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ABSTRACT 

 

Pax3 lineage contribution to 

the mammalian inner and middle ear 

 

Dong Jin Lee 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Jinwoong Bok) 

 

 

The vertebrate inner ear develops from a specialized region of the 

ectoderm located on either side of the caudal hindbrain known as the otic 

placode. During development, the otic placode invaginates to form the otic 

cup, from which some cells delaminate and migrate into neighboring 

mesenchyme to form neurons of the cochlear-vestibular ganglion. The otic 

cup deepens further and pinches off from the ectoderm to form the otocyst 

that will develop into the membranous labyrinth of the inner ear. While a 

majority of the cells in the membranous labyrinth are derived from the otic 

placode, some of the cells in the labyrinth are derived from the neural crest. 

Similarly, the middle ear ossicles, whose role is to relay and to amplify the 

environmental sound to the inner ear, are also known to be derived from the 

neural crest. Neural crest cell are originated from the junction between the 
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epidermis and dorsal region of the neural tube and give rise to a variety of cell 

types such as neurons, glia, melanocytes, bones and cartilages. 

To better understand the role of neural crest in inner and middle ear 

development, I genetically fate-mapped the progenies of neural crest using 

Cre/loxP system. Pax3 is a member of the Pax family of transcription factors 

and is known to be important for various aspects of embryogenesis including 

neural crest differentiation. In human, mutations in PAX3 cause Waardenburg's 

syndrome Type I, characterized by neurosensory hearing loss. Pax3 is 

expressed in the dorsal neural tube, from which the neural crest cells are 

migrated, but not in the developing inner and middle ears. By crossing Pax3-

Cre mice with R26R reporter mice, I genetically labeled the cells expressing 

Pax3 in the dorsal neural tube and identified their descendants during inner 

and middle ear development using β-galactosidase (β-gal) staining. At E15.5, 

β-gal positive cells are detected in various substructures of the inner ear 

including endolymphatic duct, common cruz, semicircular canal, utricle, 

saccule, vestibular dark cells, stria vascularis, and ganglia.  In addition, β-gal 

positive cells are present in some parts of the otic capsule and in all three 

middle ear ossicles. Furthermore, analyses of Pax3-Cre homozygous mutant 

embryos showed that Pax3 is required for melanocytes differentiation of the 

stria vascularis in the cochlear lateral wall but not for other neural crest-

derived cell types in the inner and middle ears. 

 

Key words : Waardenburg’ syndrome, inner ear, middle ear, neural crest, 

Pax3, fate map  
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I. INTRODUCTION 

 

The mammalian ear consists of three parts, the outer, middle and inner 

ear. The outer ear collects sound which vibrates the tympanic membrane. The 

vibration is transferred to the middle ear ossicles composed of malleus, incus 

and stapes. The middle ear is a composite organ formed from endoderm, 

mesoderm, ectoderm and neural crest 
1
 

2
 

3
 

4
 
5
. Its function is to transmit and 

amplify sound wave from the outer ear to inner ear where sensory receptors 

are located 
6
 

7
. The inner ear is an unusually complex organ. The inner ear 

originates from a transient embryonic structure, the otic vesicle. The otic 

vesicle is derived from the otic placode, a specialized ectoderm located 

adjacent to rhombomeres 5 and 6 of the hindbrain 
8, 9

. The inner ear is a 

sensory organ responsible for hearing, balance and detection of gravity. The 

vestibular sensory organs including the Utriculi, Sacculi, and cristae detect 
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gravity and linear and angular movement. The cochlear duct contains the 

auditory machinery for hearing. 

The neural crest (NC) is an unique embryonic structure. It contains a 

remarkable multipotent stem cell population during embryogenesis. NC has 

been referred to as the “fourth germ layer” 
10

. NC migrates from the 

embryonic neural epithelium into various regions of the body and 

differentiates into many kinds of cell types such as neurons and glial cells, 

melanocytes of pigment cells, bones and connective tissues 
4, 11

. 

Pax3 is a member of a gene family characterized by the presence of a 

conserved 120 amino acid pared-type DNA binding domain 
12

. It encodes a 

transcription factor and expresses in the dorsal neural tube from which neural 

crest cells emerge during embryogenesis. Pax3 is expressed in pre-migratory 

neural crest cells and in presomitic mesoderm 
13

. Mutations in Pax3 has been 

shown to be responsible for the mouse splotch phenotype and the human 

Waardenburg syndrome (WS) type I. In Splotch mice in the heterozygous 

state, white spotting are visible because of pigmentation defect. Homozygous 

splotch mutations are embryonic lethal, and show exencephaly and/or spina 

bifida as well as various defects associated with neural crest cell deficiency 
14

. 

In this report, I described in detail where the neural crest derivatives 

migrate in the inner and middle ear and the role of Pax3 in inner and middle 

ear development.  
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II. MATERIALS AND METHODS 

 

1. Mouse 

 

Pax3-Cre mice 
15

 and Rosa26 reporter mice 
16

 were obtained from the 

Jackson Labs. Embryos and adult mice were genotyped by PCR analysis of 

DNA derived from tail and toes biopsy, respectively. Pax3-Cre mice are 

Knock-in mice replaced the first exon of Pax3 gene with Cre recombinase 

gene, expressing Cre recombinase in dorsal neural tube where endogenous 

Pax3 is expressed. Cre recombinase can remove DNA fragment located 

between loxP sites through DNA recombination. In Rosa26 reporter mice, 

transcription termination sequence was inserted between consititutive 

promoter and LacZ gene. Thus, when Rosa26 reporter mice are bred to Pax3-

Cre mice, the termination sequence of the Rosa26 reporter mice is deleted by 

recombination, and the expression of LacZ gene can be activated. As a result, 

the cells expressing the Cre recombinase constitutively express LacZ gene, 

which can be observed by β-galactosidase staining (fate-mapping). 

 

2. ß-galactosidase staining and RNA in situ hybridization 

 

To detect β-galactosidase activity in mouse embryos, the embryos 

were stained in the following the manner: Fixed embryos were incubated 1-3 
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hr(s) in a staining solution consisting of 5mM K3Fe(CN)6, 5mMk4Fe(CN)6, 

2mM MgCl2, 0.01% Deoxycholic Acid, 0.02% NP-40, and 1mg/ml X-gal at 

37℃. The embryos were then washed twice in PBS containing 2mM MgCl2, 

rinsed in H2O, and stained in the Orange G solution for 30 seconds. 

Frozen sections of mouse embryos were processed for in situ 

hybridization. Embryos were fixed overnight in 4% paraformaldehyde in PBS, 

dehydrated in 30% sucrose, and embedded in OCT (Tissue-Tek). Embryos 

were then sectioned at 12 um thickness onto superfrost slides (VWR 

Scientific) and stored at -70℃. Before in situ hybridization, slides were dried 

at room temperature, post-fixed, and permeabilized using 10 ug/ml proteinase 

K for depending 1-5min. Hybridization was performed in pre-hybridization 

solution. Each bag contained four slides and 10ml of hybridization solution 

with a probe. 

 

3. Immunohistoflorescence(IHF) 

 

Embryos were harvested at E10.5 and fixed in 4% paraformaldehyde 

(PFA) in PBS for 2-3hrs. After then, the embryos were embedded and frozen 

in OCT compound (TissueTek) for cryosection. The cryosections were cut at 

12-um thickness. In this study, the dilution and sources of antibodies we used 

chicken anti-lacZ (1:1500, ABcam #ab9361-250), goat anti-Sox10 (1:1500, 

Santa CruZ sc-17342), and mouse anti-Islet1 (1:1500, Devel opmental Studies 
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Hybridoma Bank 40.2D6). Alexa-conjugated (invitrogen) and Texas Red-

conjugated (Abcam) secondary antibodies were used a concentration of 1:200. 

Immunofluorescence images were obtained on a Olympus IX70 fluorescence 

microscope. 

 

4. Paint fill injection 

 

Mouse at E15.5 was harvested and fixed overnight in Bodian’s fixative. 

Specimens were then dehydrated in ethanol and cleared in methyl salicylate. 

The inner ears were visualized by injecting commercial correction liquid in 

methyl salicylate into the lumen of the inner ear. The micropipette was 

inserted in the lateral surface of otocyst. For more mature ears, the superior 

ampulla, the utricle, or the common cruz were targeted depending on the ease 

of visualization of the lumen. 
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III. RESULTS 

 

1. Pax3 lineage overlaps with endogenous Pax3 gene expression in 

rhombomere 4 (r4) and 5 region (Otic region) 

 

To analyze the Pax3 lineage in the inner ear, I bred Pax3-Cre mice with 

Rosa26 reporter (R26R) line, which can genetically label Pax3-expressing 

cells through Cre-loxP system. The Pax3-Cre reporter effectiveness and 

specificity were observed by comparing between ß-gal staining in Pax3-

Cre;R26R-lacZ embryos and in situ hybridization with Pax3 RNA probe in 

wild type embryos. Pax3 expression was observed in the dorsal part of the 

neural tube at embryonic day 9.5 (E9.5) (Fig. 1A,B; arrows). However, Pax3 

transcripts were not detected in the otic vesicle (Fig. 1B) as well as in the 

mature inner ear epithelium at E15.5 (Fig. 2A-F). Compared to the Pax3 

expression, Pax3 lineage, which can be traced by ß-gal staining, was detected 

in dorsal part of the neural tube similar to Pax3 expression pattern (Fig. 1C,D; 

arrows) and also in the migrating NCCs from r4 to the adjacent mesenchyme 

(Fig. 1C; arrowheads). Pax3 lineage was also observed in the dorsolaterally 

migrating NCCs (Fig. 1C,D; red arrows) and in the otic vesticle (Fig. 1D; 

open arrowhead). These results show that Pax3-Cre line can be used for the 

Pax3 lineage analysis, which includes the migrating NCCs. 
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2. Pax3 lineage is found in various regions of the inner ear 

 

Although Pax3 is not expressed in the inner ear, Pax3 lineage was found 

in various regions of the inner ear at E15.5. Pax3 lineage was found in 

endolymphatic duct (Ed) (Fig. 2G; arrows), common cruz (CC) (Fig. 2H; 

arrows), and semi-circular canals (SCC) (Fig. 2I; arrow). Especially, the 

descendants of Pax3-expressing cells were overlaped with subpopulation of 

vestibular dark cells around the component. Furthermore, the lineage was 

examined in. There was also vestibular dark cell whose subpopulation is 

overlapped with Pax3 lineage. In addition, Pax3 lineage was observed in 

utricle (UC) and saccule (SC) (Fig. 2J,L). In most of the vestibular structures, 

the descendants of Pax3-expressing cells were observed in the vestibular dark 

cells (Fig. 2H,I,J; arrows). Glial cells (Schwann cells) of peripheral nervous 

system (PNS) are known to be originated from NC 
17 18

. Consistently, I 

observed Pax3 lineage under the UC, SC, and cristae in vestibule as well as 

modiolus region in the cochlea where vestibular or cochlear ganglion is 

present (Fig. 2J,K,L; arrows). In the cochlea, Pax3 lineage was observed in in 

stria vascularis (SV) (Fig. 2K; red arrow). SV consists of three kinds of cells 

such as marginal, intermediate, and basal cells. These cells are derived from 

different origins. Marginal cells are generated from otic epithelium, 

intermediate cells are melanocyte differentiated from NCCs, and basal cells 

are originated from mesenchymal cells 
19

. Thus, Pax3 lineage appeared to 
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migrate into the intermediate cell region of SV in the cochlea. Finally, Pax3 

lineage was observed in the epithelium of cochlea duct (Fig. 2K). 
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3. Pax3 lineage contributes extensively to the bony otic capsule and 

middle ear ossicles 

 

Cranial neural crest cells is important for bone formation in the vertebrate 

head 
20

. In addition, NCCs has been shown to contribute to bony otic capsule 

and middle ear ossicles in chicken 
21

. Thus I examine whether NCCs also 

contribute to bony capsule and middle ear ossicles in mammals. I observed 

Pax3 lineage in the bony capsule in the cochlear duct, but not in the cartilages 

of the vestibular structures at Postnatal6 (P6) (Fig. 3A). Pax3 lineage was also 

foudnin all three middle ear ossicles including malleus, incus, and stapes (Fig. 

3B-D). Interestingly, the footplate of stapes was negative for -gal staining 

(Fig. 3C,D; arrowheads, arrows). To confirm whether Pax3 lineage does not 

contribute to the stapedal footplate, I did ß-gal staining in stapes region by 

section at P1. ß-gal staining was negative in the footplate of stapes, which was 

marked by expression of Aggrecan, a cartilage marker 
22

 (Fig. 3E,F; arrows). 

These results show that Pax3 lineage contributes to the bony otic capsule and 

all three middle ear ossicles in mammals. 
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4. Morphogenesis of the inner ears in the absence of Pax3 function 

 

Abnormal function of Pax3 has been shown to cause a failure to close the 

neural tube during embryogenesis 
23

. Consistently, Pax3-Cre homozygotes 

which have no Pax3 function 
15

 showed defects in the neural tube such as 

spina bifida (Fig. 4B,C; arrow) which is spinal cord openand excencephaly 

which is brain open (Fig. 4C; arrows). The size of homozygote embryos was 

smaller than Pax3-Cre heterozygotes (Fig. 4A-C). I examined the gross 

morphology of the inner ears of the Pax3-Cre homozygotes embryos by paint-

fill injection. The inner ears of Pax3-Cre heterozygotes was used as controls 

(Fig. 4D). The inner ears of Pax3-Cre homozygotes with spina bifida were 

slightly smaller than Pax3-Cre heterozygotes, but the morphology was 

completely normal (Fig. 4E). The inner ears of Pax3-Cre homozygotes with 

with excencephaly was even smaller and showed mild morphological defects 

such as shorter and fatter Ed irregular patterning of SCC and cochlear duct 

(Fig. 4F). These results show that the inner ear morphology of Pax3-Cre 

homozygotes appears to depend on the location of neural tube defects. 

Because the inner ear in excenphaly was affected more than it in spina bifida 

in Pax3 knockout embryos. Likewise this, previous paper shows that inner ear 

of exencephaly is severely affected more than it of the others in Gli3 knockout 

embryos 
24

. 
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5. Melanocytes but not glial cells are affected in the absence of Pax3 

function 

 

Next, I examined in detail the Pax3 lineage in Pax3-Cre homozygote 

embryos.Pax3 lineage appeared to be normal in Ed and glial cells of UC, SC, 

and cochlea duct in the Pax3-Cre homozygotes (Fig. 5A,D,E,F; arrows). . 

However, Pax3 lineage was not observed in CC SCC, UC as well as in 

intermediate cells of SV (Fig. 5B-E; red asterisks). Consistent with the lack of 

Pax3 lineage, I could not detect any vestibular dark cell in Pax3 null embryos. 

The abnormal melanocyte differentiation in Pax3-Cre homozygotes was also 

confirmed by Trp2 expression patterns. In Pax3-Cre heterozygotes, Trp2-

positive melanocytes were observed in vestibular dark cells of CC, SCC and 

LC & UC (Fig. 5G,H,I) as well as the intermediate cells of SV (Fig. 5J). 

These Trp2 expressions were completely disappeared in Pax3-Cre 

homozygotes (Fig. 5K-N; red asterisks). In contrast, expression of Sox10, a 

marker for glial cell 
25

, which is overlapped with a subpopulation of ß-gal 

positive cells (Fig. 6A,B; white rectangles) appeared to be normal in Pax3 

null embryos at E10.5 (Fig. 6E,F) and E15.5 (Fig. 6C,D,G,H).. Finally, the 

middle ear ossicles were not affected in the Pax3-Cre homozygotes embryos 

(Data not shown). 
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IV. DISCUSSION 

 

In this study, I have shown that Pax3 lineage, which is originated from 

neural crest, was found in a various substructures of the inner ear as well as in 

the middle ear ossicles. I have also shown that vestibular dark cells and 

melanocytes, but not glial cells, were disappeared in Pax3 knockout embryos.  

 

1. Neural crest migrate into various inner ear components and middle ear 

ossicles 

 

Pax3 is expressed in dorsal part of neural tube containing migratory 

neural crest (NC) (Fig. 1C,D). Consistently, Pax3 lineage was found not only 

in the dorsal neural tube but also in migratory neural crest. In our study, I 

found that neural crest cells (NCCs) migrate into various substructures of the 

inner and middle ears.  

First of all, neural crest cells were observed in Ed (Fig. 2G). In a 

previous report, it has been shown that Trp2, a melanocyte marker, was 

expressed in Ed of E14 mouse embryos 
26

. However we could not observe 

Trp2 expression in Ed by in situ hybridization and the Pax3 lineage in Ed was 

not affected in Pax3 null embryos.  

In avian, neural crest cells do not migrate into the cochlear duct 

epithelium 
21

. In contrast, I observed that neural crest cells migrate into the 
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epithelium of cochlear duct, especially into SV, in mammals (Fig. 2K). The 

melanocyte in stria vascularis of cochlear duct was completely disappeared in 

Pax3 knockout embryos (Fig. 5E; red asterisk), consistent with the known 

role of Pax3 in melanocyte differentiation 
27

.  

Neural crest cells were also found to migrate into UC and SC which 

are responsible for linear movement (Fig. 2J,L; arrows).  In addition, the 

neural crest cells migrated to the bony otic capsule of cochlear part (Fig. 3A). 

This observation was indicate that consistent with a previous report showing 

the importance of neural crest cells in craniofacial bone formation 
20

, neural 

crest cells are essential for formation of bony otic capsule in cochlear region.  

I also found that neural crest cells migrate to all three middle ear 

ossicles including malleus, incus, and stapes (Fig. 3B-D), consistent with the 

case of avian 
21

. Interestingly, the neural crest cells did not appear to 

contribute to the footplate of stapes (Fig. 3C-F; arrowheads and arrows). This 

results confirmed previous reports proposing two different sources of the 

stapes human 
28

.  

 

2. Vestibular dark cell is disappeared in Pax3 null embryos 

 

Neural crest cells migrate to the vestibular dark cells associated with 

commom cruz (cc), semi-circular canal (scc), and the periphery of utricle and 

cristae (Fig. 2H,I; arrows, J; red arrow). When Pax3 is knocked out, Pax3 
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lineage as well as vestibular dark cells were disappeared in these regions, 

suggesting that Pax3 is essential for differentiation of vestibular dark cells and 

survival of neural crest cells. There are many ion channels in the vestibular 

dark cells like NKCC1, KCNE1, and KCNQ1 important for normal vestibular 

function such as balance 
29

, 30
, 31

, 32
. Consistently, , mutations in PAX3 in 

human cause Waardenburg syndrome (WS) type I, characterized by dizziness 

and vertigo 
33

.  

 

3. Melanocytes are disappeared in Pax3 knockout embryos 

 

Intermediate cell of SV in the cochlear duct is originated from NC 19
. 

In Pax3 knockout embryos, melanocytes, assessed by Trp2 expression, are 

disappeared in the SV (Fig. 5E; red asterisk), consistent with the important 

role of Pax3 in melanocyte differentiation 
34

, 27
. Kir4.1 (potassium channel) in 

the intermediate cell is shown to be critical for the generation of endocochlear 

potential (EP), which is essential for sound transduction, 
35

. It has been 

reported that 30% to 70% of WS type I patients, suffer from sensorineural 

hearing loss (SNHL)
36

 and a recent report showed that there is defects in 

melanocytes in the inner ears of WS type I patients 
37

. These results suggest 

that the SNHL in WS type I patients could be due to defects in melanocyte 

differentiation and resulting abnormal Kir4.1 function. 
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4. Schwann cell is appeared in Pax3 knockout embryos 

 

NCCs migrate to cochleo-vestibular ganglion (CVG) region (Fig. 2J-L; 

arrows), consistent with the report from avian, in which NC has been shown 

to contributes to CVG of the avian inner ears 
38

. Although it has been 

suggested that Pax3 function is important for the establishment and 

maintenance of SC precursors 
39

, SCs in the inner ear appeared normal in 

Pax3 null embryos, suggesting that Pax3 function is not required for SC 

differentiation or compensated by other factors. 

  



22 

V. CONCLUSION 

 

By using Cre/loxP system, we genetically labeled Pax3-expressing cells 

and analyzed the whereabouts of the Pax3 lineage, which are mostly neural 

crest cells, and the role Pax3 during inner and middle ear development. . 

 

1.  Pax3 lineage was observed in various substructures of inner ear, 

including 

1)  Epithelium of endolymphatic duct, utricle, saccule, cochlea 

2)  Vestibular dark cells of common cruz, semi-circular canal, utricle 

3)  Glial cells of vestibular and cochlear ganglion 

4)  Melanocytes of stria vascularis  

5)  Middle ear ossicles including malleus, incus, stapes 

 

2.  Pax3 knockout embryos, the vestibular dark cells and melanocytes were 

abolished but glial cells appear to be unaffected. 
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ABSTRACT (IN KOREAN) 

 

포유동물의 내이와 중이 발생에 기여하는 Pax3의 lineage분석 

 

<지도교수 복 진 웅> 

 

연세대학교 대학원 의과학과 

 

이 동 진 

 

 

척추 동물의 내이는 외배엽의 otic placode라고 알려진 곳으

로부터 발생을 한다. 발생이 진행되는 동안, otic placode는 

otic cup으로 되고, 그 후에 otic cup은 외배엽으로부터 떨어져 

나와 otocyst가 된다. 결국에 이 otocyst는 내이로 분화한다. 그

리고 발생 초기에 이 otocyst의 일부 세포들은 otocyst의 갈라짐

과 갈라진 이 세포들의 이동을 통해서 내이의 신경절을 형성

하게 된다. 이렇게 otic placode로부터 기인한 세포들이 내이를 

구성하는 동안, 신경능선으로부터 기인한 세포들 또한 내이 

발생에 기여한다. 내이에서와 마찬가지로, 내배엽,중배엽,외

배엽 뿐만 아니라 신경능선세포들이 중이 발생에 관여를 한다. 
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이 신경능선세포들은 외배엽과 신경관의 등축 사이에서 기원

하여서 뉴런, 아교세포, 멜라닌 세포, 뼈 등의 여러 종류의 

세포들로 분화한다. 

신경능선세포들이 마우스 내이와 중이 발생에 어떤 기여를 

하는지 알아 보기 위해서, 본 실험에서 Pax3-Cre 마우스를 사

용하였다. Pax3는 전사인자이며, Pax family의 멤버이다. 그리

고 신경능선세포의 분화를 포함하여 배아 발생에 중요한 것으

로 알려져 있다. PAX3의 돌연변이에 의해서 사람에서는 난청

의 소견을 보이는 Waardenburg’s syndrome type I을 일으킨다. 

Pax3는 신경능선을 포함한 신경절의 배측에서 발현을 하지만, 

내이에서는 발현하지 않는다. Pax3-Cre 마우스와 Rosa26 

reporter 마우스의 교배로 인해서, 본 실험에서는 Pax3 lineage

가 내이와 중이의 여러 부위로 이동했음을 알 수 있었다. 더 

나아가 Pax3 knockout 마우스의 분석을 통해서 Pax3가 멜라닌 

세포의 형성에 필요함을 관찰할 수 있었다. 

 

핵심되는 말 : Waardenburg’s syndrome, 내이, 중이,신경능선, 

Pax3 


