골격성 III급 부정교합 환자에서 골격 양상에 따른 전치부의 치성 보상

연세대학교 대학원
치의학과
남성엽
골격성 Ⅲ급 부정교합 환자에서
골격 양상에 따른 전치부의 치성 보상

지도 백형선 교수

이 논문은 석사 학위논문으로 제출함

2013년 6월 일

연세대학교 대학원
치의학과
남성업
남성엽의 석사 학위논문을 인준함

심사위원

심사위원

심사위원

심사위원

연세대학교 대학원

2013년 6월 일
감사의 글

논문이 완성되기까지 따뜻한 배려와 함께 세심한 지도와 격려를 아끼지 않으신 백형선 지도 교수님께 진심으로 감사드리며, 귀중한 시간을 내주시어 부족한 논문을 살펴주신 김경호 교수님, 유형석 교수님께 깊이 감사드립니다. 또한 교정학을 공부할 수 있도록 기회를 주시고 인도해 주신 박영철 교수님, 황충주 교수님, 이기준 교수님, 차정열 교수님, 정주령 교수님께도 깊은 감사드립니다.

통계분석에 많은 도움과 조언을 준 김다영 선배님께 감사의 말씀을 드리며, 이 논문이 나오기까지 바쁜 와중에도 많은 도움을 주셨던 연구강사 김성진 선생님에게 이 자리로 빌어 감사의 마음을 전합니다.

항상 변함없는 사랑으로 돌봐주시고 지원을 아끼지 않으신 부모님께 감사드리며, 한결 같은 마음으로 응원해주신 동생 지민이에게도 고마운 마음을 전합니다.

2013년 6월 저자 측
차 례

표 차례 .. iii
그림 차례 ... iv
국문 요약 ... v

I. 서론 .. 1

II. 연구 대상 및 방법 ... 3
 1. 연구대상 ... 3
 2. 연구방법 ... 3
 2.1. 측모두부 방사선사진 분석... 3
 2.2. 계측점 및 계측치 .. 4
 2.3. 그룹의 분류 .. 6
 3. 계측치의 분석 및 통계처리 ... 6

III. 연구결과 .. 8
 1. 조사자내 오차 검정 .. 8
 2. 연구 대상자의 특징과 계측치 요약... 8
 3. 그룹에 따른 계측치의 차이 ... 9
 3.1. 수직적 골격 양상에 따라 분류한 그룹에서 계측치의 차이 9
 3.2. 전후방적 골격 양상에 따라 분류한 그룹에서 계측치의 차이 10
 4. 상관 분석 .. 11
 4.1. 수직적 골격성 계측치와 치성 계측치의 상관 분석 11
 4.2. 전후방적 골격성 계측치와 치성 계측치의 상관 분석 11
 5. 다중 회귀 분석 .. 12
IV. 고찰... 13

V. 결론... 16

참고문헌.. 17
Table 1. Characteristics and cephalometric measurements of patients........... 8
Table 2. Differences of cephalometric measurements of the patients according to the vertical groups ... 9
Table 3. Differences of cephalometric measurements of the patients according to the anteroposterior groups .. 10
Table 4. Correlation between skeletal and dental measurements 11
Table 5. Multiple regression analysis.. 12
Figure 1. Cephalometric landmarks and reference planes …………………… 4
Figure 2. APDI……………………………………………………………………… 5
Figure 3. IMPA, FMIA, U1 to SN, U1 to FH……………………………………… 5
국문 요약

골격성 III급 부정교합 환자에서
골격 양상에 따른 전치부의 치성 보상

골격성 III급 부정교합 환자는 악골의 전후방적인 문제뿐만이 아니라 횡적, 수직적인 문제를 동반하기 때문에 상악과 하악의 치열에서, 특히 전치의 치성 보상을 나타낸다. 이러한 환자의 치골치료 또는 수술 교정치료 시 치성 보상 또는 말보상이 이루어져야 하므로 골격적 부조화에 대해 생리적으로 나타나는 치성 보상 양상을 이해하는 것이 필요하다.

이에 본 연구는 성인 골격성 III급 부정교합자 150명을 대상으로 안모의 수직적 및 전후방적 골격 양상에 따라 각각 그룹 I(hypodivergent, SN-MP<30°), II(normal, 30≤SN-MP<38°), III(hyperdivergent, SN-MP≥38°)와 그룹 A(moderate, ANB≥-3°)와 B(severe, ANB<-3°)로 나누어 측모 두부 방사선 사진을 분석하여 치성 보상 양상을 비교한 결과 다음과 같은 결과를 얻었다.

1. 수직적 골격 양상에 따른 하악 전치의 치성 보상의 경우, IMPA는 그룹에 따라 유의한 차이를 보였으나(그룹 I > II > III), FMIA는 그룹에 따라 유의한 차이를 보이지 않았다. IMPA는 SN-MP와 음의 상관 관계를 보였다.

2. 수직적 골격 양상에 따른 상악 전치의 치성 보상의 경우, U1 to SN은 그룹에 따라 유의한 차이를 보였으나(그룹 I > II, III), U1 to FH는 그룹에 따라 유의한 차이를 보이지 않았다. U1 to SN은 SN-MP와 음의 상관 관계를 보였다.
3. 전후방적 골격 양상에 따른 하악 전치의 치성 보상의 경우, IMPA (그룹 A > B)와 FMIA (그룹 B > A) 모두 그룹에 따라 유의한 차이를 보였다. IMPA는 ANB와 Wits appraisal과 양의 상관관계를 보였고, FMIA는 음의 상관관계를 보였다.

4. 전후방적 골격 양상에 따른 상악 전치의 치성 보상의 경우, U1 to SN과 U1 to FH 모두 그룹에 따라 유의한 차이를 보이지 않았다.

5. IMPA에 대한 ANB, SN-MP의 다중 회귀 분석 결과, 회귀식 IMPA = 114.019 + 0.405*(ANB) - 0.648*(SN-MP)을 얻었고, 결정계수(R^2)는 0.457 이었다.

본 연구의 결과는 골격성 III급 부정교합 환자의 절충 치료 또는 악교정 수술을 계획 시 참고자료로 활용될 수 있을 것이다.
골격성 III급 부정교합 환자에서
골격 양상에 따른 전치부의 치성 보상

〈지도 : 백 형 선 교수〉
연세대학교 대학원 치의학과
남 성 엽

I. 서론

골격성 III급 부정교합은 상악골의 열성장 및 하악골의 과성장이 단독 혹은 복합적으로 나타나며, 동북아시아에서 호발하는 것으로 알려져 있다. III급 부정교합의 유병율은 백인에서 1~4%, 흑인에서 5~8%, 아시아인에서 4~14%로 보고되었다(Garner and Butt, 1985; Ngan, 2001). 한국인에서는 교정과에 내원한 환자 중 III급 부정교합 환자의 비율이 38.1%로 I급 부정교합(33.3%)과 II급 부정교합(28.6%)보다도 높은 비율을 나타내었다(Yu et al., 1999).

골격성 III급 부정교합의 치료는 골격성 부조화의 정도, 골격 형태, 환자의 나이 및 성숙 정도에 따라 성장조절, 절충치료, 또는 악교정 수술에 의해 이루어진다(Baik, 2007; Rabie et al., 2008). 절충치료는 성장 잠재력이 부족한 청소년이나 성인에서 경도의 골격성 부조화가 있으며 수직 안면 비율이 양호한 경우 선택될 수 있다(Proffit et al., 2007). 절충치료를 시행할 경우에는 골격성 부조화를 보상하기 위한 치성 보상이 이루어져야 하며, 이는 적절한 기능, 심미, 안정성을 해치지 않는 범위에서 이루어져야 한다(de Figueiredo et al., 2007). 따라서 골격성 III급 부정교합 환자의 치료 시 골격성 부조화에 대해 생리적으로 나타나는 치성 보상 양상에 대한 이해가 필요하다.
골격성 III급 부정교합 환자에서는 골격적으로 전후방적인 부조화뿐만 아니라 횡적 및 수직적인 부조화가 있기 때문에 각각의 골격적 부조화를 보상하기 위해 상악과 하악의 전 치열에서 치성 보상을 나타낸다. 일반적으로 III급 부정교합에서 상악 전치는 순측으로, 하악 전치는 설측으로 경사지며, 전후방적 골격성 부조화가 심해짐에 따라 특히 하악 전치의 치축이 큰 영향을 받는 것으로 알려져 있다(Busato et al., 2009; Capelozza Filho et al., 1996; Troy et al., 2009).

본 연구에서는 골격성 III급 부정교합자에서 완모의 수직적, 전후방적 골격 형태에 따라 나타나는 치성 보상의 양상을 다양한 기준평면을 사용하여 비교하고, 골격 형태에 따른 생리적 치성 보상의 정도를 예측하기 위한 두부 방사선 분석 계측학적 지표를 분석하고자 하였다.
II. 연구 대상 및 방법

1. 연구대상

2006년부터 2012년까지 연세대학교 치과병원 교정과에 내원한 환자 중 임상 검사 및 측모 두부 방사선 사진 분석 결과 (1) 골격성 III급 부정교합으로 진단된 자 (ANB, <0°), (2) 18세 이상의 성인, (3) 심한 치조골 소실이 없는 자, (4) 특별한 전신적 병력 및 악안면 증후군이 없는 자 150명 (남자 92명, 여자 58명)을 선정하였다.

초진 시 환자의 평균 나이는 22.3±4.8세(범위 18.0-35.4세)이었다.

2. 연구방법

2.1. 측모 두부 방사선사진의 분석

측모 두부 방사선사진은 연세대학교 치과대학 방사선과에서 Cranex3+ (soredex, Helsinki, Finland)를 이용하여 통상적인 방법에 따라 촬영 후 PACS (Picture Archiving Communication System ; 의료영상 저장 전송 시스템)에 DICOM (Digital Imaging and Communications in Medicine) 영상 정보로 저장되었다.

저장된 측모 두부 방사선 사진은 V-ceph™ 5.5 (OSSTEM Inc., Seoul, Korea)를 이용하여 tracing 하였다. 이중상으로 관찰되는 구조는 좌우 구조물의 중간점을 잡아 tracing하였다.
2.2. 계측점 및 계측치

2.2.1. 계측점과 계측 평면 (Figure 1)

Figure 1. Cephalometric landmarks and reference planes

Sella, S ; Nasion, N ; Porion, P ; Gonion, Go ; Menton, Me ; Pogonion, Pog ; Orbitale, Or ; Anterior Nasal Spine, ANS ; Posterior Nasal Spine, PNS ; A point, A ; B point, B ; Upper incisor tip, U1 ; Upper incisor root apex, U1R ; Upper molar mesiobuccal cusp tip, U6 ; Lower incisor tip, L1 ; Lower incisor root apex, L1R ; Lower molar mesiobuccal cusp tip, L6

SN (SN plane) : Sella와 Nasion을 연결한 평면
FH (FH plane) : Porion과 Orbitale를 연결한 평면
PP (Palatal plane) : PNS와 ANS를 연결한 평면
OP (Occlusal plane) : U6/L6과 U1/L1의 중앙을 연결한 평면
MP (Mandibular plane) : Gonion과 Menton을 연결한 평면
2.2.2. 계측 항목

1) Skeletal analysis
 (1) 각도계측 항목
 ① SN-MP 각도
 ② ANB
 ③ APDI (Anteroposterior dysplasia index)
 \[\text{APDI} = 1 + 2 + 3 \]

2) Dental analysis
 (1) 각도 계측 항목
 ① IMPA : 하악 전치 치축의 연장선과 MP plane이 이루는 각도.
 ② FMIA : 하악 전치 치축의 연장선과 FH plane이 이루는 각도.
 ③ U1 to SN : 상악 전치 치축의 연장선과 SN plane이 이루는 각도.
 ④ U1 to FH : 상악 전치 치축의 연장선과 FH plane이 이루는 각도.
2.3. 그룹의 분류

전체 환자를 수직적, 전후방적 골격 양상에 따라 각각 그룹 I, II, III와 그룹 A, B로 나누었다. 수직적으로는 SN–MP 각도에 따라 세 그룹으로 나누었다.

1) 그룹 I (Hypodivergent group) : 30° 미만 (N = 50)
2) 그룹 II (Normal group) : 30° 이상 38° 미만 (N = 50)
3) 그룹 III (Hyperdivergent group) : 38° 이상 (N = 50)

전후방적으로는 한국인 성인의 정상 ANB 값(2.26±1.79)에서 표준 편차 세 구간을 감한 값을 기준으로 두 그룹으로 나누었다(남 et al., 1997).

1) 그룹 A (Moderate group) : -3 이상 (N = 88)
2) 그룹 B (Severe group) : -3 미만 (N = 62)

3. 계측치의 분석 및 통계 처리

측모 두부 방사선사진의 계측 및 분석은 동일한 조사자에 의해서 이루어졌다. 조사자내 오차를 확인하기 위해 1 주 후 그룹마다 무작위로 5 명씩 뽑아서 계측점을 다시 계측하여 paired t-test 를 시행하였다. 계측 항목들의 방법오차는 Dahlberg formula (Se=√d^2/2n) (d : 계측치 간 차이, n : 계측치 쌍의 수)를 사용하여 계측하였다.

계측치는 SPSS 19.0 을 이용하여 다음과 같이 통계처리 하였다.

(1) 전체 환자에 대한측모두부 방사선사진 계측치의 기술통계량 산출
(2) 수직적 골격 양상에 따라 분류한 세 그룹간 비교 (one-way ANOVA, Duncan 사후 검정)
(3) 전후방적 골격 양상에 따라 분류한 두 그룹간 비교 (2-sample t-test)
(4) ANB, Wits appraisal, APDI와 IMPA, FMIA, U1 to SN, U1 to FH의 상관관계 분석 (Pearson's correlation analysis)
(5) SN-MP와 IMPA, FMIA, U1 to SN, U1 to FH의 상관관계 분석
(Pearson's correlation analysis)

(6) ANB와 SN-MP 각도에 따른 IMPA 값을 조사하기 위한 다중 회귀 분석
(multiple linear regression analysis)
III. 연구결과

1. 조사자내 오차 검정

1주 간격으로 그룹마다 무작위로 5명씩을 추출하여 재계측한 후 paired t-test 를 시행한 결과 유의한 차이가 없었다 (p>0.05). 길이 계측 항목에 대한 방법오차는 0.52mm였으며, 각도 계측 항목에 대한 방법오차는 0.41° 였다.

2. 연구 대상자 특징과 계측치 요약

2-sameple t-test 시행 결과, 연령을 제외한 모든 계측치에서 성별에 따라 통계적으로 유의한 차이가 없었다 (p>0.05). 따라서 이후의 통계분석은 남녀를 구분하지 않고 전체 환자를 대상으로 하였다. (Table 1)

<table>
<thead>
<tr>
<th></th>
<th>Male (n=92)</th>
<th>Female (n=58)</th>
<th>Total (n=150)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>25.08±6.71</td>
<td>20.58±3.39</td>
<td>22.32±4.83</td>
</tr>
<tr>
<td>SN–MP (°)</td>
<td>34.80±6.09</td>
<td>33.64±8.11</td>
<td>34.08±7.33</td>
</tr>
<tr>
<td>SNA (°)</td>
<td>80.34±3.96</td>
<td>80.02±3.79</td>
<td>80.15±3.84</td>
</tr>
<tr>
<td>SNB (°)</td>
<td>82.98±4.01</td>
<td>82.87±3.90</td>
<td>82.92±3.93</td>
</tr>
<tr>
<td>ANB (°)</td>
<td>-2.86±1.74</td>
<td>-2.59±1.74</td>
<td>-2.76±1.74</td>
</tr>
<tr>
<td>Wits (mm)</td>
<td>-11.23±4.76</td>
<td>-10.68±4.25</td>
<td>-11.03±4.58</td>
</tr>
<tr>
<td>APDI (°)</td>
<td>95.52±4.71</td>
<td>94.71±11.84</td>
<td>95.23±8.05</td>
</tr>
<tr>
<td>IMPA (°)</td>
<td>83.58±8.49</td>
<td>84.02±8.29</td>
<td>83.72±8.41</td>
</tr>
<tr>
<td>FMIA (°)</td>
<td>70.92±7.84</td>
<td>70.51±8.03</td>
<td>70.78±7.91</td>
</tr>
<tr>
<td>U1 to SN (°)</td>
<td>111.16±6.74</td>
<td>109.81±7.78</td>
<td>110.68±7.11</td>
</tr>
<tr>
<td>U1 to FH (°)</td>
<td>119.96±6.37</td>
<td>118.59±6.45</td>
<td>119.46±6.40</td>
</tr>
</tbody>
</table>
3. 그룹에 따른 계측치의 차이

3.1. 수직적 구역 양상에 따라 분류한 그룹에서 계측치의 차이

One-way ANOVA를 시행한 결과 그룹에 따라 IMPA는 통계적으로 유의한 차이가 있었으나(p < 0.001), FMIA는 통계적으로 유의한 차이가 없었다. 사후 검정 결과, IMPA 값은 그룹 I에서 가장 크고, 그룹 III에서 가장 작았다(그룹 I > II > III).

U1 to SN은 그룹에 따라 통계적으로 유의한 차이가 있었으나(p < 0.001), U1 to FH는 통계적으로 유의한 차이가 없었다. 사후 검정 결과, U1 to SN은 그룹 I이 그룹 II, III보다 크게 나타났다(그룹 I > II, III).

Table 2. Differences of cephalometric measurements of the patients according to the vertical groups

<table>
<thead>
<tr>
<th></th>
<th>Group I (SN–MP 26.54±3.07°)</th>
<th>Group II (SN–MP 33.68±2.38°)</th>
<th>Group III (SN–MP 42.02±2.93°)</th>
<th>F-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-3.04</td>
<td>-2.76</td>
<td>-2.46</td>
<td>1.57</td>
<td>0.21</td>
</tr>
<tr>
<td>SD</td>
<td>1.67</td>
<td>1.69</td>
<td>1.82</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANB(°)</td>
<td>95.60</td>
<td>96.39</td>
<td>94.60</td>
<td>0.69</td>
<td>0.50</td>
</tr>
<tr>
<td>Wits (mm)</td>
<td>113.03</td>
<td>110.46</td>
<td>108.56</td>
<td>8.05**</td>
<td>0.00</td>
</tr>
<tr>
<td>IMPA(°)</td>
<td>88.96</td>
<td>84.06</td>
<td>78.12</td>
<td>33.05***</td>
<td>0.00</td>
</tr>
<tr>
<td>APDI(°)</td>
<td>72.21</td>
<td>70.68</td>
<td>69.46</td>
<td>1.41</td>
<td>0.19</td>
</tr>
<tr>
<td>FMIA(°)</td>
<td>120.74</td>
<td>119.47</td>
<td>118.15</td>
<td>2.08</td>
<td>0.13</td>
</tr>
</tbody>
</table>

SD: Standard Deviation
*p<0.05 **p<0.01 ***p<0.001
사후검정(Duncan): a<b<c
3.2. 전후방적 골격 양상에 따라 분류한 그룹에서 계측치의 차이

2-sample t-test를 시행한 결과, 그룹에 A에서 IMPA와 FMIA가 그룹 B보다 컸다(p<0.001). U1 to SN과 U1 to FH는 그룹에 따라 통계적으로 유의한 차이가 없었다(p>0.05).

Table 3. Differences of cephalometric measurements of the patients according to the anteroposterior groups

<table>
<thead>
<tr>
<th></th>
<th>Group A (ANB -1.49±0.88°)</th>
<th>Group B (ANB -4.49±0.96°)</th>
<th>T-value</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPA(°)</td>
<td>Mean 86.04 SD 6.92</td>
<td>Mean 81.40 SD 8.28</td>
<td>3.73***</td>
<td>0.00</td>
</tr>
<tr>
<td>FMIA(°)</td>
<td>Mean 67.74 SD 5.60</td>
<td>Mean 73.54 SD 9.38</td>
<td>-4.73***</td>
<td>0.00</td>
</tr>
<tr>
<td>U1 to SN(°)</td>
<td>Mean 110.04 SD 6.45</td>
<td>Mean 111.51 SD 7.36</td>
<td>-1.29</td>
<td>0.19</td>
</tr>
<tr>
<td>U1 to FH(°)</td>
<td>Mean 118.85 SD 6.08</td>
<td>Mean 120.31 SD 6.79</td>
<td>-1.38</td>
<td>0.17</td>
</tr>
</tbody>
</table>

SD : Standard Deviation
*p<0.05, **p<0.01, ***p<0.001
4. 상관 분석

4.1. 수직적골격성계측치와치성계측치의상관분석

상관분석 결과, SN-MP는 IMPA, FMIA, U1 to SN, U1 to FH와 통계적으로 유의한 상관관계를 보였다 (Table 4).

4.2. 전후방적골격성계측치와치성계측치의상관분석

상관분석 결과, ANB는 IMPA, FMIA와 통계적으로 유의한 상관관계를 보였고, Wits appraisal은 IMPA, FMIA, U1 to SN, U1 to FH와 통계적으로 유의한 상관관계를 보였다 (Table 4).

<table>
<thead>
<tr>
<th></th>
<th>SN-MP</th>
<th>ANB</th>
<th>Wits appraisal</th>
<th>APDI</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPA</td>
<td>-0.556***</td>
<td>0.262**</td>
<td>0.593***</td>
<td>-0.134</td>
</tr>
<tr>
<td>FMIA</td>
<td>-0.203*</td>
<td>-0.374***</td>
<td>-0.177*</td>
<td>0.148</td>
</tr>
<tr>
<td>U1 to SN</td>
<td>-0.331***</td>
<td>-0.124</td>
<td>0.265**</td>
<td>-0.041</td>
</tr>
<tr>
<td>U1 to FH</td>
<td>-0.202*</td>
<td>-0.099</td>
<td>0.174*</td>
<td>-0.039</td>
</tr>
</tbody>
</table>

*p<0.05, **p<0.01, ***p<0.001
5. 다중 회귀 분석

전후방적(ANB), 수직적(SN-MP) 골격적 부조화에 따라 나눈 그룹 사이에 통계적으로 유의한 차이를 나타낸 IMPA에 대하여 다중 회귀 분석을 시행하였다. 회귀모형의 적합도를 검증한 결과 F=63.666, p<0.001 수준에서 모형이 적합한 것으로 나타났으며, 회귀분석의 결정계수를 검증한 결과 수정된 R\(^2\)값은 0.457로서 ANB, SN-MP를 45.7% 설명하는 것으로 나타났다.

ANB(\(\beta =0.405\), p<0.001)는 IMPA에 정(+)의 유의한 영향을 미치는 것으로 나타났으며, SN-MP(\(\beta =-0.648\), p<0.001)는 IMPA에 부(-)의 유의한 영향을 미치는 것으로 나타났다. 회귀식은 다음과 같다 (Table 9).

IMPA= 114.019+0.405*(ANB)-0.648*(SN-MP)

<table>
<thead>
<tr>
<th>Unstandardized coefficients</th>
<th>Standardized coefficients</th>
<th>T-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Constant)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114.019</td>
<td>2.705</td>
<td>42.144***</td>
</tr>
<tr>
<td>ANB</td>
<td>1.818</td>
<td>0.279</td>
</tr>
<tr>
<td>SN-MP</td>
<td>-0.732</td>
<td>0.070</td>
</tr>
<tr>
<td>R</td>
<td></td>
<td>0.681</td>
</tr>
<tr>
<td>R(^2)</td>
<td></td>
<td>0.464</td>
</tr>
<tr>
<td>Adjusted R(^2)</td>
<td></td>
<td>0.457</td>
</tr>
<tr>
<td>F-value</td>
<td></td>
<td>63.666(p<0.001)</td>
</tr>
</tbody>
</table>

VIF : 1.055
Dependent Variable : IMPA
*p<0.05 **p<0.01 ***p<0.001
IV. 고찰

Skieller (1972)는 하악골의 회전 양상에 따라 전치가 보상적인 맹출 양상을 보이며, 이번 연조직의 압력과 교합 등에 의해 영향을 받는다고 보고하였다. 본 연구는 횡단적 연구로서 하악골 체부에 대한 치성 보상 양상은 평가하기 어려우나, 연조직 매트릭스(matrix)에 대한 상대적인 치아의 위치는 치성 수평 혹은 수직 기준선(true horizontal and vertical plane)에 대한 치측 각도로 평가될 수 있다. FMIA의 기준 평면인 FH 평면은 치성 수평기준선에 가까운 평면으로서 전통적으로 하악 전치의 치성 보상 평가에 사용되어 왔다(Tweed, 1946). 따라서 하악 전치의 치성 보상은 수직적인 골격 부조화에 따라서 하악골 하연에 대해서는 유의한 차이를 보이거나 수평 기준선에 대해서는 차이가 없었으며, 실제 하악골 체부에 대한 보상적인 치아 이동은 종단적 연구를 통해 밝힐 수 있을 것이다.

수직적 부조화에 따른 상악 전치의 치성 보상은 기준 평면에 따라 상반된 결과를 나타내었다. 즉 U1 to FH는 그룹간의 차이가 없었으나, U1 to SN은 hypodivergent facial group에서 더 큰 값을 보였다. 이 결과는 Ross 등(1990)이 SN-MP에 따라 나눈 그룹 사이에서 U1 to SN이 차이가 없음을 보고한 것과 일치하지 않는다. 이렇듯 기준 평면에 따라 일관적인 결과를 보이지 않은 것은 SN 평면 및 FH 평면과 치성 수평면의 차이에서 기인한 것으로 (Madsen et al., 2008), 이에 대한 추가적인 연구가 필요할 것으로 생각된다.

전후방적 부조화에 따른 하악 전치의 치성 보상은 부조화가 심한 그룹 B에서 IMPA와 FMIA 모두 더 작은 값을 나타grily, 상관관계에서도 ANB, Wits appraisal과 상관관계를 나타내었다. 수직적 부조화에 따라 IMPA 뿐 아니라 FMIA에서도 치아의 위치를 나타낸 것은 전후방적 부조화가 치울수록 진성으로 치성 보상이 더 심해졌다고 생각되며, 이는 기존 연구 결과와 일치한다(Ahn and Baek, 2011; Ishikawa et al., 2000; Ishikawa et al., 1999).

반면 상악 전치의 경우 U1 to SN과 U1 to FH 모두 유의한 차이가 없었다. 이는 악골의 전후방적 부조화에 따라 상악 전치보다 하악 전치에서 치성 보상이 더 높게 나타난다는 기존 연구결과와 일치한다(Capelozza Filho et al., 1996; Troy et al., 2009). 본 연구 결과와 달리, Ishikawa 등(1999, 2000)은 하악 전치보다는 작지만 상악 전치에서도 유의한 차이를 보였는데, 이는 조사한
샘플에서 수평 파개를 고려하지 않은 차이에서 기인한다고 생각된다(Ishikawa et al., 2000; Ishikawa et al., 1999).

전통적으로 생리적인 치아의 위치는 평형이론(equilibrium theory)과 협근기전(buccinators mechanism)으로 설명되어 왔다(Jacobs, 1969). 즉, 치열은 외부로부터의 압력, 즉 입술, 볼, 및 혀 등의 연조직으로부터의 압력과 교합력 등에 대해 평형을 이루는 위치에 있게 된다(Ishikawa et al., 1999). 따라서 치료받지 않은 골격성 부정교합 환자에서의 생리적인 치성 보상은 절충치료 시의 전치부 위치에 대한 가이드라인으로 제시되어 왔으나(Hasund and Boe, 1980; Knosel et al., 2008; Segner, 1989), 골격성 III급 부정교합 환자에서의 연구는 거의 없다.

본 연구에서 그룹간에 유의한 차이를 보인 IMPA에 대한 다중 선형회귀분석 결과, IMPA=114.019+ (0.405*ANB)- (0.648*SN- MP)의 회귀식을 도출하였다. 이는 교정치료 받지 않은 골격성 III급 부정교합 환자에서 나타난 치성보상으로서, 특정 환자의 전후방적, 수직적 골격적 부조화에 따른 적절한 하악 전치 치축 각도를 계획하는데 참고자료로 활용될 수 있을 것으로 생각된다. 그러나 본 연구에 사용된 샘플 선정시 대상의 전치부 교합 관계를 조사하지 않았으므로 상기 결과를 임상에 그대로 적용하는 것에는 주의가 요구된다. Ishikawa 등(2000)은 전치부 반대교합을 갖는 환자가 정상적인 전치부 교합을 가지는 환자에 비해 전치부 교합력의 부재로 인해 치성 보상이 3~5° 정도 적었다고 보고하였다(Ishikawa et al., 2000). 따라서 본 연구 결과의 IMPA 예측값은 다소 과장되어 있을 수 있으며, 예측된 IMPA 값보다 설측 경사된 하악 전치도 임상적으로 만족스러운 결과를 보일 수 있다.

본 연구에서는 상하악 전치의 치축 각도만을 측정하였으나 실제 치성 보상은 전후방뿐 아니라 수직적으로도 발생한다. 따라서 수직적 부조화에 따라 치축 각도는 차이를 보이지 않더라도, 치아의 수직적인 빗출방향에 있어서는 차이를 보일 수 있다(Chung et al., 2008; Janson et al., 1994; Kuitert et al., 2006). 최근 교정 영역의 CBCT 도입으로 악안면복합체의 3차원 진단 및 분석이 가능해졌다(Kim et al., 2012). 추후 CBCT를 이용한 전치 및 구치부의 3차원적 치성 보상 양상에 대한 연구가 필요할 것으로 생각된다.
V. 결론

본 연구는 성인 골격성 III급 부정교합자 150명을 대상으로 안모의 수직적 및 전후방적 골격 양상에 따라 각각 그룹 I(hypodivergent), II(normal), III(hyper divergent)와 그룹 A(moderate), B(severe)로 나누어 측모 두부 방사선 사진을 분석하여 치성 보상 양상을 비교한 결과 다음과 같은 결과를 얻었다.

1. 수직적 골격 양상에 따른 하악 전치의 치성 보상의 경우, IMPA는 그룹에 따라 유의한 차이를 보였으나(그룹 I > II > III), FMIA는 그룹에 따라 유의한 차이를 보이지 않았다. IMPA는 SN–MP와 음의 상관 관계를 보였다.

2. 수직적 골격 양상에 따른 상악 전치의 치성 보상의 경우, U1 to SN은 그룹에 따라 유의한 차이를 보였으나(그룹 I > II, III), U1 to FH는 그룹에 따라 유의한 차이를 보이지 않았다. U1 to SN은 SN–MP와 음의 상관 관계를 보였다.

3. 전후방적 골격 양상에 따른 하악 전치의 치성 보상의 경우, IMPA (그룹 A > B)와 FMIA (그룹 B > A) 모두 그룹에 따라 유의한 차이를 보였다. IMPA는 ANB와 Wits appraisal과 양의 상관관계를 보였고, FMIA는 음의 상관관계를 보였다.

4. 전후방적 골격 양상에 따른 상악 전치의 치성 보상의 경우, U1 to SN과 U1 to FH 모두 그룹에 따라 유의한 차이를 보이지 않았다.

5. IMPA에 대한 ANB, SN–MP의 다중 회귀 분석 결과, 회귀식IMPA= 114.019+0.405*(ANB)−0.648*(SN–MP)를 얻었고, 결정계수(R²)는 0.457 이었다.

본 연구의 결과는 골격성 III급 부정교합 환자의 절충치료 및 악교정 수술의 계획 시 참고자료로 활용될 수 있을 것이다.

Abstract

Dental compensation of incisors in skeletal Class III patients according to vertical and sagittal skeletal discrepancy

Sung-Yeop Nam

Department of Dentistry
The Graduate School, Yonsei University
(Directed by Professor Hyoung-Seon Baik, D.D.S., M.S.D., Ph.D.)

Since skeletal Class III patients have not only anteroposterior skeletal discrepancy but also transverse and vertical skeletal discrepancy, their maxillary and mandibular dentition, especially incisors, demonstrate dental compensation. It is necessary to understand physiologic dental compensation according to the skeletal discrepancy in untreated patients because dental compensation or decompensation is required to treat these patients with orthodontic camouflage or orthognatic surgery.

In order to study dental compensation of upper and lower incisors, we examined cephalograms of 150 Koreans with skeletal Class III malocclusion. The samples were divided into groups according to vertical and anteroposterior skeletal discrepancy: Group I (hypodivergent, SN-MP<30°), II (normal, 30≤SN-MP<38°), III (hyperdivergent, SN-MP≥38°) and Group A (moderate, ANB≥−3°), B (severe, ANB<−3°).

The results were as followings:
1. The dental compensation of mandibular incisors according to the vertical skeletal discrepancy was that IMPA showed statistically significant difference between the groups (Group I > II > III), but FMIA showed no statistically significant difference. IMPA was statistically correlated with SN-MP.

2. The dental compensation of maxillary incisors according to the vertical skeletal discrepancy was that U1 to SN showed statistically significant difference between the groups (Group I > II, III), but U1 to FH showed no statistically significant difference. U1 to SN was statistically correlated with SN-MP.

3. The dental compensation of mandibular incisors according to the anteroposterior skeletal discrepancy was that IMPA (Group A > B) and FMIA (Group B > A) both showed statistically significant difference between the groups. Both IMPA and FMIA were statistically correlated with ANB and Wits appraisal.

4. The dental compensation of maxillary incisors according to the anteroposterior skeletal discrepancy was that U1 to SN and U1 to FH both showed no statistically significant difference between the groups.

5. As a result of multiple linear regression analysis of IMPA for ANB and SN-MP, we got regression equation, IMPA = 114.019 + 0.405*(ANB) - 0.648*(SN-MP) and determinant coefficient (R^2) was 0.457.

These results could be used as a guideline for the treatment of skeletal Class III patients.

Key word : Skeletal Class III malocclusion, Vertical, Anteroposterior skeletal pattern, Dental compensation