상악 유중절치 치근 흉수면에 관한
병리조직학적 관찰

연세대학교 대학원
치의학과
나혜진
상악 유중절치 치근 흡수면에 관한
병리조직학적 관찰

지도교수 최 병 재

이 논문을 석사 학위논문으로 제출함

2011년 12월 일

연세대학교 대학원
치의학과
나 혜 진
나혜진의 석사 학위논문을 인준함

심사위원__________________인

심사위원__________________인

심사위원__________________인

연세대학교 대학원

2011년 12월 일
감사의 글

논문이 완성되기까지 시종일관 깊은 정성으로 지도해주신 최병재 지도 교수님, 세심하고 자상한 조언을 해주신 이재호 교수님과 최형준 교수님께 깊은 감사를 드립니다. 또한 늘 관심있게 지켜봐주신 손홍규 교수님, 김성오 교수님, 송재선 교수님께 감사를 드립니다.

바쁜 병원 생활 중에도 깊은 관심과 도움을 준 김승혜 선생님과 의국 동기들 준혁, 수영, 지현이와 소아치과 의국원들, 전미정 연구원께 고마움을 전합니다.

마지막으로 지금까지 사랑과 인내로 키워주시고 멀리서도 항상 부족한 저를 위해 기도해주시고 협이 되어주시는 부모님과 사랑하는 언니, 동생에게 고마움의 마음을 전합니다.

저자 씀
차 례

그림차례 .. iii

국문요약 .. V

I. 서론 .. 1

II. 연구 재료 및 방법 .. 5

 1. 연구 재료 ... 5

 2. 연구 방법 ... 6

 가. 주사전자현미경 관찰 .. 6

 나. 광학현미경 관찰 .. 7

III. 결과 ... 8

 1. 주사전자현미경 관찰 ... 8

 가. 생리적 치근 흡수면 관찰 ... 8

 나. 외상으로 인한 치근 흡수면 관찰 11

 다. 치근단 염증으로 인한 염증성 치근 흡수면 관찰 14
2. 광학현미경 관찰... 17
 가. 생리적 치근 흡수면 관찰... 17
 나. 외상으로 인한 치근 흡수면 관찰................................. 20
 다. 치근단 염증으로 인한 염증성 치근 흡수면 관찰...... 23
IV. 고찰 ... 26
V. 결론 .. 33
Reference ... 34
영문요약 .. 39
그 림 차 례

Fig. 1. Scanning electron micrographs of physiologic root resorption surface of human deciduous teeth. 9

Fig. 2. Scanning electron micrographs of pathologic root resorption surface of human deciduous teeth due to trauma. .. 12

Fig. 3. Scanning electron micrographs of pathologic root resorption surface of human deciduous teeth due to periapical inflammation... 15

Fig. 4. Light micrographs of physiologic root resorption surface of human deciduous teeth. 18

Fig. 5. Light micrographs of pathologic root resorption surface of human deciduous teeth due to trauma. .. 21
Fig. 6. Light micrographs of pathologic root resorption surface of human deciduous teeth due to periapical inflammation. ... 24
국문 요약

상악 유중절치 치근 흡수면에 관한 병리조직학적 관찰

유치는 치근이 생리적으로 흡수되어서 탈락하는 조직으로 치근 흡수 기전은 명확히 알려지지 않았다. 계승 영구치의 백출력에 의한 압력이 주요한 인자로 생각되지만 치배가 결손된 경우에서도 치근이 흡수될 수 있다. 전신적 또는 국소적 요소에 의하여 유치 치근이 병적으로 흡수될 수 있으며 치아 우식증이나 외상 등으로 치수나 치주인대까지 영향을 받으면 염증성 치근 흡수가 발생할 수 있다. 유치의 염증성 치근 흡수는 생리적인 치근 흡수와 비교할 때 시기 및 양상이 다르게 나타나므로 흡수면의 미세구조에 있어서도 차이가 있을 것으로 생각되어 이 연구는 생리적 치근 흡수면과 외상으로 인한 치근 흡수면, 치근단 염증으로 인한 염증성 치근 흡수면의 형태 및 인접한 세포를 주사전자현미경과 광학현미경으로 다음과 같은 점을 관찰하였다.

1. 생리적 치근 흡수면의 흡수소와는 원형과 타원형이고 비교적 균일하며 작고 긴적이 압았다.
2. 외상으로 인한 치근 흡수면과 염증성 치근 흡수면의 흡수소와는 다각형이고 불규칙하였으며 크고 깊이가 깊었다.

3. 생리적 치근 흡수면과 외상으로 인한 치근 흡수면, 염증성 치근 흡수면에서 다핵거대세포와 단핵세포를 관찰했으며 염증성 치근 흡수면에서는 간염세포 및 염증세포가 많이 분포되어 있었다.

4. 생리적 치근 흡수면과 외상으로 인한 치근 흡수면에서는 흡수 표면에 백약질양 조직이 침착되었으나, 염증성 치근 흡수면에서는 관찰되지 않았다.

핵심이 되는 말: 생리적 치근 흡수, 염증성 치근 흡수, 상악유증절치
상악 유중절치 치근 흡수면에 관한 병리조직학적 관찰

〈지도교수: 최병재〉

연세대학교 대학원 치의학과

나 혜 진

I. 서론

유치는 인체의 경조직 중 생리적으로 흡수되어 소실되는 조직으로, 치근이 흡수되어 탈락하게 된다. 정상적인 유치 치근의 흡수시기는 개인마다 다양한 차이를 나타내지만, 일반적으로 생후 4 세 정도부터 하악 유절치부터 흡수가 시작된다. 유치 치근 흡수 기전은 명확히 알려져 있지만, 계승 영구치의 맹출력에 의한 압력이 주요한 자극 인자로 작용하며, 조직학적으로는 파골세포와 동일한 단핵조혈진구세포에서 유래된 파치세포에 의해 치근흡수가 일어나는 것으로 연구되었다(Francini 등, 1992; Matsuda, 1992; Sahara 등, 1996). 생리적인 치근 흡수는 파치세포와 대식세포, 섬유아세포, 백악아세포 및 호증성구 등의 다양한 간엽세포를

유치의 맹출과 탈락시키는 다양하며, 유치의 탈락은 평균 시기의 전후 18 개월은 정상으로 간주하지만 국소적 혹은 전신적인 병적 상태와 관계되어 조기에 탈락될 수 있다. 일반적으로 치수염이나 치근단주위 치주염이 있을 경우 유치 치근의 흡수는 촉진되며, 특히 감염된 유치 치근은 건전한 유치 치근에 비해 이상흡수의 가능성이 높다. 유치의 조기탈락을 일으키는 병적인 치근 흡수는 외상이나 제식물, 교정 치료, 치아의 지연 맹출, 불규칙적 맹출, 종양이나 낭종의 성장과 관련되어 나타날 수 있다(최병재 등, 2003).

박 등(박윤희 등, 2000)은 유치에서 생리적 흡수와 염증성 흡수를 구분하여 형태학적 차이를 관찰하여 보고하였고 Sreeja 등(Sreeja 등, 2009)은 생리적 치근 흡수된 유구치와 치근단 육아종, 교정 치료, 치성 중앙으로 인해 병적 흡수된 영구치 흡수면을 관찰하여 형태학적 차이가 있음을 보고하였다. 여러가지 조건에서 치근 흡수가 일어날 때 다양한 기능적 차이로 인하여 흡수 양상이 다르게 나타날 수 있다.

이 연구는 유치의 생리적 및 염증성 치근 흡수면의 형태 및 인접한 세포를 연구하기 위하여 상악 유중절치에서 생리적으로 흡수된 치근과
외상으로 흡수된 치근, 치근단 염증으로 흡수된 치근 3 가지로 세분화하여 주사전자현미경과 광학현미경으로 관찰하였다.
II. 연구 재료 및 방법

1. 연구 재료

연세대학교 치과대학병원 소아치과에 내원한 5~8 세 사이의 어린이를 대상으로 생리적 및 염증성 치근 흡수를 보이는 상악 유중절치를 발거하여 사용하였다. 생리적 치근 흡수 표본은 중절치의 맹출로 인하여 치근의 2/3 이상이 흡수되어 중등도 이상의 동요도를 보이는 상악 유중절치를 사용하였다. 외상성 치근 흡수 표본은 외상으로 인한 외흡수로 치근의 1/2~2/3 정도 흡수된 상악 유중절치, 염증성 치근 흡수 표본은 치근단 염증으로 치근의 1/2~2/3 정도의 흡수 소견이 있고 방사선 사진상 치근부에 명확한 방사선 투과성 병변이 관찰되는 상악 유중절치를 사용하였다. 세포 대사에 영향을 줄 수 있는 특이한 전신 병력이 있는 어린이의 치아는 표본에서 제외시켰고 표본은 연세대학교 치과대학 기관윤리위원회로부터 승인(승인번호 2-2011-0031)을 받은 후 환아 및 보호자의 동의 하에 사용하였다.
2. 연구 방법

가. 주사전자현미경 관찰

생리적 치근 흡수된 상악 유중결치 5 개와 외상으로 인한 치근 흡수된 상악 유중결치 5 개, 치근단 염증으로 인한 염증성 치근 흡수된 상악 유중결치 5 개를 관찰하였다. 치아는 발거 직후 0.1M phosphate buffer(pH 7.4)로 조정한 Karnovsky 고정액(2% Glutaraldehyde, 2% Paraformaldehyde, 0.5% CaCl₂)에 6 시간 이상 전 고정한 후 0.1M Phosphate buffer로 2 시간 수세하고 1% OsO₄로 고정하였다. 후 고정된 표본은 0.1M phosphate buffer로 10 분간 수세 후 50%에서 100%까지 alcohol로 탈수하고 Isoamyl acetate로 치환 후 약 30 분-1 시간 후에 임계점 건조한 다음 ion coater를 이용하여 30 nm 두께로 금박 처리하였다. 표본 중 일부는 발거 후 즉시 5% NaOCl에 2 시간 처리하여 흡수면에 부착된 육아조직을 제거하였다. 처리된 15 개의 유치 치근 흡수면을 주사전자현미경(FE SEM S-800, Hitachi, Japan)으로 관찰하였다.
나. 광학현미경 관찰

생리적 치근 흡수된 상악 유중절치 5 개와 외상으로 인한 치근 흡수된 상악 유중절치 5 개, 치근단 염증으로 인한 염증성 치근 흡수된 상악 유중절치 5 개를 관찰하였다. 치아는 발거 직후 10% 중성 formaline 에 24 시간 고정하였고, 10% EDTA 용액에서 탈회시켰으며 paraffin 에 포매하여 5 μm 두께의 절편을 제작하였다. H/E 염색을 시행한 후 광학현미경(Olympus BX40-32HO2, Japan)으로 치근의 흡수양상을 관찰하였다.
III. 결과

1. 주사전자현미경 관찰

가. 생리적 치근 흡수면 관찰

치근침에서부터 점차적으로 흡수되어 치근이 균일하게 흡수된 전형적인 모습을 보였다. 전체적인 흡수면은 둥글고 뭉툭하였으며 크고 작은 수많은 흡수소와들로 이루어졌다. 흡수소와는 타원형, 원형의 모양을 가지며 상아세관(dentinal tubule)이 뚜렷하게 관찰되었다. 흡수소와 내에 다수의 단핵세포가 부착되어 있었고 5~10 개의 세포들이 묶여져 있는 경우가 흔하였다. 표면을 덮고 있는 교원섬유와 방추형의 섬유아세포, 대식세포도 일부 관찰할 수 있었다(Fig. 1).
Fig. 1. Scanning electron micrographs of physiologic root resorption surface of human deciduous teeth (A) In the dentinal resorption fossae, plate-like resorption lacunae in various size were found. Numerous lacunae were found to be adjacent to each other to form a net-like structure (x200) (B) On high magnification, resorption lacunae were a oval, circular shape. Dentinal tubule
were distinct (x1,000) (C) Numerous mononuclear cells in round shape were found in the resorption lacunae and formed a group. Resorption lacunae covered with collagen fibers (x1,000) (D) An arrangement of calcified collagen fibers covering the surface of resorption lacunae with fibroblasts and an macrophage were found (x2,000)
나. 외상으로 인한 치근 흡수면 관찰

주로 유치의 한쪽 면에서만 흡수가 진행되는 양상으로 치근 흡수면이 비스듬하게 형성되었으며 불규칙하고 날카로운 변연을 보였다. 흡수소와들의 크기는 생리적 치근 흡수면보다 다소 크고 불규칙하였으며 비스듬하게 형성된 흡수소와에서 상아세관의 주행을 관찰하였다. 흡수소와 내에 거대 파치세포가 관찰되었으며 파치세포 주변으로 단핵세포 무리가 보였고 백악질 흡수 표면은 두터운 섬유성 결체 조직으로 덮여 있었다(Fig.2).
Fig. 2. Scanning electron micrographs of pathologic root resorption surface of human deciduous teeth due to trauma (A) Mainly resorption took place at one side of the root and resorption fossae were formed at an angle (x200) (B) On high magnification, resorption lacunae were larger than those of physiologic resorption surface and more irregular shape. Dentinal tubule were
observed (x1,000) (C) Round odontoclast together with small mononuclear cell were attached (x1,000) (D) Cementum resorption surface with densely arranged fibrous connective tissue were observed (x2,000)
다. 치근단 염증으로 인한 염증성 치근 흡수면 관찰

흡수면의 형태는 다양하게 나타났으며 불규칙하며 크고 깊게 형성된 다각형의 흡수소와를 관찰하였다. 상아세관과 흡수소와 안 단핵세포 무리가 보였다. 흡수표면은 치밀하게 구성되어 있는 섬유성 결체 조직과 대식세포, 다수의 혈구세포로 덮여 있는 것을 관찰하였다(Fig. 3).
Fig. 3. Scanning electron micrographs of pathologic root resorption surface of human deciduous teeth due to periapical inflammation (A) Resorption fossae showed a variety of shapes and sizes (x200) (B) On high magnification, resorption lacunae in polygonal shape were deeper and greater than physiologic resorption surface (x1,000) (C) Mononuclear cells in round shape
were found in the resorption lacunae (x1,000) (D) Densely arranged fibrous connective tissue and numerous blood cells and macrophage were observed (x2,000)
2. 광학현미경 관찰

가. 생리적 치근 흡수면 관찰

치근침에서 점차적으로 흡수되는 흡수양상을 보였으며 파도모양의 큰 흡수와와 이를 구성하는 흡수소와가 나타났고 고배율 소견에서 작은 흡수소와 안에 존재하는 다핵거대세포와 단핵세포들을 관찰하였다. 흡수면을 따라서는 부분적으로 백약질양 조직이 침착되어 있었다(Fig.4).
Fig. 4. Light micrographs of physiologic root resorption surface of human deciduous teeth (A) A typical form of physiologic deciduous root resorption progressing from the apex to the cementoenamel junction. Deep round wave like resorption fossae with numerous lacunae were found (x40) (B) Newly formed cementum-like tissue over the resorption surface (x100) (C) On high magnification, multinucleated giant cells with mononuclear cells were found in each dentinal resorption lacunae (x400) (D) Multinucleated giant cells were
found in dentinal resorption lacunae and newly formed cementum-like tissue over the resorption surface (x400)
나. 외상으로 인한 치근 흡수면 관찰

주로 편측으로 치근이 흡수되었고 불규칙한 흡수소와를 보였으며 흡수소와 내에 다핵거대세포와 단핵세포들이 존재하고 간엽세포들과 성긴 결합조직을 관찰하였다. 상아질 흡수면에 백악질양 조직이 부분적으로 침착되어 있었다(Fig.5).
Fig. 5. Light micrographs of pathologic root resorption surface of human deciduous teeth due to trauma (A) Unilateral root resorption in progress was found (x40) (B) Newly formed cementum-like tissue over the resorption surface (x100) (C) Loose connective tissue with mesenchymal cells were observed to be attached to the adjacent dentinal resorption surface and formation of acellular cementum in some areas over the dentinal resorption surface (x400) (D) On high magnification,
multinucleated giant cells together with mononuclear cells adjacent to the dentinal resorption surface (x400)
다. 치근단염증으로 인한 염증성 치근 흡수면 관찰

흡수면의 형태는 다양하게 나타났으며 일정한 흡수 패턴을 보이지 않았다. 불규칙한 흡수소와들이 관찰되었고 고배율 소견에서 흡수소와 내 다핵거대세포와 단핵세포를 관찰할 수 있으며 특정적으로 림프구 등 다수의 염증세포가 보였다. 흡수면을 따른 백악질 침착은 관찰되지 않았다(Fig.6).
Fig. 6. Light micrographs of pathologic root resorption surface of human deciduous teeth due to periapical inflammation (A) Resorption pattern did not seem to typical pattern and resorption fossae appeared in a variety of forms (x40) (B) Numerous irregular dentinal resorption lacunae were found covered with thick granulation tissue (x100) (C) Multinucleated giant cells with mesenchymal cells were observed to be attached to the adjacent dentinal resorption surface (x400) (D) On high magnification, multinucleated giant cells
in the resorption lacunae and inflammatory cells adjacent to the dentinal resorption surface (x400)
IV. 고찰

대한 방어지역을 형성하기 위해 치근단 주위의 골 흡수와 치근단 육아종이 발달한다고 하였다(Stashenko, 1990).

이 연구에서 주사전자현미경으로 유치 치근 흡수 표면을 관찰한 결과 생리적 치근 흡수면과 외상으로 인한 치근 흡수면, 치근단 염증으로 인한 염증성 치근 흡수면 사이의 형태학적 차이점을 관찰할 수 있었다. 생리적 치근 흡수면의 흡수는 비교적 균일하였으며 흡수소와의 형태는 원형, 타원형이고 상아세관이 뚜렷하게 관찰되었다. 외상으로 인한 치근 흡수면의 경우 생리적 치근 흡수면보다 불규칙하였으며 흡수소와의 크기도 크게 나타났고, 치근단 염증으로 인한 염증성 치근 흡수면의 경우 제일 불규칙한 흡수와를 보였으며 흡수소와의 크기가 상대적으로 크며 다각형이었다. 생리적 치근 흡수면의 규칙적인 흡수면은 유치의 치근 흡수가 천천히 진행된 과정임을 반영한 것이다. 모든 흡수면에서 흡수소와 내에 다수의 단핵세포를 관찰하였고 특별적으로 치근단 염증으로 인한 염증성 치근 흡수면의 경우 상대적으로 많은 혈구세포를 보였다. 단핵세포들은 융합하여 과적세포를 형성하며 단핵 과골세포의 존재는 연구를 통해 입증되었으나 단핵세포들이 단지 과골세포의 전구세포로서만 존재하는지, 단핵 과골세포로 기능을 하는지 뚜렷이 밝혀진 바는 없다(Domon 등, 1997; Domon and Wakita, 1991).

Sasaki 등(Sasaki, Shimizu, 등, 1990)은 유치 흡수 진행에 따라 초기 흡수기, 활동기, 휴지기의 세가지 시기로 구분하였다. 초기 흡수기에는 치근 상아
질과 백악질이 톱니 모양으로 들쑥날쑥하며, 많은 백악아세포들이 일렬로 배열되어 있으며 파치세포는 상대적으로 거의 보이지 않는다고 하였다. 이 시기의 파치세포는 상대적으로 편평한 형태를 가지고 비정상적으로 넓은 투명대를 가지는 것으로 보이며, 파치세포 주변으로 많은 섬유아세포와 대식세포가 중종 관찰되었다고 하였다. 활동기에는 커다란 파치세포가 많이 관찰되며 파치세포 주변에 수많은 백악아세포양세포(cementoblast-like cell)가 존재하였으며 세포들 사이에는 간극연결(gap-junction)에 의해 연결되어 있고 약한 교환 섬유가 이러한 세포를 덮고 있었다고 하였다. 휴지기에는 상대적으로 부드러운 치면이 편평한 백악아세포로 덮여 있고 종종 대식세포도 관찰되었으나 활동기의 파치세포는 관찰되지 않았다고 보고하였다.

김과 최(김종훈 and 최병재, 1993)는 흡수 진행 정도와 파치세포의 분화정도에 따라 유치 흡수단계를 흡수기시기, 파치세포형성기, 파치세포발달기, 파치세포성숙기의 네 가지 시기로 구분하였다. 흡수기시기에는 독립된 흡수와들이 간혹 나타나며 6-7㎛크기의 다양한 융합단계에 있는 단핵세포들이 관찰되고 융합이 거의 완성된 부위의 돌기 표면에는 점상 융기들이 돌출되어 있다고 보고하였다. 파치세포형성기에는 일련의 흡수와들이 모여 있으며 단핵세포들의 융합이 더욱 완성하게 일어나고 간혹 직경 15-30㎛의 파치세포가 나타났고 단핵세포의 부착면에서는 불규칙한 형태의 짧은 돌기들이 관찰되었으며, 파치세포의 흡수기능면은 낮은 밀도의 손가락형 돌기로 덮혀 있었다고 하였다.
파치세포발달기에는 파치세포가 흡수면의 대부분을 차지하고 있으며 파치세포배면에서의 단핵세포의 융합이 다양한 형태로 관찰되었다고 하였다. 파치세포는 직경 25-50 μm로 구형 혹은 종상이었으며, 간혹 구형의 세포체에서 판상의 꼬리부분이 연장되어 있어 이동하는 것 같이 보이는 세포도 있었고 파치세포의 흡수기능면에서는 손가락형 돌기와 소수의 엽상돌기가 관찰되었다고 하였다. 파치세포성숙기의 표면은 파치세포와 다수의 단핵세포로 덮혀 있었는데 흡수와는 거대파치세포와 단핵세포가 같이 나타나거나, 단핵세포들만이 존재하는 두 종류로 구분하였다고 하였다. 파치세포 변연부에 오목한 홈에 위치하는 단핵세포들은 세사상 돌기로 파치세포와 연결되어 있었고 이 시기의 파치세포의 크기와 형태는 파치세포발달기에서와 유사하였으며 배측 표면 돌기는 좀 더 염상의 형태를 띠고 있었다고 보고하였다.

이 연구에서는 김과 최의 분류상 생리적 치근 흡수면은 파치세포성숙기, 염증성 치근 흡수면은 파치세포형성기나 파치세포발달기에 속하는 것으로 보인다. 김과 최(김종훈 and 최병재, 1993)는 단핵세포들만이 존재하는 흡수와가 존재하고, 단핵세포에 의하여 흡수와가 형성되었을 가능성이 높음을 시사하였 다. 이 연구에서도 단핵세포들만으로 이루어진 흡수소와가 관찰되며 이는 단핵세포에 의해 흡수와가 형성되었을 가능성을 제기한 김과 최의 가설을 지지한다. 하지만 이러한 결론을 내리기에는 좀 더 많은 연구가 행해져야 할 것으로 생각된다.

이 연구의 광학현미경상에서 발견할 수 있는 조직학적 차이는 다음과 같다. 먼저, 상아질 흡수면의 형태학적 차이를 발견할 수 있는데, 생리적 치근 흡수면은 작은 흡수소와들로 구성된 파도모양의 큰 흡수와가 관찰되며 염증성 치근 흡수면은 일정한 형태를 이루지 않는 불규칙한 흡수면이 관찰되었다. 외상성 치근 흡수면은 특정적으로 편측으로 치근 흡수가 일어난 경우가 많았다. 이러한 양상은 유치의 생리적인 치근 흡수가 느리게 진행되고 전체 치근면에서 일어나는 현상인 반면 염증성 치근 흡수면은 국소적인 부위에서 파급되고 빠르게 흡수가 진행된 것을 반영한 것으로 생각된다. 또한, 생리적 치근 흡수면에서는 다핵 거대세포, 단핵세포 외에 다른 세포들은 거의 관찰되지 않았으나 염증성 치근 흡수면에서는 다핵거대세포, 단핵세포 외에도 간엽세포, 염증 세포 등 다양한 세포들이 관찰되었다. 이는 염증성으로 흡수된 유치들을 발거시 염증조직이 치근면에 부착되어 조직 시편 제작시 포함이 되었던 것으로 생

- 30 -
각된다. 마지막으로, 생리적 치근 흡수면과 외상으로 인한 치근 흡수면에서는 흡수 표면에 백악질양 조직의 형성을 확인할 수 있었으나 치근단 염증으로 인한 염증성 치근 흡수면에서는 보이지 않았다. Francini 등(Francini 등, 1992)은 흡수와의 양상에 따라 유치의 탈락 시기에 가까워질수록 흡수와의 형성이 증가하며 이 시기는 매우 활동적인 흡수가 진행되는 단계이고 백악질의 침착은 휴지기에 주로 관찰된다고 하였다. 따라서, 이 연구에서 치근단 염증으로 인한 염증성 치근 흡수면에서 백악질의 형성을 관찰할 수 없었던 것은 병적 조건 하에서 치근 흡수가 급성으로 발생하여 나타난 현상이며 휴지기가 지나지 않은 단계에서 발생된 것으로 생각된다.

이 연구 결과에서 다양한 세포의 규명과 기질 변화를 관찰하기 위해 추가로 투과전자현미경을 사용하는 것이 도움이 될 것으로 생각된다. 또한, 표본
의 크기를 증가시키고 더 다양한 조건 하에서의 초기 홍수면의 차이를 관찰하는 것도 필요할 것으로 생각된다.
V. 결론

이 연구에서는 생리적 치근 흡수된 상악 유중절치와 외상으로 인한 치근 흡수로 발거한 상악 유중절치, 치근단 염증으로 발거한 상악 유중절치의 치근 흡수면을 주사전자현미경과 광학현미경으로 다음과 같은 점을 관찰하였다.

1. 생리적 치근 흡수면의 흡수소와는 원형과 타원형이고 비교적 균일하며 작고 깊이가 얕았다.

2. 외상으로 인한 치근 흡수면과 염증성 치근 흡수면의 흡수소와는 다각형이고 불규칙하였으며 크고 깊이가 깊었다.

3. 생리적 치근 흡수면과 외상으로 인한 치근 흡수면, 염증성 치근 흡수면에서 다핵세포와 단핵세포를 관찰했으며 염증성 치근 흡수면에서는 간염세포 및 염증세포가 많이 분포되어 있었다.

4. 생리적 치근 흡수면과 외상으로 인한 치근 흡수면에서는 흡수 표면에 백악질양 조직이 침착되었으나, 염증성 치근 흡수면에서는 관찰되지 않았다.

ABSTRACT

Histopathological observation of root resorption surface of maxillary primary central incisor

Hyejin Na
Department of Dentistry
The Graduate school
Yonsei University

(Directed by Professor Byung Jai, Choi, D.D.S., Ph.D.)

Deciduous teeth exfoliated by physiologic root resorption, which process is still unclear. Root resorption seems to be regulated by the eruption force of a permanent successor, but primary teeth without successor can be resorbed. Local and general factors have been attributed to pathologic root resorption, which occurs by injuries to the periodontal ligament or dental pulp tissue due to trauma, dental caries. Pathologic root resorption different from physiologic root resorption in timing and mechanism, therefore we resumed the different features of physiologic and pathologic resorption root surface.
In this study, we carefully observed microscopic morphologies of root resorption surface at physiologic and pathologic resorption due to trauma and due to periapical inflammation by scanning electron microscope and histologic features by light microscope. The resultant differences were as follows:

1. The morphology of physiologic resorption lacunae was shallow and oval or circular shape with regularities.

2. The morphology of pathologic resorption lacunae due to trauma and due to inflammation was deep and polygonal shape with irregularities compared with the physiologic resorption lacunae.

3. Multinucleated giant cells and mononuclear cells were closely attached to the physiologic and pathologic resorption lacunae, whereas several kinds of mesenchymal cells with numerous inflammatory cells were found in the areas adjacent to the pathologic resorption surface.
4. Compensating cementum formation took place along some of the areas of physiologic and pathologic resorption due to trauma, but could not showed on pathologic resorption due to periapical inflammation.

Keyword: physiologic root resorption, pathologic root resorption, maxillary primary central incisor