터너증후군 환자에서 심장 자기공명영상 결과 분석을 통한 대동맥확장 및 평창성과 관련된 위험인자 규명

연세대학교 대학원 의학과 권아름
터너증후군 환자에서 심장 자기공명영상 결과 분석을 통한 대동맥확장 및 팽창성과 관련된 위험인자 규명

지도교수 김 호 성

이 논문을 석사 학위논문으로 제출함

2011 년 12 월

연세대학교 대학원
의학과
권 아름
권아름의 석사 학위논문을 인준함

심사위원__________________인

심사위원__________________인

심사위원__________________인

연세대학교 대학원

2011 년 12 월
감사의 글

논문을 마치고 ‘감사의 글’을 쓰려다 보니, 지난 대학원 생활이 주마등처럼 떠오릅니다. 병원 업무와 학위, 두 마리의 토끼를 놓치지 않으리고 노력하는 제 모습에 지지와 격려를 아끼지 않으신 많은 분들에게 감사하는 마음으로 석사 논문을 마감하고 있습니다.

우선, 미약하기만 한 저에게 끈임없이 인내와 용기, 아이디어를 심어주시는 하나님께 감사드립니다. 그리고, 특별한 논문 주제를 주시고, 논문을 마치기까지 지도해주신, 격려해주신 김호성교수님께 진심으로 존경과 감사의 마음을 올립니다. 석사 졸업 논문이라고 하기에는 너무 미흡하고, 부족한 논문을 띄어쓰기까지 하나 하나 교정해주신 박상욱교수님께도 깊은 감사를 드립니다. 그리고 연구 진행과정에 여러모로 도와주시고, 논문이 완성되는 마지막까지 따가운 질책과 따스한 가르침을 주신 김영진교수님께도 고개 숙여 감사드립니다.

마지막으로 한결 같은 모습으로 저를 믿어주시는 부모님께 사랑과 존경하는 마음을 드리며 이 논문을 마칩니다.

2011년 12월, 감사의 마음으로 한해를 마감하며

권아름 씀
<차례>

국문요약 .. 1

I. 서론 .. 3
II. 재료 및 방법 ... 6
 1. .. 6
 2. .. 7
 가. ... 8
 (1) ... 8
 (2) ... 8
 (3) ... 8
 (4) ... 8
 나. ... 9
 (1) ... 9
 (2) ... 9
 (3) ... 9
 3. .. 12
III. 결과 ... 12
IV. 고찰 ... 27
V. 결론 ... 34

참고문헌 ... 34
ABSTRACT ... 38
그림 차례

그림 1. 대동맥 직경을 측정한 부위 10
그림 2. 9개의 부위에서 측정한 대동맥의 직경, 나. 9개의
부위에서 측정한 대동맥의 직경을 체표면적으로 보정한 값
 ... 17
그림 3. 근위부 상행대동맥과 나이, 몸무게, 체질량지수, 체
표면적과의 관계 ... 18
그림 4. 근위부 하행흉부대동맥과 나이, 키, 수축기혈압, 확장기혈압과의 관계 ... 20
그림 5. 근위부 하행흉부대동맥 직경에 대한 근위부상행대
동맥의 직경의 비 ... 22
그림 5. 상행대동맥의 팽창성과 여러 인자와의 상관 관계
 ... 25
표 1. 터너증후군 대상환자들의 임상적 특징 ············· 13
표 2. 심장초음파와 심장 MRI의 결과 비교 ·············· 14
표 3. 대동맥 직경의 절대값 및 체표면적으로 보정한 값 .. 16
표 4. 근위부하행흉부대동맥 직경에 대한 근위부상행대동맥 직경의 비가 1.5 이상인 군과 1.5 이하인 군의 비교 .. 24
표 5. 나이에 따른 대동맥의 팽창성 (중위수) ·················· 27
국문요약

터너증후군 환자에서 심장 자기공명영상 결과 분석을 통한 대동맥확장 및 팽창성과 관련된 인자 규명

목적: 터너증후군 환자들에게서 대동맥 확장 및 대동맥 박리가 빈번히 보고되고 있으며, 이는 터너증후군의 수명과 연관되어 있다. 본 연구는 국내의 터너증후군 환자를 대상으로 심장 자기공명영상 (magnetic resonance imaging, MRI) 검사를 시행하여, 대동맥박리의 위험인자로 알려진 대동맥의 직경 및 팽창성을 측정하고, 이와 연관된 인자를 분석하고자 한다.

방법: 10세 이상의 터너증후군 환자 총 50명에서 심장 MRI를 시행하였으며, MRI 영상을 근거로 대동맥 판막부터 복부대동맥에 이르기까지 총 9개 부위의 대동맥 직경을 측정하였다. 대동맥의 팽창성은 심장의 수축기와 이완기 시기의 상행대동맥의 단면적의 변화로 측정하였다. 임상 양상, 심장초음파 검사결과 및 내분비 검사결과는 후향적으로 분석하였으며, 키, 몸무게, 혈압 등을 측정하였다.

결과: 심장 MRI 검사 결과상 대상 환자들 중 42% (21명)에게서 이상 소견이 발견되었지만, 심장 초음파에서는 6% (3명)에서 이상 소견이 발견되었다. 이천판성 대동맥판막은 MRI에서는 3명이 발견되었으나, 심장초음파에서는 1명이 발견되었다. 대동맥박리의 위험인자로 알려진 횡행대동맥의 늘어남 (elongation of transverse aortic arch, ETA)은 MRI에서는 15명 (30%)에서 발견되었으나, 심장초음파에서는 한 명도 발견되지 않았다. 대동맥 확장은 두 가지 방법으로 정의하였다. 첫 번째는, 상행대동맥과 하행대동맥 직경의 비가 1.5 이상인 경우로 34% (17명)에서 대동맥 확장이 발견되었다. 두 번째는 상행대동맥의 직경을 체표면적으로 보정한 값이 20mm/m² 이상인 경우로 8% (4명)이 대동맥 확장에 해당되었다. 상행대동맥의 직경은 나이, 몸무게, 체표면적, 체질량지수와 양의 상관관계를 보였다. 대동맥 팽창성은 대동맥확장이 있는 경우 더 낮게 나타났고, 나이, 체표면적, 수축기 혈압, 상행대동맥 직경과 음의 상관관계를 보였다.

결론: 대동맥박리 및 파열의 발생 위험인자로는 이천판성 대동맥판막, 대동맥 축착, 고혈압 및 대동맥 확장, 그리고 대동맥 팽창성의 감소 등이 있으며, 본 연구를 통하여 터너증후군에서 대동맥박리와 관련된 위험인자들의 유병률이 높음을 확인하였다. 또한, 선천성 심장 기형을 제외한 다른 위험인자들은 나이가 증가할수록, 혈압이 높을수록, 비만
일수록 위험도가 증가하는 것으로 나타났다. 따라서, 이러한 대동맥박리의 위험인자를 선별해 내기 위하여 대동맥의 상태를 보다 정확히 확인할 수 있는 심장 MRI를 정기적으로 시행하는 것이 필요한 것으로 사료된다.

핵심되는 말 : 터너증후군, 심장 MRI, 대동맥 확장, 대동맥 팽창성
터너증후군 환자에서 심장 자기공명영상 결과 분석을 통한 대동맥확장 및 팽창성과 관련된 위험인자 규명

<지도교수 김호성>

연세대학교 대학원 의학과

권 아름

I. 서론

터너증후군은 Henry Turner가 1938년에 처음으로 기술한 염색체 이상 증후군으로1, 두 개의 X염색체 중 한 개의 X염색체 전체 혹은 일부분이 소실되어 발생하며, 여아의 약 2000명 중 한 명에서 발생하는 비교적 흔한 질환이다2. 이 염색체 이상은 임상 양상은 여자이면서 저신장, 림프부종, 심장혈관 이상, 성선이발생증, 익상경, 높은 구개궁, 외반주 및 외반슬, 심장 및 신혈관계 기형 등의 특징적인 임상양상을 보인다. 그 중 심장혈관 이상은 터너증후군 환자의 23%~50%3, 4에서 동반되는 것으로 보고되고 있으며, 가장 많이 발견되는 이상 소견은 이첨판성 대동맥판막 및 대동맥축착으로5, 각각 평균 약 16% 및 11%에서 동반된다6-8. 그 외에도 지속성좌상대정맥 (persistent left superior vena cava), 부분 폐정맥 환류이상 (partial anomalous pulmonary venous return), 심방중격결손, 심실중격결손 등도 발견된다9.

터너증후군에서 심장혈관질환이 중요한 이유는 터너증후군 환자의 중요한 사망 원인이 되기 때문이다10. 터너증후군은 정상인에 비해 기
대수명이 약 13년 짧으며, 표준사망비율 (standard mortality ratio) 도 2.86배 높은 것으로 보고되었다. 터너증후군 환자의 주요 사망 원인은 내분비 및 대사질환, 심장관상동맥 질환, 선천성 기형 등이며, 그 중 대동맥박리나 대동맥과열의 위험도가 높아 터너증후군 환자의 사망 원인 중 약 2~8%를 차지한다. 대동맥 박리는 전체 인구의 발생률이 남성 10만 명 당 6명 정도이며, 주로 여성보다 남성이 약 2~3배 정도 많고, 여성에서는 50세에서 80세 사이에 발생하는 것으로 알려져 있다. 그러나 터너증후군에서는 100명 중 1.4명에서 대동맥 박리가 일어나 그 발생률이 정상인에 비하여 매우 높으며, Gravholt 등의 보고에 따르면, 대동맥박리를 경험한 터너증후군 환자의 평균 나이는 35세로 일반 발병 나이보다 넓고, 18명 중 10명이 사망하였을 정도로 치사율도 높다.

대동맥 박리의 선행요인으로는 이첩판성 대동맥판막과 대동맥 축착, 고혈압, 그리고 대동맥확장 (aortic dilation)이 보고되었다. 이첩판성 대동맥판막이 대동맥박리의 위험요인 되는 이유는 대동맥 판막이 삼첩판인 경우보다 이첩판인 경우에서 대동맥 직경이 더 잘 늘어나기 때문이며, 발살바동의 경우 이첩판성 대동맥판막을 가지고 있는 일반인에서 적정이 년 0.2mm씩 증가하는 것으로 나타났다. 젊은 나이에 대동맥박리가 발생하는 질환이 말판증후군 (Marfan syndrome)이나 엘리스-단로스 증후군 (Elers-Danlos syndrome)에서도 이첩판성 대동맥판막이 있는 경우 대동맥의 조직학적 구성이 변하여 대동맥박리가 발생하는 것으로 보고되었다. 또한 대동맥축착의 경우에도 증가세 부위보다 근위부에 압력이 가해지면서 대동맥확장 및 대동맥류가 생기기 때문에 대동맥박리의 위험인자가 되며, 대동맥확장도 대동맥박리의 선행 질환이 되어, 말판증후군에서는 상행 대동맥의 직경이 50~55mm 가 넘는 경우 예방적 수술을 고려한다.
그러나 터너증후군 환자의 최종 성인키는 성장호르몬 등의 치료를 충분히 받지 않으면 정상 성인 여성보다 약 20cm 정도 작기 때문에, 건강한 성인 여성의 대동맥 직경을 기준으로 터너증후군 환자에서 대동맥확장을 진단하거나 대동맥박리를 예측할 수 없다. 실제로 대동맥박리로 인해 사망한 터너증후군 환자 두 명을 기술한 증례보고를 살펴보면, 대동맥의 직경이 각각 28-32mm (z-score = 2.2 to 3.8) 및 22mm (z-score = -0.5)에서 대동맥박리가 발생하여, 말관증후군이나 일반 성인에서 발생하는 경우보다 더 작은 직경에서 대동맥박리가 발생하였다. 이러한 문제점을 보정하기 위하여, 대동맥의 직경을 체표면적으로 나누어 보정하는 방법과 주로 확장되는 부위가 상행대동맥이므로 상행대동맥의 직경을 하행대동맥의 직경으로 나누어 그 비를 보는 방법 등이 제시되고 있다. 166명의 터너증후군 환자와 26명의 정상 성인을 대상으로 심장 자기공명영상 (magnetic resonance imaging, MRI) 검사를 시행하여 대동맥의 직경을 비교한 연구의 결과를 살펴보면, 정상 성인의 대동맥 직경의 95퍼센티일 (percentile)은 3.4cm이고, 체표면적으로 보정하였을 때는 2.0cm/m², 상행대동맥과 하행대동맥의 비로 계산하였을 때는 1.5였다. 따라서 이 연구에서는 대동맥확장을 체표면적으로 보정하였을 때 2.0cm/m² 이상인 경우 혹은 상행대동맥과 하행대동맥의 비가 1.5 이상인 경우로 정의하고, 만일 체표면적으로 보정한 직경이 2.5cm/m² 이상이거나, 대동맥 직경 자체가 3.5cm을 넘을 경우 즉시 예방적 치료가 필요할 것이라고 권고하고 있다.

한편, 말관증후군 환자 중 상행대동맥의 직경이 45-50mm인 경우에도 대동맥박리가 발생하기도 하는데, 이는 대동맥의 탄성이 떨어지면서 취약한 부분이 생기게 되어 대동맥 박리가 발생하기 때문이다. 대동맥의 탄성력은 대동맥의 팽창성으로 평가되며, 혈압이 높을
수록, 나이가 증가할수록, 다른 심혈관질환이 동반될수록 낮은 것으로 알려져 있고20, 이처럼 성 대동맥관막이 있는 경우에도 팽창성이 감소하는 것으로 나타났다26. 즉, 여러가지 심혈관질환이 동반되거나 노화가 진행됨에 따라 대동맥의 조직학적 구성이 변하여 대동맥병증이 발생하고, 이로 인해 대동맥의 팽창성이 감소하면서 대동맥확장이나 박리의 위험인자가 될 것으로 추측되고 있다27.

따라서 최근에는 터너증후군에서 심장혈관기형의 진단 뿐 아니라 대동맥의 상태를 보다 정확히 확인하는 것이 강조되고 있고, 이를 위해 수면검사를 필요로 하지 않는 연령에서는 심장 MRI로 진단 및 추적 관찰을 할 것을 권고하고 있다. 심장 MRI는 가격이 비싸고, 어린 연령에서는 수면 검사가 필요하다는 단점이 있지만, 심장초음파보다 정확하게 대동맥의 상태나 직경을 측정할 수 있고, 흉곽 기형이나 유방의 발달 등과 상관 없이 정확한 영상을 얻을 수 있기 때문이다25. 그러나, 국내에서는 아직 터너증후군 환자에서 심장 MRI를 보편적으로 시행하지 못하고 있기 때문에, 터너증후군 환자의 심장 MRI 결과에 대한 국내 자료 및 연구 결과가 없는 실정이다. 또한, 외국의 보고에서도 터너증후군에서 대동맥 팽창성을 심장 MRI를 통해 측정한 연 구도 없었다. 따라서 본 연구에서는 국내의 터너증후군 환자를 대상으로 심장 MRI 검사를 시행하여 이전의 심장초음파 결과와 비교, 분석하고, 9개의 부위에서 직경을 측정하여 대동맥의 직경과 관련된 인자를 확인하며, 대동맥확장에 대한 지표를 분석하고자 한다. 또한 대동맥의 팽창성을 측정하여 대동맥 직경 및 팽창성과 여러 가지 위험 인자가의 상관 관계를 규명해 보고자 한다.

Ⅱ. 재료 및 방법

1. 대상
터너증후군의 임상 양상을 가지고 있으면서 염색체 검사상 터너증후군으로 확진 된 환자 50명을 대상으로 하였다. 대상 환자들은 연령이 10세 이상으로, 터너증후군으로 진단받았을 당시 모두 심장초음파를 검사를 시행하였다. 또한, 대상 환자들은 모든 심장 MRI 시행하였는데, 수면이나 진정 과정이 필요한 환자는 없었다. 대상 환자들은 심장 MRI 시행 전에 신장과 몸무게, 혈압을 측정하였고, 측정한 수치를 바탕으로 체표면적(body surface area, BSA) 및 체질량지수(body mass index, BMI)를 다음과 같은 수식으로 계산하였다.

가. BSA (in m²)=71.84×(weight [in kg])^{0.425}×(height [in cm])^{0.725}
나. BMI (in kg/m²) = weight (in kg)/height (in meters)^{2}

대상 환자들의 혈압을 측정 시, 30분 이상 안정을 취한 뒤 측정하도록 하였고, 측정된 혈압을 바탕으로 같은 성별 및 나이 대비 수축기 혹은 확장기 혈압이 90 퍼센타일(percentile)이상인 경우를 고혈압으로 정의하였다.

대상 환자들의 의무기록을 후향적으로 조사하여 분석하였고, 심장 혈관이상으로 인한 수술이나 약물 치료의 과거력, 고혈압의 과거력, 감상선 질환 유무 등을 조사하였다. 또한, 현재 대상 환자들의 투여 중인 약물(성장호르몬, 여성호르몬, 항고혈압제제, 감상선 호르몬, 혈당강제제 등)을 조사하였다. 그리고 경구포도당부하검사를 결과를 통하여 당뇨나 내당능장애가 있는지 확인하였으며, 6개월마다 혈액검사를 통하여 당화혈색소(HbA1c) 검사를 시행하였다.

2. 심장 MRI

모든 대상 환자는 심장 MRI를 시행하였고, 수면이나 진정 과정은 필요하지 않았다. MRI 영상은 1.5-테슬라 자기공명스캐너(Tesla magnetic resonance scanner) (MR systems Achieva Release 2.6.3.1 2009-01-13)를 통하여 얻었고, 위상경립교일
(phased-array coil)을 이용하였으며, 조영제를 사용하지 않고 3차원 자기공명 혈관촬영술(magnetic resonance angiography, MRA)을 이용하였다.

가. 대동맥의 직경

(1) 위치 (그림 1)

(A) 대동맥판막륜 (Aortic valve annulus)
(B) 발살바동 (Sinus of Valsalva)
(C) 동관 경계 (Sinotubular junction)
(D) 근위부 상행대동맥 (Proximal ascending aorta)
(E) 횡대동맥궁 (Transverse arch)
(F) 근위부 하행흉부대동맥 (Proximal descending thoracic aorta)
(G) 하행흉부대동맥, 심장후방 (Descending thoracic aorta, retrocardiac)
(H) 하행흉부대동맥, 가로막부위 (Descending thoracic aorta, diaphragm)
(I) 복부대동맥, 상장간막동맥 부위 (Abdominal aorta, superior mesenteric artery level)

(2) 측정 방법

위의 9 위치에서 대동맥의 장축과 수직이 되도록 하여 측정하였고, 단위는 mm 로 하였다.

(3) 보정 방법5

(가) 측정한 대동맥 직경을 체표면적으로 나누어 보정

\[\frac{A_{\text{dia}} \text{ (mm)}}{\text{BSA (m²)}} \]

\[A_{\text{dia}}: \text{대동맥 직경} \]

BSA: 체표면적
(나) 상행대동맥과 하행대동맥의 비 (AsAo/DsDo)

AsAo: 상행대동맥, 근위부 상행대동맥 위치
DsDo: 하행대동맥, 근위부 하행흉부대동맥

(4) 대동맥 확장의 정의5

(가) $A_{\text{dia}} \ (\text{mm}) / \text{BSA}\ (\text{㎡})$ 가 20mm/㎡ 이상

(나) AsAo/DsDo가 1.5 이상

나. 대동맥의 팽창성 (distensibility)26

(1) 정의
심장주기에 따라 변화되는 대동맥 단면의 상대적인 차이로, 대동맥의 단면적이 최대가 되는 수축기 시기의 단면적과 대동맥의 단면적이 최소가 되는 확장기 시기의 단면적의 차이를 나타냄

(2) 팽창성 측정 위치
근위부 상행대동맥(Proximal ascending aorta)

(3) 계산 공식

$$D = \frac{(A_{\text{max}} - A_{\text{min}})}{A_{\text{mi}}} \times \frac{(P_{\text{sys}} - P_{\text{dia}})}{}$$

D: 팽창성(Distensibility);
A_{max}: 대동맥 최대단면적
A_{min}: 대동맥 최소단면적
P_{sys}: 수축기 혈압
P_{dia}: 확장기 혈압
그림 1-가, 나, 다, 라. 대동맥의 직경을 측정한 부위
가. (A) Aortic valve annulus, (B) Sinus of Valsalva, (C) Sinotubular junction 의 위치 나. (D) Proximal ascending aorta 의 위치 다. (E) Transverse arch, (F) Proximal descending thoracic aorta, (G) Descending thoracic aorta-retrocardiac, (H) Descending thoracic aorta- diaphragm의 위치 라. (I) Abdominal aorta-superior mesenteric artery level 의 위치
3. 통계
연속변수는 평균과 표준편차로 기술하였다. 명목변수들은 수와 퍼센트 (percent)로 기술하였다. 대동맥확장이 있는 환자와 없는 환자간의 비교는 Mann Whitney U test 를 이용하였고, 연속변수 사이의 상관성과 명목변수들의 빈도 및 비율에 대한 분석은 Fisher’s exact test를 이용하였으며, 유의수준은 0.05 미만인 경우 통계적으로 유의하다고 판정하였다. 통계 분석은 SPSS version 18.0을 이용하였다.

III. 결과
대상 환자는 총 50명이었으며, 평균 연령은 20.27 ± 6.58세 (범위 10.4 - 37.7세)였다 (표 1). 평균 키는 147.29 ± 10.51cm (범위 117.3 - 171.5cm)이었으며, 평균 몸무게는 47.43 ± 10.87kg (범위 20.7 - 71.5kg), 체질량지수는 21.72 ± 3.86kg/m² (범위 15.04 - 32.24kg/m²), 체표면적은 1.39 ± 0.19m² (범위 0.82 - 1.81 m²)였다. 평균 수축기혈압은 116.92 ± 13.47mmHg (범위 91 - 145mmHg), 평균 확장기혈압은 73.69 ± 12.25mmHg (범위 52 - 99mmHg)였으며, 고혈압은 14명 (28%)있었다. 평균 당화혈색소는 5.7 ± 0.5% (범위 4.9 - 8.5%)였으며, 내당능장애는 4명 (8%), 2형 당뇨는 2명 (4%)있었다. 감상선기능저하증으로 약물복용중인 환자는 6명 (12%)있었으며, 감상선기능골절로 약물복용중인 환자는 8명 (16%)있었다. 현재 투여중인 약물은 성장호르몬이 13명 (26%), 여성호르몬이 40명 (80%), 감상선호르몬 6명 (12%), 혈당량제 2명 (4%), 항고혈압제 5명 (10%)이었다. 염색체 검사 결과상 45,XO가 20명 (40%)으로 가장 많았고, 45,X와 46,X+mar의 모자이시즘 17명 (34%)으로 그 다음으로 많았다(표 1). 그 밖에
46,X,i(Xq)가 6명 (12%), 45,X/46XX 또는 45,X/47,XXX가 7명 (14%) 있었다.

표 1. 터너증후군 대상환자들의 임상적 특징

<table>
<thead>
<tr>
<th>특성</th>
<th>터너증후군, 대상자 50 명</th>
</tr>
</thead>
<tbody>
<tr>
<td>나이 (년)</td>
<td>20.27 ± 6.58 [10.4 - 37.7]</td>
</tr>
<tr>
<td>키 (cm)</td>
<td>147.29 ± 10.51 [117.3 - 171.5]</td>
</tr>
<tr>
<td>몸무게 (kg)</td>
<td>47.43 ± 10.87 [20.7 - 71.5]</td>
</tr>
<tr>
<td>체질량지수 (kg/m²)</td>
<td>21.72 ± 3.86 [15.04 - 32.24]</td>
</tr>
<tr>
<td>체표면적 (m²)</td>
<td>1.39 ± 0.19 [0.82 - 1.81]</td>
</tr>
<tr>
<td>수축기혈압 (mmHg)</td>
<td>116.92 ± 13.47 [91 - 145]</td>
</tr>
<tr>
<td>확장기혈압 (mmHg)</td>
<td>73.69 ± 12.25 [52 - 99]</td>
</tr>
<tr>
<td>고혈압 (%)</td>
<td>14 명 (28%)</td>
</tr>
<tr>
<td>당화혈색소 (%)</td>
<td>5.7 ± 0.5 [4.9 - 8.5]</td>
</tr>
<tr>
<td>2 형 당뇨 (%)</td>
<td>2 명 (4%)</td>
</tr>
<tr>
<td>내당능장애 (%)</td>
<td>4 명 (8%)</td>
</tr>
<tr>
<td>갑상선기능저하증 (%)</td>
<td>6 명 (12%)</td>
</tr>
<tr>
<td>염색체 검사 결과</td>
<td></td>
</tr>
<tr>
<td>45,XO</td>
<td>20 명 (40%)</td>
</tr>
<tr>
<td>46,X,i(Xq)</td>
<td>6 명 (12%)</td>
</tr>
<tr>
<td>45,X/46,XX or 45,X/47,XXX</td>
<td>7 명 (14%)</td>
</tr>
<tr>
<td>45,X/46,X+ mar</td>
<td>17 명 (34%)</td>
</tr>
</tbody>
</table>

()안은 단위를 나타내고, 값은 평균 ± 표준오차 [최소값 - 최대값] 혹은 해당되는 환자수 및 전체 대상환자에 대한 비율(%)로 나타낸.
진단 당시 시행한 심장 초음파와 이번 연구에서 시행한 심장 MRI 의 결과를 비교하였을 때, 이첨판성 대동맥 판막은 심장초음파에서 1명 (2%)이었고, 심장 MRI 에서는 3명 (6%)이었다 (표 2). 횡행 대동맥 궁 이 늘어난 소견 (Elongation of Transverse aortic arch, ETA)는 심장 초음파에서는 발견하지 못하였으나, 심장 MRI 에서는 15명 (30%)에서 발견되었다. 대동맥축착은 두 가지 영상 방법 모두 1명 (2%)에서 발견되었으며, 같은 환자였고, 지속성좌상대정맥은 심장 MRI에서 1명 (2%) 발견되었으나, 심장초음파에서는 발견되지 않았다. 폐정맥환류이상도 심장초음파 및 심장 MRI에서 각각 1명씩 (2%) 발 견되었고, 역시 같은 환자였다. 결과적으로 심장초음파에서는 총 3명 (6%)에서 심장혈관질환을 발견하였지만, 심장 MRI에서는 총 21명 (42%)에서 이상 소견을 발견하였다.

표 2. 심장초음파와 심장 MRI 의 결과 비교

<table>
<thead>
<tr>
<th></th>
<th>심장초음파</th>
<th>심장 MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>이첨판성 대동맥판막</td>
<td>1 (2%)</td>
<td>3 (6%)</td>
</tr>
<tr>
<td>ETA</td>
<td>0</td>
<td>15 (30%)</td>
</tr>
<tr>
<td>대동맥축착</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>지속성좌상대정맥</td>
<td>0</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>폐정맥환류이상</td>
<td>1 (2%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>총 계</td>
<td>3 (6%)</td>
<td>21 (42%)</td>
</tr>
</tbody>
</table>

타니증후군으로 진단 당시에 시행했던 심장초음파와 다시 시행한 심장 MRI 의 결과를 비교. 단위는 명 수이며, ()는 전체 환자수 대비 비율(%)을 나타냄.

ETA: Elongation of Transverse aortic arch, 횡행대동맥궁의 늘어남, MRI: magnetic resonance imaging
대동맥 직경의 절대값 및 체표면적으로 나누어 보정한 값은 표 3 및 그림 2와 같다. 가장 직경이 넓은 부위는 발살바동으로 27.32 ± 3.81mm 였고, 체표면적으로 보정한 값은 19.91 ± 2.75mm/m² 였다. 상행대동맥 직경의 대표가 되는 근위부 상행대동맥 부위의 평균 직경은 22.22 ± 3.79mm 이고, 체표면적으로 보정한 값은 16.20 ± 2.46mm/m² 였다. 이중, 대동맥 확장의 기준인 20mm/m² 가 넘는 환자는 4명 있었다. 하행대동맥 직경의 대표가 되는 근위부 하행흉부대동맥의 평균 직경은 16.23 ± 2.38mm 였고, 체표면적으로 보정한 값은 12.10 ± 2.06mm/m² 였다. 그 밖의 위치에서 측정한 직경 및 체표면적 보정값은 표 3 및 그림 2와 같다.

상행대동맥 직경의 대표가 되는 근위부 상행대동맥의 직경과 여러 가지 인자들간의 상관관계를 확인하였다 (그림 3). 근위부 상행대동맥의 직경은 나이가 증가할수록 증가하였고, r=0.374, p 값은 0.009 였다. 몸무게와 근위부 상행대동맥 직경과도 양의 상관관계를 가지, 몸무게가 증가할수록, 근위부 상행대동맥의 직경도 증가하였으나 (r=0.574, p<0.001) 키와 근위부 상행대동맥 직경과는 상관관계를 보이지 않았다 (r=0.218, p=0.137). 체질량지수와 근위부 상행대동맥 직경과도 양의 상관관계를 나타내, 체질량지수가 증가할수록 근위부 상행대동맥의 직경이 증가하였으며 (r=0.599, p<0.001), 체표면적과 근위부 상행대동맥 직경과도 양의 상관관계를 나타냈다 (r=0.520, p<0.001). 그 밖에 수축기 혈압이나 확장기 혈압과는 근위부 상행대동맥의 직경과 어떠한 상관관계도 보이지 않았으며 (r=0.272, p=0.098; r=0.217, p=0.190), 하행대동맥 직경의 대표가 되는 근위부 하행흉부대동맥과 근위부 상행대동맥과도 상관관계를 나타내지 않았다 (r=0.286, p=0.051).
표 3. 대동맥 직경의 절대값 및 체표면적으로 보정한 값

<table>
<thead>
<tr>
<th>위치 1</th>
<th>직경 2</th>
<th>직경/체표면적 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>대동맥판막륜 (Aortic valve annulus)</td>
<td>20.21±2.23</td>
<td>14.81±1.96</td>
</tr>
<tr>
<td>발살바동 (Sinus of Valsalva)</td>
<td>[15.00-26.90]</td>
<td>[11.40-19.21]</td>
</tr>
<tr>
<td>동-관 경계 (Sinotubular junction)</td>
<td>27.32±3.81</td>
<td>19.91±2.75</td>
</tr>
<tr>
<td>근위부 상행대동맥 (Proximal ascending aorta)</td>
<td>20.94±2.80</td>
<td>15.27±1.85</td>
</tr>
<tr>
<td>횡대동맥궁 (Transverse arch)</td>
<td>[14.30-28.10]</td>
<td>[12.56-20.91]</td>
</tr>
<tr>
<td>근위부 하행흉부대동맥 (Proximal DTA)</td>
<td>17.78±1.95</td>
<td>12.97±1.78</td>
</tr>
<tr>
<td>하행흉부대동맥, 심장후방 (DTA, retrocardiac)</td>
<td>16.23±2.38</td>
<td>12.10±2.06</td>
</tr>
<tr>
<td>하행흉부대동맥, 가로막부위 (DTA, diaphragm)</td>
<td>[11.73-23.90]</td>
<td>[6.74-16.83]</td>
</tr>
<tr>
<td>복부대동맥, 상장간막동맥 부위 (Abdominal aorta, SMA level)</td>
<td>15.38±2.12</td>
<td>11.30±1.50</td>
</tr>
</tbody>
</table>

1) () 안은 영문 명칭을 나타냄
2) 터나증후군 환자들에게서 시행한 심장 MRI를 통해 9개의 위치에서 직경을 측정함. 표현은 평균±표준편차로 하였으며, 단위는 mm이고, []은 최소값-최대값을 나타냄
3) 터나증후군 환자들의 키와 체중을 고려하여 9개의 위치에서 측정한 직경을 체표면적으로 보정함. 표현은 평균±표준편차로 하였으며, 단위는 mm/㎡이고, []은 최소값-최대값을 나타냄

DTA: descending thoracic aorta, SMA: superior mesenteric artery, MRI: magnetic resonance imaging
그림 2-가. 9개의 부위에서 측정한 대동맥의 직경, 나. 9개의 부위에서 측정한 대동맥의 직경을 체표면적으로 보정한 값
A. Aortic valve annulus, B. Sinus of Valsalva, C. Sinotubular junction D. Proximal ascending aorta E. Transverse arch, F. Proximal descending thoracic aorta, G. Descending thoracic aorta-retrocardiac, H. Descending thoracic aorta-diaphragm I. Abdominal aorta-superior mesenteric artery level
$r=0.374, p=0.009$

$\text{Proximal ascending aorta diameter (mm)}$

$10.0 \ 15.0 \ 20.0 \ 25.0 \ 30.0 \ 35.0 \ 40.0$

Age (year)

$15.0 \ 20.0 \ 25.0 \ 30.0 \ 35.0 \ 40.0$

35.0

$r=0.574, p<0.001$

$\text{Proximal ascending aorta diameter (mm)}$

$20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 80.0$

Weight (kg)

$20.0 \ 30.0 \ 40.0 \ 50.0 \ 60.0 \ 70.0 \ 80.0$
그림 3-가,나,다,라. 근위부상행대동맥과 나이, 몸무게, 체질량지수, 체표면적의 관계. 가. 근위부상행대동맥과 나이와의 관계
\(r=0.374, p = 0.009 \), 나. 근위부상행대동맥과 몸무게와의 관계
\(r=0.574, p < 0.001 \), 다. 근위부상행대동맥과 체질량지수와의 관계
\(r=0.599, p < 0.001 \), 라. 근위부상행대동맥과 체표면적과의 관계
\(r=0.520, p < 0.001 \)
$r = 0.391, p = 0.007$

$\text{Proximal DTA diameter (mm)}$

age (year)

$\text{Proximal DTA diameter (mm)}$

Height (cm)
그림 4-가, 나, 다, 라. 근위부하행흉부대동맥과 나이, 키, 수축기혈압, 확장기혈압과의 관계. 가. 근위부하행흉부대동맥과 나이와의 관계 ($r=0.391, p=0.007$), 나. 근위부하행흉부대동맥과 키와의 관계 ($r=0.449, p=0.002$), 다. 근위부하행흉부대동맥과 수축기혈압과의 관계 ($r=0.625, p<0.001$), 라. 근위부하행흉부대동맥과 확장기혈압과의 관계 ($r=0.600, p<0.001$)
반면, 근위부 하행흉부대동맥의 직경과 여러 가지 인자들간의 상관관계에서는 키와 근위부 하행흉부대동맥의 직경과는 양의 상관관계를 가지 (r=0.449, p=0.002), 키가 클수록 근위부 하행흉부대동맥의 직경이 증가하였다 (그림 4). 몸무게와 근위부 하행흉부대동맥의 직경도 양의 상관관계를 가졌으나 (r=0.378, p=0.009), 체질량지수와 근위부 하행흉부대동맥의 직경과는 상관관계를 보이지 않았다 (r=0.171, p=0.250). 체표면적과 근위부 하행흉부대동맥의 직경과는 양의 상관관계를 가졌으며 (r=0.421, p=0.003), 수축기 혈압 및 확장기 혈압도 근위부 하행흉부대동맥의 직경과 양의 상관관계를 가졌다 (r=0.625, p<0.001; r=0.600, p<0.001).

그림 5. 근위부하행흉부대동맥 직경에 대한 근위부상행대동맥 직경의 비. 직경의 비가 1.5 이상인 환자는 17 명 (34%), 1.5 미만인 환자는 33 명 (66%)
근위부 상행대동맥의 직경을 근위부 하행흉부대동맥의 직경으로 나누어 그 비를 살펴보았을 때, 비가 1.5 이상으로 대동맥 확장의 기준에 맞는 환자는 총 17 명 (34%)이었고, 가장 높은 수치는 2.17 이었다 (그림 5). 표 4는 비가 1.5 이상인 환자와 이하인 환자를 비교한 것으로, 각각의 그룹에서 직경의 비의 평균은 1.68 및 1.33 였다. 두 군의 평균 나이는 각각 21.5 세와 19.4 세로 통계적으로 유의한 차이를 보이지는 않았다 (p=0.324). 두 군의 평균 키와 몸무게는 직경의 비가 1.5 이상인 군에서는 145.5cm 및 50.0kg 이었고, 1.5 이하인 군에서는 148.3cm 및 46.1kg 으로 통계적으로는 유의하지 않았지만 (p=0.382, p=0.242), 직경의 비가 1.5 이상인 군이 이하인 군에 비해 키가 작고 몸무게가 더 많이 나가, 두 군의 평균 체질량지수는 각각 23.53kg/m² 및 20.75kg/m² 으로 통계적으로 유의한 차이를 보였다 (p=0.015). 반면, 체표면적은 각각 평균 1.41 및 1.37 로 유의한 차이를 보이지 않았다 (p=0.453). 고혈압은 직경의 비가 1.5 이상인 군에서는 4 명 (23.5%), 1.5 이하인 군에서는 10 명 (30.3%)으로 두 군간의 차이를 보이지 않았고, 수축기 혈압 및 확장기 혈압도 차이를 보이지 않았다 (116.3mmHg vs. 117.2mmHg, p=0.850; 75.4mmHg vs. 72.9mmHg, p=0.590). 직경의 비가 1.5 이상인 군에서는 당뇨는 2 명 (11.8%), 내당능장애도 2 명 (11.8%)있었고, 평균 당화혈색소는 5.79% 였다. 반면 직경의 비가 1.5 이하인 군에서는 당뇨는 없었고, 내당능장애는 2 명 (6.1%)있으며, 평균 당화혈색소는 5.58%였다. 직경의 비가 1.5 이상인 군과 이하인 군의 대동맥 팽창성을 비교하였을 때, 1.5 이상인 군에서 팽창성이 더 감소하였지만, 통계적으로 유의하지는 않았다.
표 4. 근위부 하행흉부대동맥 직경에 대한 근위부 상행대동맥 직경의
비가 1.5 이상인 군과 1.5 이하인 군의 비교

<table>
<thead>
<tr>
<th></th>
<th>1.5 이상</th>
<th>1.5 이하</th>
<th>P 값</th>
</tr>
</thead>
<tbody>
<tr>
<td>환자수 (명)</td>
<td>17, [34%]</td>
<td>33, [66%]</td>
<td></td>
</tr>
<tr>
<td>나이 (년)</td>
<td>21.5±7.5</td>
<td>19.4±6.1</td>
<td>0.324</td>
</tr>
<tr>
<td>키 (cm)</td>
<td>145.5±5.7</td>
<td>148.3±12.3</td>
<td>0.382</td>
</tr>
<tr>
<td>몸무게 (kg)</td>
<td>50.0±11.3</td>
<td>46.1±10.6</td>
<td>0.242</td>
</tr>
<tr>
<td>체질량지수 (kg/m²)</td>
<td>23.53±4.66</td>
<td>20.75±3.02</td>
<td>0.015</td>
</tr>
<tr>
<td>체표면적 (m²)</td>
<td>1.41±0.17</td>
<td>1.37±0.20</td>
<td>0.453</td>
</tr>
<tr>
<td>고혈압 (명)</td>
<td>4, [23.5%]</td>
<td>10, [30.3%]</td>
<td>0.298</td>
</tr>
<tr>
<td>수측기혈압 (mmHg)</td>
<td>116.3±15.3</td>
<td>117.2±12.9</td>
<td>0.850</td>
</tr>
<tr>
<td>확장기혈압 (mmHg)</td>
<td>75.4±13.7</td>
<td>72.9±11.8</td>
<td>0.590</td>
</tr>
<tr>
<td>당뇨 (명)</td>
<td>2, [11.8%]</td>
<td>0, [0%]</td>
<td>0.111</td>
</tr>
<tr>
<td>내당뇨증 (명)</td>
<td>2, [11.8%]</td>
<td>2, [6.1%]</td>
<td>0.153</td>
</tr>
<tr>
<td>당화혈색소 (%)</td>
<td>5.79±0.85</td>
<td>5.58±0.19</td>
<td>0.189</td>
</tr>
<tr>
<td>팽창성</td>
<td>8.0x10⁻³ ± 4x10⁻³</td>
<td>10x10⁻³ ± 4x10⁻³</td>
<td>0.326</td>
</tr>
</tbody>
</table>

()안은 단위를 나타내며, 표현은 평균±표준편차 혹은 해당되는 환자 수와 전체 환자수에
대한 비율 (%)을 []안에 나타냄.

근위부 상행대동맥 부위에서 측정한 대동맥의 팽창성과 여러 인자
들과의 상관관계를 살펴보았다 (그림 6). 대동맥의 팽창성과 나이와는
음의 상관관계를 가져 (r=-0.617, p<0.001), 나이가 증가할수록 팽창
성은 감소하였다. 대동맥의 팽창성과 키는 유의한 상관관계를 보이지
않았고 (r=-0.315, p=0.054), 몸무게는 유의한 음의 상관관계를 보여
(r=-0.379, p=0.019) 몸무게가 증가할수록 팽창성은 감소하였다.
$r = -0.617 \ p < 0.001$

$\text{Distensibility vs age (year)}$

$\text{Distensibility vs BSA (m}^2\text{)}$

$\text{Fit with negative correlation}

$\text{Regression lines show negative correlation}$
그림 6-가, 나, 라. 상행대동맥의 팽창성과 여러 인자와의 상관 관계. 가. 나이와 대동맥의 팽창성과의 관계 \(r = -0.617, p < 0.001 \). 나. 체표면적과 대동맥의 팽창성과의 관계 \(r = -0.380, p = 0.019 \). 다. 수축기 고혈압과 대동맥의 팽창성과의 관계 \(r = -0.334, p = 0.04 \). 라. 상행대동맥과 대동맥의 팽창성과의 관계 \(r = -0.447, p = 0.005 \)
한편, 체질량지수와 팽창성과는 유의한 상관관계를 보이지 않았지만 \((r=-0.262, \ p=0.112)\), 체표면적과 팽창성은 유의한 음의 상관관계를 보여 \((r=-0.380, \ p=0.019)\) 체표면적이 증가할수록 팽창성이 감소하였고, 수축기 혈압도 증가할수록 팽창성이 감소하였지만 \((r=-0.334, \ p=0.04)\), 확장기 혈압과는 유의한 상관관계를 보이지 않았다 \((r=-0.156, \ p=0.350)\). 근위부 상행대동맥의 직경과 팽창성과는 유의한 음의 상관관계를 보여 \((r=-0.447, \ p=0.005)\) 직경이 증가할수록 팽창성은 감소하였지만, 근위부 상행대동맥의 직경을 체표면적으로 보정한 값과는 유의한 상관관계를 보이지 않았다 \((r=-0.185, \ p=0.275)\). 또한 하행대동맥에 대한 상행대동맥의 비와 대동맥의 팽창성과도 유의한 상관관계를 보이지 않았다 \((r=-0.145, \ p=0.385)\).

대상 환자의 연령에 따라 10 세-20 세 미만, 20 세-30 세 미만, 30 세 이상인 군으로 나누어 팽창성의 중위수를 구한 값은 표 5와 같으며, 나이가 증가할수록 대동맥의 팽창성이 감소하였다.

<table>
<thead>
<tr>
<th>나이</th>
<th>대동맥 팽창성(중위수)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 세-20 세 미만 (23 명)</td>
<td>$12.7 \times 10^{-3} \text{mmHg}^{-1}$</td>
</tr>
<tr>
<td>20 세-30 세 미만 (24 명)</td>
<td>$7.9 \times 10^{-3} \text{mmHg}^{-1}$</td>
</tr>
<tr>
<td>30 세 이상 (3 명)</td>
<td>$6.7 \times 10^{-3} \text{mmHg}^{-1}$</td>
</tr>
<tr>
<td>총 (50 명)</td>
<td>$9.9 \times 10^{-3} \text{mmHg}^{-1}$</td>
</tr>
</tbody>
</table>

IV. 고찰

터너증후군 환자에서 심장혈관질환에 대한 적극적인 선별검사 및 치료에 대한 최근의 가이드라인을 보면, 심장초음파보다는 심장 MRI
를 시행할 것을 권고하고 있다. Bondy 등이 제시한 이 가이드라인에서는 모든 환자들은 터너증후군을 진단받을 때 심장혈관질환에 대한 선별검사를 필요로 하며, 심장, 대동맥 판막, 대동맥 궤, 폐정맥 등에 대한 명확한 영상을 얻도록 하라고 권고하고 있는데, 이를 위해서 수면 과정이 필요하지 않는 청소년기나 성인이 된 환자들에서는 되도록이면 MRI를 시행할 것을 권고한다. 또한 만일 처음 진단 당시에 심장혈관 질환이 발견되지 않았다고 하더라도 1) 성인이 되었거나, 2) 임신을 고려할 때, 3) 고혈압이 발생하였거나, 4) 이전에 심장초음파 검사만을 시행한 청소년기 이후의 환자들에게 대해서는 심장 MRI로 추적 관찰할 것을 제시하고 있다. 그리고, 위의 경우에는 해당되지 않더라도 5년에서 10년마다 심장 MRI를 시행하여 심장혈관질환에 이상이 없는지 확인하고, 이상이 발견될 경우 심장전문의에게 의뢰하여 적절한 치료 및 면밀한 관찰을 반드시 할 것을 권고하고 있다. 물론, 가장 보편적이면서 쉽게 시행되고 있는 선별검사는 심장초음파이지만, 심장초음파는 검사자의 기술에 따라 놓칠 수가 있고, 특히 대통령 확장 및 대통령박리의 위험성을 선별해 내려면 대통령의 전체적인 영상을 얻는 것이 중요하다. 여성호르몬 보충 요법을 통해 가슴이 발달하기 시작하면 대통령 판막이나 상행대동맥 부위의 정확한 영상을 얻지 못할 수 있기 때문이다. 본 연구에서도 심장초음파를 통해서는 3명 (6%)에서 이상 소견이 발견되었지만, 심장 MRI를 시행하였을 때에는 21명 (42%)의 환자에서 이상 소견이 발견되어, 심장 MRI에서 병변의 감별력이 더 높았다. 특히 대통령박리의 위험 인자로 알려져 있는 횡행대동맥궁의 늘어남 (ETA)는 심장초음파를 통해서는 한 명도 관찰되지 않았으나, 심장 MRI에서 15명 (30%)에서 관찰되어, 심장 MRI가 대통령의 전체적인 영상을 얻고, 대통령의 상태를 확인하는데 심장초음파보다 더 유용함을 알 수 있었다. 하지만, 본 연구
구에서는 심장초음파는 터너증후군의 진단시기에 시행하고, 심장 MRI는 최근에 시행하였기 때문에, 두 검사의 시행 시기가 다르다는 제한점이 있다. ETA는 시간이 지나면서 발생할 수 있는 대동맥의 변화기 때문에, 더 늦게 검사를 시행한 심장 MRI 에서 더 많이 발견될 수 있었을 것이다. 하지만, 심장초음파를 통해서는 ETA 가 전혀 발견되지 않았기 때문에, 이는 시간이라는 요인을 배제하더라도 심장초음파를 통해서는 정확한 대동맥의 전체적인 영상을 얻을 어렵다고 해석할 수 있다.

본 연구에서는 조사 대상의 평균 연령이 20.27 세 (범위 10.4 세부터 37.7 세)로 다른 연구에 비해 비교적 젊어 대동맥박리를 경험한 환자는 없었다. 그러나 대동맥확장은 근위부 상행대동맥의 직경을 체표면적으로 보정한 값을 기준으로 할 때는 20mm/m² 이상인 환자가 4명으로 8%의 유병률을 보여, 대상 환자들의 연령이 낮음에도 불구하고 비교적 높은 유병률을 보였다. 또한, 또 다른 대동맥확장의 기준인 하행대동맥의 직경에 대한 상행대동맥의 직경의 비가 1.5 를 넘는 경우도 본 연구에서는 17명 (34%)가 있었다. 하지만, 이 기준은 하행대동맥의 직경이 정상이라는 가정 하에 적용될 수 있는 기준이고, 대동맥의 직경과 여러 인자들의 상관관계에 관한 본 연구의 결과를 살펴보았을 때, 상행대동맥의 직경은 나이가 증가할수록, 몸무게가 증가할수록, 체질량지수 및 체표면적이 증가할수록 증가하는 반면, 하행대동맥의 직경은 나이 및 체표면적 외에 키가 증가할수록, 혈압이 높을수록 증가하는 양상을 보여, 키에 비해 몸무게가 많이 나가거나, 혈압이 정상인 환자들에서는 위양성의 가능성이 높고, 몸무게에 비해 키가 크거나, 혈압이 높은 환자들에서는 위음성의 가능성이 높기 때문에 정확한 진단의 지표로 보기는 어렵다. 따라서 본 연구의 결과를 종합할 때, 50 명의 환자 중 대동맥확장이 있는 환자는 근위부 상행대동맥의

29
직경을 체표면적으로 보정한 값을 기준으로 하여 4 명 (8%)으로 보는 것이 적당하다고 생각된다.

터너증후군에서 대동맥박리나 파열이 많이 발생하는 이유로 첫째, 이질판성 대동맥판막이나 대동맥축착, 고혈압의 유병률이 일반 유병률보다 높기 때문으로 추측할 수 있다. 이질판성 대동맥판막의 일반 유병률은 0.5-2% 정도인 반면 19, 터너증후군에서는 16-20%에서 발생하는 것으로 알려져 있기 때문에 6, 9, 25, 27, 30, 그만큼 터너증후군에서 대동맥확장이 잘 발생하고, 더불어 대동맥박리의 유병률이 높아지는 것이다. 본 연구에서는 이질판성 대동맥판막이 다른 연구 결과와는 달리 3 명 (6%)에서 발견되어 비교적 적은 유병률을 보였지만, 일반 인의 유병률보다는 높았다. 또한 이질판성 대동맥판막이 있는 3 명의 환자 중 2 명 (66%)은 체표면적으로 보정한 근위부 상행대동맥의 직경이 각각 22.2mm/m², 20.6mm/m²으로 대동맥확장에 해당하였다.

터너증후군에서는 대동맥축착이 약 11-13%에서 발견되는 것으로 알려져 있지만 30, 본 연구에서는 1 명 (2%)만이 발견되었다. 그 이유는 본 연구의 대상자들은 심장혈관질환으로 심장전문의에게 진료를 받고 있는 환자들이 아니기 때문에, 아마도 대동맥축착이 발견되어 치료가 필요했던 환자들은 본 연구의 대상에서 제외되었기 때문으로 사료된다. 대동맥축착이 발견되었던 환자 한 명은 이질판성 대동맥판막도 함께 발견되었지만, 대동맥확장은 관찰되지 않았다. 이는 수술적 치료가 필요하지 않을 정도로 심하지 않은 대동맥축착이기 때문에 대동맥 직경에 영향을 미치지 않은 것으로 생각된다.

또한, 터너증후군에서는 일반인들보다 고혈압의 유병률이 더 높은 것으로 알려져 있으며 9, 31, 고혈압 또한 대동맥 박리의 주요 원인이 되기 때문에 17, 31 터너증후군에서 대동맥박리 및 과열이 일반인들보다 더 많이 발생하게 된다. 본 연구에서는 총 14 명 (28%)의 고혈압 환
자가 있었으며, 항고혈압제재를 복용하고 있는 환자는 5 명 (10%) 있다. 하지만, 본 연구에서는 혈압이 증가할수록 하행대동맥의 직경이 증가하는 양의 상관관계를 보이기는 했지만, 상행대동맥과의 직경과는 연관성을 보이지 않았다. 그 이유는 아마도 1 회성으로 혈압을 측정하였기 때문으로 생각되며, 향후 정기적으로 혈압을 측정하여 추후 다시 논의해 볼 필요가 있다.

터너증후군에서 대동맥박리가 잘 발생하는 또 다른 이유로, 말판증후군처럼 대동맥 혈관벽에 일차적인 변화가 발생하여, 혈관벽이 약해지고 늘어나 박리 및 파열이 생긴다는 주장이 있다. 대동맥박리를 경험한 85 명의 터너증후군 환자를 대상으로 한 연구에서 약 21%의 환자들은 대동맥박리의 위험인자가 없는데도 불구하고 젊은 나이에 대동맥박리를 경험하였기 때문에, 아마도 터너증후군 자체가 위험인자가 될 것이라고 생각하는 것이다. 또한, Ostberg 등은 터너증후군 환자들을 대상으로 대동맥 및 다른 주요 동맥들의 직경 및 내경, 동맥의 정직도 등을 측정하였는데, 결과를 살펴보면 정상 여성과는 터너증후군과 직경의 차이가 있었지만 원발성 난소부전 환자들과 비교하였을 때는 직경이 비슷하여, 아마도 여성호르몬 부족이 내경을 두껍게 하고, 혈관의 탄력성을 감소시키는 것으로 생각되었다.

혈관의 탄력성이 떨어지면 대동맥박리의 위험이 증가하는 것으로 알려져 있다. 대동맥의 탄력성은 대동맥의 팽창성으로 측정할 수 있는데, 터너증후군 환자를 대상으로 심장초음파로 대동맥의 팽창성을 측정한 한 연구에서는, 대동맥의 팽창성은 대동맥의 직경이 증가할수록 감소하였고, 대동맥의 직경은 대동맥의 팽창성의 독립적인 위험인자라는 결과가 나왔다. 또한 이처럼 대동맥박리가 있는 경우에는 대동맥 확장이 없다 하더라도 대동맥의 팽창성이 감소하였고, 이러한
대동맥의 팽창성의 감소는 대동맥이 확장이 일어나기 전부터 발생할 수 있기 때문에, 저자들은 대동맥의 팽창성을 정기적으로 측정하면 대동맥박리를 훨씬 더 빨리 예측할 수 있다고 주장하였다. 본 연구 에서도 심장 MRI 를 통해 근위부 상행대동맥에서 대동맥의 팽창성을 측정하였다. 본 연구 결과에 따르면, 대동맥의 팽창성은 나이가 증가 할수록, 상행대동맥의 직경이 증가할수록 감소하였고, 그 외에도 몸무게가 증가하거나 체표면적이 증가할수록, 그리고 수축기혈압이 증가 할수록 팽창성은 감소하였다. 또한, 상행대동맥과 하행대동맥의 비가 1.5 이상인 대동맥확장이 있는 환자들에서도 1.5 이하인 군에 비해 대동맥의 팽창성은 감소되어 있었지만 통계적으로 유의하지는 않았다. 하지만 본 연구에서 측정한 대동맥의 팽창성은 9.9 x 10^{-3}mmHg^{-1} 으로, 터너증후군 환자를 대상으로 심장초음파를 이용하여 측정한 대동맥의 팽창성 (6.4 x 10^{-3}mmHg^{-1})보다 높게 나타났다. 이는 대상 연령의 차이 때문으로 생각되는데, 본 연구에서 대상 연령이 10.4 세 -37.7 세 사이의 환자를 대상으로 한 반면, 심장초음파로 대동맥의 팽창성을 측정한 연구의 대상 환자의 연령은 1.7 세 -43.3 세로 본 연구보다 연령의 분포가 넓어, 나이가 증가할수록 대동맥의 팽창성이 감소하는 문제점을 보정하지 못했기 때문으로 생각된다. 또한, 평균 20-30 세 사이의 정상 성인 10 명에서 심장 MRI 를 이용하여 대동맥 의 팽창성을 측정한 연구 결과에 따르면, 팽창성은 약 4 x 10^{-3} ~ 10 x 10^{-3}mmHg^{-1} 으로 측정되었고, 본 연구에서 20 대의 터너증후군 환자들의 대동맥 팽창성은 7.9 x 10^{-3}mmHg^{-1} 으로 정상 성인과 차이 를 보이지 않았다. 이는 여성호르몬이 테스토스테론보다 대동맥의 탄력성에 영향을 주는 물질을 더 많이 분비되도록 자극한다는 것과, 젊은 여성에서 남성보다 대동맥의 팽창성이 더 높다는 것에 참여한 환자들이 사춘기 시기부터 여성호르몬을 투여 받고 있다는
것 고려할 때, 정상 성인을 대상으로 측정한 연구에 남성이 포함되어 있기 때문에 터너증후군 환자들의 대동맥 팽창성이 정상 성인과 차이를 보이지 않는 것으로 생각된다. 하지만 본 연구를 통해서는 터너증후군에서 여성호르몬을 충분히 보충했는지에 따라 대동맥의 팽창성에 차이가 생기는지, 혹은 여성호르몬을 충분히 보충했는데도 정상 여성성인에 비해 대동맥의 팽창성이 감소하는지에 대해서는 확인할 수 없었다. 따라서 터너증후군 환자들의 대동맥의 팽창성을 측정하였기 때문에, 본 연구가 터너증후군 환자들의 대동맥의 팽창성에 대한 기초 연구 자료가 될 수 있을 것이다.

본 연구결과에서 대동맥박리의 위험인자들을 살펴보면, 이질관성 대동맥판막이나 대동맥 축착과 같은 선천성 심장 기형을 제외하면, 나이가 증가할수록, 혈압이 증가할수록, 체표면적이 증가할수록 대동맥의 직경이 증가하며, 대동맥의 팽창성이 감소하는 것으로 나타났고, 이는 대동맥박리의 위험성이 높아진다는 것을 의미한다. 따라서 터너증후군 진단 초기에 심장 MRI를 시행하여 이상 소견을 발견하지 못하였다고 하더라도 정기적으로 심장 MRI를 시행해야 하며, 특히, 연령이 많거나, 고혈압이 있는 경우, 비만인 경우에는 위험도가 증가하므로 반드시 정기적인 심장 MRI 검사가 필요하다. 또한, 본 연구결과를 통해서 확인할 수는 없었지만, 남성에서 여성보다 대동맥의 팽창성이 낮은 것과34, 원반성 난소부전 환자들에서 대동맥의 경직도가 증가한다는 다른 연구 결과를 고려할 때35, 터너증후군 환자에서 여성호르몬 복용이 심장혈관질환 예방에도 중요하며, 여성호르몬 복용의 순응도가 낮은 환자들도 대동맥박리의 위험성이 높을 것을 고려하여 심장 MRI 검사를 정기적으로 시행해야
할 것이다.

V. 결론

최근 터너증후군 환자에서 선천성 심장질환뿐 아니라 대동맥 확장 및 박리, 파열이 많이 보고 되고 있다. 대동맥박리 및 파열의 발생 위험인자로는 이첩판성 대동맥판막, 대동맥 축착, 고혈압 및 대동맥 확장, 그리고 대동맥 평창성의 감소 등이 있으며, 이러한 위험인자들은 터너증후군에서 높은 유병률을 나타낸다. 또한, 선천성 심장 기형을 제외한 다른 위험인자들은 나이가 증가할수록, 혈압이 높을수록, 비만일수록 위험도가 증가하는 것으로 나타났다. 따라서, 이러한 대동맥박리의 위험인자를 선별해 내기 위해서는 대동맥의 상태를 보다 정확히 확인할 수 있는 심장 MRI를 정기적으로 시행해야 한다.

참고문헌

6. Loscalzo ML, Van PL, Ho VB, Bakalov VK, Rosing DR, Malone CA,

17. Lin AE, Lippe B, Rosenfeld RG. Further delineation of aortic
ABSTRACT

Analysis of Heart Magnetic Resonance Imaging Features in Patients with Turner syndrome and evaluation of risk factors associated with aortic dilation and aortic distensibility

KWON, AH REUM

Department of Medicine
The Graduate School, Yonsei University

(Directed by Professor Ho-Seong Kim)

Purpose: It has been reported the aortic dissection and dilation occur more frequently in Turner syndrome, and they are related to reduced life expectancy of the patients. The aim of this study is to measure and elucidate risk factors associated with aortic dilatation and distensibility in patients with Turner syndrome by analysis of imaging data based on MRI of heart.

Methods: Heart MRI was performed in 50 patients with Turner syndrome older than ten years of age (average age 20.3±6.6 years). Aortic diameters were measured by heart MRI at 9 positions. Aortic distensibility was quantified by relative temporal changes in the vessel cross-sectional area throughout the cardiac cycle. Clinical manifestation, anthropometric measurements, echocardiography results, blood pressure, and metabolic parameters were analyzed.

Results: MRI showed abnormal findings in 42% (N=21) of patients with Turner syndrome, while echocardiography showed abnormal findings in 6% (N=3). BAV was found in 3 cases by MRI while 1 case by echocardiography. Elongation of the transverse aortic arch, which was the finding associated with progression of aortic dissection, was the most common abnormal finding in MRI (N=15, 30%), while no ETA case detected by echocardiography. Aortic dilatation was identified in two ways. First, ascending root dilation (defined as a proximal ascending aorta/proximal descending aorta >1.5) was found in 34% (N=17). Second, dilated ascending aorta (proximal ascending aorta/body surface area > 20mm) was found in 8% (N=4) of patients with Turner syndrome. The diameter of ascending aorta was showed positive correlation with age, weight, body surface area, and body mass index. The distensibility of ascending aorta was positively correlated with age, weight, body surface area, and systolic blood pressure.

Conclusion: Risk factors associated with aortic dissection or rupture are BAV, coarctation of aorta, hypertension, aortic dilation and reduced aortic
distensibility. The prevalence of these factors is high in this study. In addition, age, hypertension and increased BMI can be augmented risk of aortic dissection. It is suggested that heart MRI is recommended regularly in patient with Turner syndrome to detect early changes of aortic abnormalities.

Key Words: Turner syndrome, heart magnetic resonance imaging, aortic dilation, aortic distensibility