, we measured 

arginase activity in isolated aortic vessels. Arginase activity in aorta of aged mice was 

significantly increased (* vs. young control, 140.0±13.5 vs. 100±6.9%, p<0.01) that was 

blocked by KRGE (** vs. aged, 117.1±10.2 (10 mg/mouse/day) and 110.0±9.2 (20 

mg/mouse/day) vs. 140.0 ±13.5%, p<0.05).  

 

2. KRGE enhances NO production and decreases ROS generation in endothelium of 

aged mice 

Given that arginase competes with nitric oxide synthase (NOS) for the common 

substrate, L-arginine, and negatively regulates NO production, we measured whether 

KRGE–dependent inhibition of arginase activity was associated with increase in NO 

production. As demonstrated in Fig. 2A, NO production was significantly attenuated in 

aged mice (* vs. young, 0.58±0.16 vs. 0.90±0.06 change of DAF fluorescence/second, 

p<0.01). It was restored in groups of KRGE administration (** vs. aged, 0.87±0.11 (10 

mg/mouse/day) or 0.91±0.14 (20 mg/mouse/day) vs. 0.58±0.16 change of DAF 

fluorescence/second, p<0.01).  

The effect of KRGE on NO production was also observed in young mice (# vs. young, 

1.13±0.09 vs. 0.90±0.06 change of DAF fluorescence/second, p<0.01). On the other hand, 

ROS generation in aged mice was markedly increased (* vs. young, 0.52±0.13 vs. 

0.31±0.04 change of DHE fluorescence/second, p<0.01). This was significantly inhibited 

with KRGE administration (** vs. aged, 0.37±0.13 or 0.28±0.06 change of DHE 

fluorescence/second, p<0.01). In young mice, KRGE also attenuated ROS generation (# 

vs. young, 0.24±0.02 vs. 0.31±0.04 change of DHE fluorescence/second, p<0.01). 

Interestingly, treatment of NOS inhibitor, L-NAME, reduced ROS generation in aged 
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mice (## vs. aged, 0.29±0.11 vs. 0.52±0.13 change of DHE fluorescence/second, p<0.01).  

 

3. KRGE administration enhanced eNOS coupling 

Based on the data of NO production and ROS generation, we next assessed proteins 

expression to find underlying mechanism. Interestingly, eNOS protein expression in aged 

mice was significantly increased (young vs. aged, 1.0±0.03 vs. 1.23±0.04, p<0.01) that 

was not affected by KRGE administration. On the other hand, arginase II protein 

expression was not changed in both groups (Fig. 3A). This result is not consistent with 

the above observation that NO production was decreased and ROS generation was 

increased in aged mice. Therefore, we tested whether eNOS coupling was reduced in 

aorta of aged mice. As shown in Fig. 3B, eNOS coupling was attenuated in aged mice, 

which was restored with KRGE administration (Fig. 3C). These results imply that 

endothelial function is impaired in aged mice through attenuated eNOS coupling despite 

increased eNOS expression and KRGE administration can restore augmented eNOS 

uncoupling in aorta of aged mice. 

 

4. NO-dependent relaxation of aortic vessels was augmented with KRGE 

administration 

With the above data that KGWE administration induced eNOS coupling and NO 

production, we measured vascular tension to determine whether increased NO production 

by KGWE contributes to vasorelaxation in aged mice. Mouse aorta were preconstricted 

with PE (10
-6

 M), and dose-response curves to endothelium-dependent vasodilator 

acetylcholine (Ach) were constructed. The vasorelaxation responses in aged mice were 

significantly attenuated compared with those from young (Fig. 4A, *, young vs. aged, 

97.16±4.08 vs. 73.30±2.50% (Emax), p<0.01; 7.23±0.13 M vs. 6.81±0.09 M (-logEC50), 

p<0.01). KRGE administration to aged mice enhanced vasorelaxation responses   Next, 

vasoconstrictor responses to the agonist phenylephrine (PE) were measured. As shown in 

Fig. 4B, the responses to PE were markedly attenuated in aorta from aged mice (*, young 

vs. aged, 59.92±1.83% vs. 20.93±1.68% (Emax), p<0.01; 8.21±0.08 M vs. 7.72±0.20 M (-



14 

 

logEC50), p<0.01). However, KRGE administration to aged mice enhanced 

vasoconstrictor responses in Emax (Fig. 4B, **, aged vs. aged+KRGE (10 and 20 

mg/kg/day, respectively), 20.93±1.68% vs. 40.06±3.32% and 55.84±1.54% (Emax), 

p<0.01), but not in -logEC50 (**, aged vs. aged+KRGE (10 and 20 mg/kg/day, 

respectively), 7.72±0.20 M vs. 7.56±0.19 M and 7.83±0.07 M, not significance). On the 

other hand, the responses to the endothelium-independent vasodilator sodium 

nitroprusside (SNP) were not significantly changed in any group (Fig. 4C) 

 

5. KRGE prevents peroxynitrite formation in aged mice 

Given that enhanced oxidative species such as peroxynitrite formation increase 

arginase activity 
23

 and enhanced peroxynitrite formation is associated with vascular 

aging 
24

, we performed TBARS assay to measure lipid peroxidation. In plasma of aged 

mice, lipid peroxidation was significantly increased that was reduced to those of young 

by administration of KRGE (Fig. 5, *, young vs. aged, 0.23±0.08 vs. 0.52±0.13 μM 

MDA/ml plasma, p<0.01; #, aged vs. aged+20 mg/mouse/day, 0.52±0.13 vs. 0.29±0.09 

μM MDA/ml plasma, p<0.01). 
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Figure 1 

 

 

Fig. 1. Increased arginase activity in aged mice aorta was inhibited by 

administration of KRGE. Oral administration of KRGE for 4 weeks resulted 

in decrease in arginase activity. * vs. Young, p<0.01; ** vs. Aged, p<0.01. 
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Figure 2 

 

 

 

 

Fig. 2. KRGE restored impaired endothelial function in aged mice. Isolated 

aortic segments were incubated with DAF-AM (5 μM) and fluorescence was 

measured in real-time (endothelium side up). The slope of DAF fluorescence 

was determined. (A) KRGE administration with young vessels increased the 

slope of DAF fluorescence (# vs. young, p<0.01). However, the decreased DAF 

fluorescence in aged mouse aorta was increased after KRGE ingestion (* vs. 

young, p<0.01; ** vs. aged, p<0.01; n=4 mice). L-NAME was used as a 

control. (B) ROS production in aortic endothelium was measured with DHE (5 

μM), and the slope of DHE fluorescence was determined using cumulative 

data. KRGE intake reciprocally regulated ROS production (# vs. young, 

p<0.01; * vs. young, p<0.01; ** vs. aged, p<0.01; ## vs. aged, p<0.01; n=4 

mice). MnTBAP was used as a control.  
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Figure 3 

 

 

 

Fig. 3. KRGE contributes to improvement of aging-dependent eNOS 

uncoupling. (A) The expression levels of proteins was not changed by KRGE 

in aortas of young and aged mice. (B). eNOS dimerization was analyzed by low 

temperature SDS- PAGE and Western blot analysis and eNOS was uncoupled 

in aged mice aorta. * vs. young, p<0.05. (C) KRGE induced increase of eNOS 

coupling in aged mice aorta. * vs. aged, p<0.05.  

. 
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Figure 4 

 

 

 Fig. 4. KRGE improved impaired vascular reactivity in aged mice. (A) 

Endothelium-dependent relaxation responses to Ach were impaired in aged 

aortas (*, young vs. aged, p<0.01). Impaired relaxation was recovered by 

KRGE administration (**, aged vs. aged+KRGE, p<0.05). (B) Aged aortic 

vessels had attenuated contractile responses to PE compared to young mice (*, 

young vs. aged, p<0.01). KGRE restored the PE-mediated pressor responses of 

aged aortic vessels (**, aged vs. aged+KRGE, p<0.01). (C) Relaxation 

responses to NO donor (sodium nitroprusside, SNP) are not significantly 

different in all groups. n=4 mice per each group.  
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Figure 5 

 

 

 

 

Fig. 5. KRGE administration prevented peroxynitrite formation. 

Peroxyntrite content in plasma were measured by TBAR assay. Increased 

peroxynitrite content in aged mice was significantly inhibited with 

administration of KRGE. young vs. aged, *p<0.01, n=6; aged vs. aged+KRGE, 

#p<0.01, n=6. 
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IV. DISCUSSION 

 

Endothelial arginase can constrain the activity of eNOS by depleting the critical 

substrate, L-arginine. In turn, increased arginase activity reduces NO bioavailability and 

contributes to vascular diseases such as aging, hypertension, and atherosclerosis 
6, 25-27

. 

Here, we show that oral administration of KRGE for 4 weeks enhances NO generation, 

reduces ROS production by inhibiting arginase activity, and induces the vasorelaxation in 

aortic vessels from aged mice. Furthermore, KRGE reduces the formation of peroxynitrite 

in plasma.  

 

Ginseng has been shown to have beneficial effects in the treatment of various diseases. 

In the vasculature, it is well documented that KRGE eliminates superoxide 
12

, promotes 

endothelial cell proliferation 
8
, protects cell death by H2O2 stimulation 

13
, and induces 

heme oxygenase-1 expression 
14

. Furthermore, the beneficial effects of ginseng on 

vascular system may be dependent on the activation of Akt/PI3K signal transduction 
16

, 

inhibition of angiotensin converting enzyme 
28

, and inhibition of calcium ion influx 
29

. 

Here, we demonstrate that KRGE inhibits arginase activity and is associated with 

decreased peroxynitrite formation through increased NO production and decreased ROS 

generation in aged vasculature.  

 

Aging is associated with changes in arterial wall structure and function. The most 

frequent modifications are luminal enlargement, vessel wall thickening due to intimal and 

medial expansion, elastin depletion and fragmentation, collegen and calcium deposition, 

glycation of proteins, and impaired vasomotor function associated with endothelial 

dysfunction 
30-32

. These structural and functional alterations in aging contribute to 

increased vascular stiffness, which is an independent risk factor for cardiovascular 

morbidity and mortality 
33-35

.  
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Accumulating evidence indicates that arginase contributes to age-associated 

endothelial dysfunction and arterial stiffening. The detrimental effect of arginase in 

vascular remodeling is attributable to its ability to stimulate vascular smooth muscle cell 

and endothelial cell proliferation, and collagen deposition by promoting the synthesis of 

polyamines and L-proline, respectively. 

 

Vascular ROS production is enhanced in aged blood vessels 
3, 24, 36, 37

. One of 

enzymatic systems that contribute to increased ROS production in pathophysiological 

states may be eNOS. Although eNOS normally produces vasoprotectant molecule NO, it 

can also produce O2
.-
 in the absence of either L-arginine or BH4 because electrons flow 

from the reductase domain in the heme to molecular oxygen rather than L-arginine in 

uncoupled eNOS. Actually, we showed that arginase activity and peroxynitrite formation 

was increased, and eNOS was uncoupled in aged vessels. Furthermore, increased ROS 

production in the endothelium of aged mice was prevented with preincubation of the 

eNOS inhibitor L-NAME that is consistent with previous observations 
38

. Peroxynitrite 

may stimulate arginase II activation via RhoA-dependent ROCK activation without a 

change in mRNA and protein levels 
23

. One study reported that peroxynitrite can react 

with the redox-active cysteine (Cys
18

) of RhoA, which enhances GDP release from RhoA 

and thus modulates their activity 
3
. Indeed, we found peroxynitrite formation as measured 

by the thiobarbituric acid reactive substance assay, was significantly increased in plasma 

from aged mice, which is consistent with previous publication 
24

.  

 

Increased expression of eNOS may depend on shear stress and hemodynamic forces 
39, 

40
 because of the presence of a shear stress-responsive element in the promoter region of 

the eNOS gene 
41

. Consistent with the demonstration, eNOS expression was increased in 

aorta 
42

 and not changed in artery 
43

 and decreased in arteriole 
2
. Furthermore, increased 

expression of eNOS protein in aged aorta may be one of the compensatory mechanisms to 

counterbalance endothelial dysfunction by increased arginase activity. 
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In summary, we demonstrate that KGRE, in aged aortic vessels, inhibits increased 

arginase activity that is associated with enhanced eNOS dimerization and increased NO 

production. Furthermore, KRGE augments vasorelaxation in NO-dependent manner and 

attenuates peroxynitrite formation. These finding suggest that KGRE possesses 

therapeutic potential for cardiovascular diseases associated with aging.  
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Abstract 

혈관기능이 약화된 노화생쥐에서 arginase 길항작용을 통한 

홍삼의 효과 

 

국내산 홍삼 추출 액은 심혈관계에 도움 되는 효과가 있는 것으로 알려져 있

다. 심혈관계 질환은 사망률과 이환율에 큰 부분을 차지하며 이런 심혈관계 

질환의 발생률은 나이, 즉 노화와 밀접한 관계가 있다. 노화된 혈관에서 

agrniase의 발현 증가는 혈관 내피세포의 기능 부전을 일으킨다는 연구가 많이 

진행 되었다. 본 연구에서는 홍삼 추출 액을 노화된 생쥐에 구강 투여 하였을 

때 일산화질소 합성효소(nitric oxide synthase)의 결합을 통하여 arginase의 활성

도를 낮추고, 일산화질소의 생성을 복구하고, 활성산소의 생성을 억제함을 보

이고 있다. 홍삼 추출 액의 구강 투여로 혈관 탄성 분석을 통해서는 나이든 

혈관의 아세틸콜린에 의한 혈관이완능력과 페닐레프린에 의한 혈관수축능력이 

비약적으로 상향되는 것을 알 수 있었으며, 세포 내에서 peroxynitrite의 생성이 

저해되는 것을 발견하였다. 종합해보면 이런 결과들을 통해 홍삼 추출 액이 

일산화질소의 신호전달 체계를 통하여 argniase의 활성도를 저하시켜 혈관보호

효과를 나타낸다고 할 수 있다. 따라서 홍삼 추출 액은 노화에 따른 혈관질환

의 치료에 효과적일 수 있다. 
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