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<ABSTRACT> 

Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects 

in diabetic nephropathy 

 

Do-Hee Kim 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Shin-Wook Kang) 

 

Background: Accumulating evidence suggests that an inflammatory mechanism 

contributes to the development and progression of diabetic nephropathy. Gamma 

linolenic acid (GLA), a member of polyunsaturated fatty acids (PUFAs), has been 

reported to have an anti-inflammatory effect by generating modulatory molecules 

for inflammatory responses. In addition, previous studies have demonstrated that 

GLA abrogates rheumatologic diseases and diabetic neuropathy via an anti-

inflammatory mechanism. However, the effect of GLA on diabetic nephropathy has 

been largely unexplored. 
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Purpose: This study was undertaken to investigate the effects of GLA on 

inflammation and extracellular matrix (ECM) synthesis in mesangial and tubular 

epithelial cells under diabetic conditions. 

Methods: In vivo, 32 Sprague-Dawley rats were injected either with diluent [n=16, 

control(C)] or streptozotocin intraperitoneally [n=16, diabetes(DM)], and 8 rats 

from control and diabetic groups were treated with evening primrose oil by gavage 

(450 mg/kg/day) for 3 months. In vitro, rat mesangial cells and NRK-52E cells were 

exposed to medium containing 5.6 mM glucose (NG), NG+24.4 mM mannitol 

(NG+M), and 30 mM glucose (HG) with or without GLA (10 or 100 M). Real-

time PCR and Western blot were performed for intercellular adhesion molecule-1 

(ICAM-1), monocyte chemoattractant protein-1 (MCP-1), and fibronectin (FN) 

mRNA and protein expression, respectively. Immunohistochemical staining for 

ICAM-1 and FN, and Masson’s trichrome staining with renal tissue were also 

performed. 

Results: Twenty four-hour urinary albumin excretion was significantly increased in 

DM compared to C rats (p<0.05), and GLA treatment significantly reduced 

albuminuria in DM rats (p<0.05). ICAM-1, MCP-1, and FN mRNA and protein 

expression were significantly increased in DM compared to C kidney, and these 

increases were significantly abrogated by GLA treatment. In addition, the extent of 

glomerular and tubulointerstitial fibrosis assessed by Masson’s trichrome staining 

was significantly greater in DM relative to C kidney (p<0.005), and this change was 

significantly ameliorated by the administration of GLA (p<0.01). In vitro, GLA 
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significantly inhibited the increases in MCP-1 mRNA expression and protein levels 

under high glucose conditions in HG-stimulated mesangial and tubular epithelial 

cells (p<0.05). ICAM-1 and FN expression showed a similar pattern to the 

expression of MCP-1. 

Conclusion: GLA attenuates not only inflammation via inhibiting enhanced MCP-1 

and ICAM-1 expression but also ECM accumulation in diabetic nephropathy. 
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Gamma linolenic acid exerts anti-inflammatory and anti-fibrotic effects 

in diabetic nephropathy 

 

Do-Hee Kim 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Shin-Wook Kang) 

 

 

I. INTRODUCTION  

Diabetic nephropathy, the leading cause of end-stage renal disease (ESRD) 

worldwide, is characterized pathologically by cellular hypertrophy and increased 

extracellular matrix (ECM) accumulation
1
. The ECM accumulation in diabetic 

nephropathy results in mesangial expansion, tubulointerstitial fibrosis, and 

irreversible deterioration of renal function
2
. Even though previous studies have 

shown that ECM accumulation under diabetic conditions are attributed to 

hyperglycemia per se, advanced glycation end-products, hemodynamic changes, 

and local growth factors such as angiotensin II (AII) and transforming growth factor 

(TGF)-1
3
, the precise molecular and cellular mechanisms responsible for this still 

remain to be resolved. 

 Recently, accumulating evidence suggests that inflammatory process also plays 

an important role in the pathogenesis of diabetic nephropathy
4,5

. Infiltration of 

inflammatory cells in the glomeruli and renal tubulointerstitium is commonly seen 
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in both human diabetic patients and experimental diabetic animals
6-8

. In addition, 

intracellular adhesion molecule-1 (ICAM-1) and monocyte chemotactic protein-1 

(MCP-1), which mediates the recruitment and infiltration of 

monocytes/macrophages, are demonstrated to be involved in the pathogenesis of 

diabetic nephropathy
9-11

. Based on these findings, modulation of the inflammatory 

process is considered to be a potential means of preventing the development and 

progression of diabetic nephropathy
12,13

, and some immunosuppressive agents and 

anti-inflammatory drugs are found to be beneficial in diabetic nephropathy. 

Nevertheless, chronic use of these drugs in a clinical field is not appropriate due to 

many systemic side effects. Therefore, other safe agents for chronic treatment in 

diabetic nephropathy are inevitably needed. 

 Polyunsaturated fatty acids (PUFAs), which exist in high concentrations in cell 

membranes as structural phospholipids, are essential for cell integrity and 

viability
14-16

. There are two classes of PUFAs; ω-3 and ω-6, designated according 

to their carbon ring structure
17-19

. γ-linolenic acid (GLA) is a member of ω-6 

PUFA, is produced from linoleic acid by the enzyme of δ-6 desaturase, and is 

elongated to dihomogamma linolenic acid (DGLA)
16,20

. In a previous study, GLA 

was shown to abrogate renal fibrosis in a 5/6 nephrectomy model
21

, and other 

investigations demonstrated that GLA treatment improved autoimmune diseases and 

diabetic neuropathy via an anti-inflammatory mechanism
22,23

. As aforementioned, 

since inflammatory process is also involved in the pathogenesis of diabetic 

nephropathy, there is a possibility that GLA may ameliorate diabetic nephropathy, 
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but it has never been explored. 

In this study, therefore, I investigated the effects of GLA in experimental diabetic 

kidney and in high glucose-stimulated mesangial cells and tubular epithelial cells in 

terms of inflammation and ECM synthesis. 

 

II. MATERIALS AND METHODS 

1. Animals 

All animal studies were conducted under an approved protocol. Rats weighing 

250-280 g were injected with either diluent [n=16, Control (C)] or 65 mg/kg 

streptozotocin (STZ) intraperitoneally [n=16, Diabetes (DM)]. Diabetes was 

confirmed by tail vein blood glucose levels on the third post-injection day. After 

confirming diabetes, eight rats from C and DM groups were treated with 450 

mg/kg/day of evening primrose oil (EPO, a generous gift from Dalim Biotech, 

Seoul, Korea) by gavage (C+GLA or DM+GLA) for 3 months. EPO contains 8-

10% GLA and the amount of EPO used in this study gives an approximate dose of 

40 mg/kg/day of GLA. Rats were housed in a temperature-controlled room and 

were given free access to water and standard laboratory chow during the 3-month 

study period. 

Body weights and serum glucose levels were checked monthly, and kidney 

weights and 24-hour urinary albumin excretion at the time of sacrifice. Blood 

glucose was measured by a glucometer and 24-hour urinary albumin excretion was 
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determined by enzyme-linked immunosorbent assay (ELISA) (Nephrat II, Exocell, 

Inc., Philadelphia, PA, USA). 

 

2. Cell culture 

Primary culture of glomerular mesangial cells were done as previously 

described
24

. Identification of mesangial cells was performed by their characteristic 

stellate appearance in culture and confirmed by immunofluorescent microscopy for 

the presence of actin, myosin, and Thy-1 antigen and the absence of factor VIII and 

cytokeratin (Synbiotics, San Diego, CA, USA). Mesangial cells and NRK-52E cells, 

immortalized rat tubular epithelial cells, were maintained in RPMI 1640 and 

DMEM medium, respectively, supplemented with 5% fetal bovine serum (FBS), 

100 U/ml penicillin, 100 mg/ml streptomycin, and 26 mM NaHCO3, and were 

grown at 37ºC in humidified 5% CO2 in air. Subconfluent mesangial cells and 

NRK-52E cells were serum restricted for 24 hours, after which the medium was 

replaced by serum-free medium containing 5.6 mM glucose (NG), NG+24.4 mM 

mannitol (NG+M), or 30 mM glucose (HG) with or without 10 or 100 μM GLA 

(Sigma Chemical Co., St Louis, MO, USA). At 24 hours after the media change, 

cells were harvested and the conditioned culture media were collected. 
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3. Total RNA extraction 

Total RNA from the renal cortical tissue was extracted as previously described
24

. 

Briefly, 100 μl of RNA STAT-60 reagent (Tel-Test, Inc., Friendswood, TX, USA) 

was added to the renal cortical tissues, which were lysed by freezing and thawing 

three times. Another 700 μl of RNA STAT-60 reagent was then added and the 

mixture was vortexed and stored for 5 minutes at room temperature. Next, 160 μl of 

chloroform was added and the mixture was shaken vigorously for 30 seconds. After 

3 minutes, the mixture was centrifuged at 12,000 X g for 15 minutes at 4℃ and the 

upper aqueous phase containing the extracted RNA was transferred to a new tube. 

RNA was precipitated from the aqueous phase by adding 400 μl of isopropanol and 

then pelleted by centrifugation at 12,000 X g for 30 minutes at 4℃. The RNA 

precipitate was washed with 70% ice-ethanol, dried using a Speed Vac, and 

dissolved in DEPC-treated distilled water. RNA yield and quality were assessed 

based on spectrophotometric measurements at wavelengths of 260 and 280 nm. 

Total RNA from mesangial cells and NRK-52E cells was extracted similarly. 

 

4. Reverse transcription 

First strand cDNA was made by using a Boehringer Mannheim cDNA synthesis 

kit (Boehringer Mannheim GmbH, Mannheim, Germany). Two μg of total RNA 

extracted from the renal cortex and cultured cells were reverse transcribed using 10 

μM random hexanucleotide primer, 1 mM dNTP, 8 mM MgCl2, 30 mM KCl, 50 

mM Tris-HCl, pH 8.5, 0.2 mM dithiothreithol, 25 U RNase inhibitor, and 40 U 
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AMV reverse transcriptase. The mixture was incubated at 30℃ for 10 minutes and 

42℃ for 1 hour followed by inactivation of the enzyme at 99℃ for 5 minutes. 

 

5. Real-time polymerase chain reaction (Real-time PCR) 

The primers used for ICAM-1, MCP-1, fibronectin, and 18s amplification were 

as follows: ICAM-1, sense 5’-AGGTA TCCATCCATCCCAC-3’, antisense 5’-

GCCGAGGTTCTCGTCTTC-3’; MCP-1, sense 5’-TCTCTTCCTCCACCACTAT 

GCA-3’, antisense 5’-GGCTGAGACAGCACGTGGAT-3’; fibronectin, sense 5’-

TGACAACTGCCGTAGACCTGG-3’, antisense 5’-TACTGGTTGTAGGTGTGG 

CCG-3’; and 18s, sense 5’-AGTCCCTGCCCTTTGT ACACA-3’, antisense 5’-

GATCCGAGGGCCTCACTAAAC-3’. cDNAs from 25 ng RNA of the renal 

cortical tissue or cultured cells per reaction tube were used for amplification. 

Using the ABI PRISM
®
 7700 Sequence Detection System (Applied Biosystems, 

Foster City, CA, USA), PCR was performed with a total volume of 20 μl in each 

well, containing 10 μl of SYBR Green
®  

PCR Master Mix
 
(Applied Biosystems),   

5 μl of cDNA, and 5 pM sense and antisense primers. Primer concentrations were 

determined by preliminary experiments that analyzed the optimal concentrations of 

each primer. Each sample was run in triplicate in separate tubes. The PCR 

conditions were as follows: 35 cycles of denaturation at 94.5℃ for 30 sec, 

annealing at 60℃ for 30 sec, and extension at 72℃ for 1 minute. Initial heating at 

95℃ for 9 minutes and final extension at 72℃ for 7 minutes were performed for 

all PCRs. 
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After real-time PCR, the temperature was increased from 60 to 95℃ at a rate of 

2℃/min to construct a melting curve. A control without cDNA was run in parallel 

with each assay. The cDNA content of each specimen was determined using a 

comparative CT method with 2
-∆∆T

. The results are given as relative expression of 

ICAM-1, MCP-1, and fibronectin normalized to the expression of the 18s 

housekeeping gene. 

 

6. Western blot analysis 

The renal cortical tissue and cultured cells harvested from plates were lysed in 

sodium dodecyl sulfate (SDS) sample buffer (2% sodium dodecyl sulfate, 10 mM 

Tris-HCl, pH 6.8, 10% [vol/vol] glycerol), treated with Laemmli sample buffer, 

heated at 100℃ for 5 minutes, and electrophoresed in an 8% acrylamide denaturing 

SDS-polyacrylamide gel. Proteins were then transferred to a Hybond-ECL 

membrane using a Hoeffer semidry blotting apparatus (Hoeffer Instruments, San 

Francisco, CA), and the membrane was then incubated in blocking buffer A (1 x 

PBS, 0.1% Tween-20, and 8% nonfat milk) at room temperature for 1 hour, 

followed by an overnight incubation at 4℃ in a 1:1000 dilution of polyclonal 

antibodies to ICAM-1 (R&D systems, Minneapolis, MN, USA), fibronectin (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA, USA), or β-actin (Sigma Chemical Co.). 

The membrane was then washed once for 15 minutes and twice for 5 minutes in 1 x 

PBS with 0.1% Tween-20. Next, the membrane was incubated in buffer A 

containing a 1:1000 dilution of horseradish peroxidase-linked donkey anti-goat IgG 
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(Amersham Life Science, Inc., Arlington Heights, IL, USA). The washes were 

repeated, and the membrane was developed with a chemiluminescent agent (ECL; 

Amersham Life Science, Inc.). The band densities were measured using TINA 

image software (Raytest, Straubenhardt, Germany). 

 

7. Measurement of MCP-1 by ELISA 

The levels of MCP-1 in the renal cortical tissue and culture media were 

determined using a commercial ELISA kit (BD Biosciences, San Diego, CA, USA) 

according to the manufacturer’s protocol. The kit for rat MCP-1 was species-

specific and sensitive up to 750 pg/ml. All the concentrations of MCP-1 were 

normalized to the total protein amount. 

 

8. Pathology 

For immunohistochemical staining, slices of the kidney were snap-frozen in 

optimal cutting temperature (OCT) solution and 4 μm sections of tissues were 

utilized. Slides were fixed in acetone for 10 minutes, air dried at room temperature 

for 10 minutes, and blocked with 10% donkey serum at room temperature for 20 

minutes. For ICAM-1, fibronectin, and ED-1 staining, the primary polyclonal 

antibody to ICAM-1 (R&D systems), the extracellular domain of fibronectin (Santa 

Cruz Biotechnology, Inc., Santa Cruz, CA, USA), or ED-1 (Chemicon International, 

Inc., Billerica, MA, USA), was diluted 1:100 with 2% casein in BSA and was 

applied for overnight incubation at room temperature. After washing, a secondary 
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donkey anti-goat antibody was added for 20 minutes and the slides were then 

washed and incubated with a tertiary PAP complex for 20 minutes. DAB was added 

for 2 minutes and the slides were counterstained with hematoxylin. A semi-

quantitative score for measuring the intensity of ICAM-1 and fibronectin staining 

within the glomeruli and tubulointerstitial area was determined by examining at 

least 20 glomeruli under X 400 magnification and 20 tubulointerstitial fields under 

X 200 magnification, respectively, and by a digital image analyzer (MetaMorph 

version 4.6r5, Universal Imaging Corp., Downingtown, PA, USA) as previously 

described
24

. 

The degree of staining was semi-quantitated on a scale of 0-4+. The staining 

score was obtained by multiplying the intensity of staining by the percentage of 

glomeruli or tubulointerstitium staining for that intensity and these numbers were 

then added for each experimental animal to give the staining score [Σ=(Intensity of 

staining) X (% of glomeruli or tubulointerstitium with that intensity)]. The number 

of ED-1 positive cells was counted in at least 20 glomeruli and 20 fields of the 

tubulointerstitium/section under X 400 magnification. 

Similarly, the degree of glomerular and tubulointerstitial fibrosis was assessed by 

examining at least 20 glomeruli and 20 tubulointerstitial fields of Masson’s 

trichrome-stained renal tissues and the mean percentages of the collagen-positive 

areas were obtained from each rat. 
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9. Statistical analysis 

All values are expressed as the mean ± standard error of the mean (SEM). 

Statistical analysis was performed using the statistical package SPSS for Windows 

Ver. 11.0 (SPSS, Inc., Chicago, IL, USA). Results were analyzed using the Kruskal-

Wallis non-parametric test for multiple comparisons. Significant differences by the 

Kruskal-Wallis test were further confirmed by the Mann-Whitney U test. P values 

less than 0.05 were considered to be statistically significant. 

 

III. RESULTS 

1. Animal studies 

A. Animal data 

All animals gained weight over the 3-month experimental period, but body 

weight was highest in C rats (59311 g). The ratio of kidney weight to body weight 

in DM rats (1.170.15%) was significantly higher than those in C (0.580.05%), 

C+GLA (0.530.06%) (p<0.01), and DM+GLA rats (0.88±0.11) (p<0.05). The 

mean blood glucose levels of C, C+GLA, DM, and DM+GLA rats were 104.13.9, 

97.63.5, 489.514.0, and 474.013.0 mg/dl, respectively (p<0.01). Compared to 

the C group (0.350.07 mg/day), 24-hour urinary albumin excretion at 3 months 

was significantly higher in DM rats (2.510.28 mg/day) (p<0.01), and GLA 

treatment significantly reduced albuminuria in DM rats (1.11±0.12 mg/day) 

(p<0.05) (Table 1). 
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Table 1. Animal data of the four groups 

 
C 

(N=8) 

C+GLA 

(N=8) 

DM 

(N=8) 

DM+GLA 

(N=8) 

Body Wt (g) 59311 58414 328 9* 3358* 

Kidney 

Wt/Body Wt 

(%) 

0.580.05 0.530.06 1.170.15* 0.880.11

 

Blood glucose 

(mg/dl) 
104.1 3.9 97.6 3.5 489.514.0* 474.013.0* 

24-hour UAE 

(mg/day) 
0.350.07 0.310.09 2.510.28* 1.110.12


 

*, p<0.01 vs. C and C+GLA group; #, p<0.05 vs. DM group.  

Wt: weight; UAE: urinary albumin excretion 

 

 

B. Effect of GLA on renal cortical MCP-1 mRNA and protein expression 

Renal MCP-1 mRNA expression assessed by real-time PCR was significantly 

increased in DM compared to C rats (p<0.01), and this increase in MCP-1 mRNA 

expression was significantly inhibited by the administration of GLA (p<0.05). The 

MCP-1 mRNA/18s rRNA ratio was 2.1-fold higher in DM compared to C kidney, 

and GLA treatment significantly abrogated this increase by 65.7% (Figure 1). The 

levels of renal MCP-1 assessed by ELISA were also significantly higher in DM 

relative to C rats (563.5±42.9 vs. 287.1±22.3 ng/μg, p<0.01), and the increase in 

MCP-1 levels in DM rats was significantly ameliorated by GLA treatment 

(354.9±31.3 ng/μg, p<0.05) (Figure 2). 
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Figure 1. Renal MCP-1, ICAM-1, and fibronectin mRNA/18s rRNA ratios in C, C+GLA, 

DM, and DM+GLA rats. There were 2.1-fold increase in MCP-1 mRNA/18s rRNA, 1.8-fold 

increase in ICAM-1 mRNA/18s rRNA, and 2.7-fold increase in fibronectin mRNA/18s 

rRNA ratios in DM compared to C rats, and GLA treatment significantly abrogated these 

increases in mRNA/18s rRNA ratios in DM rats. 

*; p<0.01 vs. C and C+GLA groups, #; p<0.05 vs. DM group 

 

 

Figure 2. Renal MCP-1 protein levels in C, C+GLA, DM, and DM+GLA rats. There was 

2.0-fold increase in renal MCP-1 protein levels in DM compared to C rats, and this increase 

in DM rats was significantly ameliorated by GLA treatment. 

*; p<0.01 vs. C and C+GLA groups, #; p<0.05 vs. DM group 
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C. Effect of GLA on renal cortical ICAM-1 mRNA and protein expression 

As seen in Figure 1, the ratio of ICAM-1 mRNA/18s rRNA was significantly 

higher in DM compared to C and C+GLA kidney (p<0.01), and GLA treatment 

significantly attenuated this increase in renal ICAM-1 mRNA expression in DM rats 

(p<0.05). Similarly, renal ICAM-1 protein expression assessed by Western blot was 

also significantly increased in DM relative to C and C+GLA rats (p<0.01), and this 

increase was inhibited by 52.9% with GLA treatment (p<0.05) (Figure 3). In 

addition, immunohistochemical staining for ICAM-1 confirmed the real-time PCR 

and Western blot findings. There was a significant increase in glomerular and 

tubulointerstitial ICAM-1 staining in the DM compared to the C and C+GLA 

groups, and the administration of GLA significantly abrogated this increase in 

ICAM-1 protein expression in DM rats (Figure 4, 5). 

 

D. Effect of GLA on renal cortical fibronectin mRNA and protein 

expression 

To elucidate the effect of GLA on ECM accumulation in experimental diabetic 

nephropathy, fibronectin mRNA and protein expression were determined with the 

renal cortical tissue. Renal fibronectin mRNA/18s rRNA ratio was 2.7-fold higher 

in DM compared to C rats (p<0.01), and this increase was ameliorated by 76.2% 

with GLA treatment (p<0.01) (Figure 1). Fibronectin protein expression showed a 

similar pattern to the mRNA expression (Figure 3). Immunohistochemical staining 

also revealed that fibronectin protein expression within glomeruli and 

tubulointerstitium was significantly increased in DM relative to C rats, and GLA 

treatment significantly attenuated glomerular and tubulointerstitial fibronectin 

accumulation in DM rats (Figure 4, 5). 
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E. Effect of GLA on macrophage accumulation 

The number of macrophages within glomeruli and tubulointerstitium assessed by 

immunohistochemical staining with ED-1 antibody was significantly higher in DM 

compared to C rats (27.8±4.3 vs. 3.6±0.8, p<0.005), and GLA treatment 

significantly abrogated the number of ED-1-positive cells in DM rats (10.1±1.2) 

(p<0.01) (Figure 5). 

 

F. Effect of GLA on glomerular and tubulointerstitial fibrosis 

Glomerular and tubulointerstitial fibrosis assessed by Masson’s trichrome staining 

were significantly severer in DM compared to C rats (glomerular area; 11.4±2.7 vs. 

2.6±0.3, p<0.01, tubulointerstitial area; 23.6±4.1 vs. 3.6±0.5, p<0.005), and GLA 

treatment significantly ameliorated the extent of glomerular and tubulointerstitial 

fibrosis in DM rats (5.7±1.1 and 8.8±1.1), respectively (p<0.01) (Figure 6). 
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Figure 3. Renal ICAM-1 and fibronectin protein expression in C, C+GLA, DM, and 

DM+GLA rats. There were 3.2-fold increase in ICAM-1 and 3.7-fold increase in fibronectin 

protein expression in DM compared to C rats, and these increases were significantly 

attenuated by the administration of GLA. 

*; p<0.01 vs. C and C+GLA groups, #; p<0.05 vs. DM group 
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Figure 4. Immunohistochemical staining for glomerular ICAM-1, fibronectin, and ED-1 (as 

a marker of macrophage) in C, C+GLA, DM, and DM+GLA rats. Glomerular ICAM-1 (A) 

and fibronectin (B) stainings were significantly increased in DM compared to C rats, and 

GLA treatment significantly inhibited these increases in DM rats. The number of ED-1-

positive cells (C) was significantly higher in DM compared to C rats, and GLA treatment 

significantly abrogated the number of glomerular macrophages in DM rats. (X 400). 

*; p<0.05 vs. other groups, #; p<0.01 vs. C and C+GLA groups, †; p<0.05 vs. DM group 
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Figure 5. Immunohistochemical staining for tubulointerstitial ICAM-1, fibronectin, and ED-

1 in C, C+GLA, DM, and DM+GLA rats. Tubulointerstitial ICAM-1 (A) and fibronectin (B) 

stainings were significantly increased in DM compared to C rats, and GLA treatment 

significantly ameliorated these increases in DM rats. The number of ED-1-positive cells (C) 

was significantly higher in DM compared to C rats, and GLA treatment significantly 

attenuated the number of tubulointerstitial macrophages in DM rats. (X 400). 

*; p<0.05 vs. other groups, #; p<0.01 vs. C and C+GLA groups, †; p<0.05 vs. DM group 
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Figure 6. Glomerular and tubulointerstitial fibrosis assessed by Masson’s trichrome 

staining in C, C+GLA, DM, and DM+GLA rats. Glomerular and tubulointerstitial fibrosis 

were significantly severer in DM compared to C rats, and GLA treatment significantly 

abrogated these changes in DM rats. 

*; p<0.01 vs. C and C+GLA groups, #; p<0.05 vs. DM group 
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2. Cell culture studies 

A. Effect of GLA on MCP-1 mRNA and protein expression 

MCP-1 mRNA expression assessed by real-time PCR was significantly increased 

in HG-stimulated mesangial cells and NRK-52E cells (p<0.01), and this increase in 

MCP-1 mRNA expression was significantly abrogated by GLA treatment (p<0.05). 

Compared to NG cells, the MCP-1 mRNA/18s rRNA ratios were 2.0- and 2.1-fold 

higher in mesangial cells and NRK-52E cells exposed to HG medium (p<0.01), 

respectively, and GLA treatment significantly ameliorated these increases in a dose-

dependent manner (p<0.05) (Figure 7). The levels of MCP-1 protein in conditioned 

culture media assessed by ELISA showed a similar pattern to the mRNA expression 

(Figure 8). 
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Figure 7. MCP-1 mRNA/18s rRNA ratios in mesangial cells (A) and NRK-52E cells (B) 

exposed to 5.6 mM glucose (NG), NG+24.4 mM mannitol (NG+M), NG+10 or 100 μM 

GLA (NG+GLA), 30 mM glucose (HG), and HG+10 or 100 μM GLA (HG+GLA). There 

were 2.0- and 2.1-fold increases in MCP-1 mRNA/18s rRNA ratios in HG-stimulated 

mesangial cells and NRK-52E cells, respectively, compared to NG cells, and these increases 

in MCP-1 mRNA expression were significantly ameliorated by GLA treatment in a dose-

dependent manner. 

 *; p<0.01 vs. NG, NG+M, and NG+GLA groups, #; p<0.05 vs. HG group 
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Figure 8. MCP-1 levels in conditioned culture media from mesangial cells (A) and NRK-

52E cells (B) exposed to 5.6 mM glucose (NG), NG+24.4 mM mannitol (NG+M), NG+10 

or 100 μM GLA (NG+GLA), 30 mM glucose (HG), and HG+10 or 100 μM GLA 

(HG+GLA). There were 2.4- and 3.6-fold increases in MCP-1 levels in HG-stimulated 

mesangial cells and NRK-52E cells, respectively, compared to NG cells, and GLA 

significantly attenuated these increases in MCP-1 levels in a dose-dependent manner. 

*; p<0.01 vs. NG, NG+M, and NG+GLA groups, #; p<0.05 vs. HG group, †; p<0.01 vs. 

HG group 
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B. Effect of GLA on ICAM-1 mRNA and protein expression 

High glucose significantly induced ICAM-1 mRNA and protein expression in 

mesangial cells and NRK-52E cells. Compared to NG cells, the ICAM-1 

mRNA/18s rRNA ratios were 2.2- and 1.8-fold higher in HG-stimulated mesangial 

cells and tubular epithelial cells (p<0.01), respectively, and these increases were 

significantly attenuated by 60.9% and 62.3%, respectively, with 10 μM GLA 

treatment, and by 70.7% and 76.1%, respectively, with 100 μM GLA treatment 

(Figure 9). 

GLA also significantly inhibited HG-induced ICAM-1 protein expression in 

cultured mesangial cells and NRK-52E cells (Figure 10). 

 

C. Effect of GLA on fibronectin mRNA and protein expression 

Fibronectin mRNA/18s rRNA ratios were significantly increased in HG-

stimulated mesangial cells and NRK-52E cells relative to NG cells by 154.4% and 

122.2% (p<0.01), respectively, and these increases were significantly abrogated by 

GLA in a dose-dependent manner (p<0.05) (Figure 11). Fibronectin protein 

expression showed a similar pattern to the mRNA expression (Figure 10). 
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Figure 9. ICAM-1 mRNA/18s rRNA ratios in mesangial cells (A) and NRK-52E cells (B) 

exposed to 5.6 mM glucose (NG), NG+24.4 mM mannitol (NG+M), NG+10 or 100 μM 

GLA (NG+GLA), 30 mM glucose (HG), and H+10 or 100 μM GLA (HG+GLA). There 

were 2.2- and 1.8-fold increases in ICAM-1 mRNA/18s rRNA ratios in HG-stimulated 

mesangial cells and NRK-52E cells, respectively, compared to NG cells, and these increases 

in ICAM-1 mRNA/18s rRNA ratios were significantly abrogated by the administration of 

GLA. 

*; p<0.01 vs. NG, NG+M, and NG+GLA groups, #; p<0.05 vs. HG group 
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Figure 10. A representative Western blots of ICAM-1 and fibronectin in cultured mesangial 

cells (A) and NRK-52E cells (B) (N=5). There were significant increases in ICAM-1 and 

fibronectin protein expression in HG-stimulated cells compared to NG cells, and these 

increases were significantly ameliorated with GLA treatment. 

*; p<0.01 vs. NG, NG+M, and NG+GLA groups, #; p<0.05 vs. HG group, †; p<0.01 vs. 

HG group 
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Figure 11. Fibronectin mRNA/18s rRNA ratios in mesangial cells (A) and NRK-52E cells 

(B) exposed to 5.6 mM glucose(NG), NG+24.4 mM mannitol (NG+M), NG+10 or 100 μM 

GLA (NG+GLA), 30 mM glucose (HG), and HG+10 or 100 μM GLA (HG+GLA). There 

were 2.5-fold and 2.2-fold increases in fibronectin mRNA/18s rRNA ratios in HG-

stimulated mesangial cells and NRK-52E cells, respectively, compared to NG cells, and 

GLA treatment significantly attenuated these increases in fibronectin mRNA/18s rRNA 

ratios in a dose-dependent manner. 

 *; p<0.01 vs. NG, NG+M, and NG+GLA groups, #; p<0.05 vs. HG group, †; p<0.01 vs. 

HG group 
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IV. DISCUSSION 

In the present study, I demonstrate that GLA has a renoprotective effect via its 

anti-inflammatory and anti-fibrotic actions in experimental diabetic nephropathy. In 

addition, the results of this study suggest that the anti-inflammatory effect of GLA 

under diabetic conditions is partly mediated by inhibiting the increases in MCP-1 

and ICAM-1 expression under diabetic conditions. 

Even though the diabetic milieu per se, hemodynamic changes, and local growth 

factors such as AII and TGF-β are considered mediators in the pathogenesis of 

diabetic nephropathy
11,25-27

, recent studies suggest that an inflammatory mechanism 

may also contribute to the development of diabetic nephropathy based on the 

pathological findings of inflammatory cell infiltration in diabetic kidney
10,23-25

. 

Monocytes/macrophages are the major inflammatory cells found in diabetic 

kidney
28

. They are extravasculated from the bloodstream and attracted to the target 

tissue through a process mediated by various chemokines and adhesion molecules 

such as MCP-1 and ICAM-1
29,30

. In the kidney, MCP-1 is expressed in mesangial 

cells and tubular epithelial cells and is known to be involved in the pathogenesis of 

various renal diseases, including diabetic nephropathy
30

. Previous studies have 

demonstrated that plasma MCP-1 levels are increased in type 1 diabetes with 

microalbuminuria
31

 and that urinary levels of MCP-1 are increased in accordance 

with the extent of albuminuria
10,32

. Renal expression of ICAM-1, a cell surface 

glycoprotein that plays a major role in the regulation of interactions with immune 

cells and whose expression is upregulated at the sites of inflammation, is also 
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known to be increased in experimental type 1 and type 2 diabetic animals. These 

findings suggest that MCP-1 and ICAM-1 may play an important role in the 

pathogenesis of diabetic nephropathy via inducing inflammatory cell infiltration
11,33

. 

Once recruited monocytes/macrophages are activated, they release lysosomal 

enzymes, nitric oxide, reactive oxygen species, platelet-derived growth factor 

(PDGF), tumor necrosis factor-, interleukin (IL)-1, and TGF-, and in turn 

promote renal injury
8,34,35

. PDGF stimulates fibroblast proliferation
36,37

 and IL-1 

induces the expression of TGF-, the most well-known profibrotic cytokine, in 

fibroblasts
38

. In experimental diabetic nephropathy, various anti-inflammatory 

agents inhibited not only inflammatory cell infiltration via abrogating the increases 

in MCP-1 and ICAM-1 expression but also ameliorated ECM accumulation
28

. In 

addition, renal fibrosis was significantly inhibited along with less inflammatory cell 

infiltration in MCP-1- and ICAM-1-deficient diabetic mice
39

. Taken together, it is 

suggested that the inhibition of inflammatory cell recruitment may lead to an 

attenuation of ECM accumulation. In this study, I demonstrate that MCP-1 and 

ICAM-1 expression were increased in experimental diabetic nephropathy, which 

were associated with glomerular and tubulointerstitial fibrosis, and in high glucose-

stimulated mesangial cells and tubular epithelial cells, and these increases under 

diabetic conditions were inhibited by GLA treatment. Taken together, the anti-

inflammatory and anti-fibrotic effects of GLA in diabetic nephropathy may be 

partly attributed to the suppression of MCP-1 and ICAM-1 expression by GLA, by 
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which inflammatory cell infiltration is abrogated, and in turn ECM accumulation 

may be ameliorated. 

PUFAs are important constituents of all cell membranes. Since PUFAs are not 

synthesized in humans, they can be obtained only by diet
40

. There are two classes of 

PUFAs; ω-3 and ω-6, designated according to their carbon ring structure
17,19,41

, and 

accumulating evidence has shown that these PUFAs are beneficial to health and a 

number of various diseases
42

. In cases of kidney disease, PUFAs have been reported 

to exert beneficial effects on IgA nephropathy
43

, chronic renal failure, and diabetic 

nephropathy via anti-oxidant, anti-inflammation, and anti-fibrotic mechanisms
44

. In 

contrast, the effect of GLA, a member of the ω-6 PUFA family, on kidney diseases 

has been less explored. Ingram et al observed that administration of borage oil (BO), 

which is a rich source of GLA, was effective in the rat 5/6-renal-ablation model
21

. 

BO prevented the increases in blood pressure and proteinuria, the rise in plasma 

cholesterol levels, and the decline in glomerular filtration rates. In addition, 

glomerular macrophage infiltration, mesangial expansion, and glomerulosclerosis 

were attenuated in BO-treated rats compared to the control diet group. Meanwhile, 

since these glomerular changes are also characteristic in diabetic nephropathy, 

activities of δ-5 and δ-6
 
desaturase are decreased along with low levels of GLA and 

DGLA in diabetes
45,46

, and GLA has been useful in diabetic neuropathy
22,23,47

, 

supplementation of GLA and/or DGLA may also be of benefit in diabetic 

nephropathy. However, the effect of ω-6 PUFA has never been elucidated in 

diabetic nephropathy. The results of the present study show for the first time that 
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GLA inhibits inflammatory cell infiltration and ECM accumulation in experimental 

diabetic kidney, suggesting the usefulness of GLA in patients with diabetic 

nephropathy. 

Even though the underlying mechanisms of the anti-inflammatory effect of GLA 

in this study are not completely understood, several plausible explanations can be 

implicated. First, PUFAs, including GLA, are known to serve as endogenous 

ligands of peroxisome proliferator activated receptors (PPARs) and to bind and 

activate all PPARs isoforms
48,49

. Additionally, 15-HETE, one of the metabolites of 

GLA, are reported to upregulate nuclear PPAR-γ expression
50

. PPARs is a regulator 

of lipid metabolism
51

 and is closely associated with insulin action
52

. Moreover, 

PPARs participate in the regulation of inflammatory response by inhibiting 

monocyte expression of proinflammatory cytokines such as interleukin-6 (IL-6), IL-

1β, and TNF- α
53,54

. Furthermore, PPAR-γ attenuates the nuclear factor-κB-

mediated transcriptional activation of proinflammatory genes
55

. Recent studies have 

also demonstrated that PPAR-γ agonist exerts the renoprotective effect through anti-

inflammatory mechanism in diabetic nephropathy
56,57

. Taken together, GLA as a 

ligand of PPARs and its metabolite as a upregulator of PPAR-γ could contribute to 

the anti-inflammatory effect of GLA in diabetic nephropathy. Second, a small 

amount of DGLA can be converted to prostacylin (PGI2) and prostaglandin E1 

(PGE1) by δ-5 desaturases. Since PGI2 and PGE1 inhibits platelet aggregation, and 

PGI2 analogue abrogates glomerular hyperfiltration and macrophage infiltration in 

the diabetic kidney
58

, the effect of GLA may be in part attributed to these 
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consequences. Third, 15-HETE markedly inhibits the generation of leukotriene, 

which is a potent pro-inflammatory mediator via stimulating adhesion molecule 

expression and macrophage infiltration
59

. Collectively, the anti-inflammatory effect 

of GLA seems to be attributed to modulating the biological cascade at multiple sites 

by itself and/or its metabolites. Prolonged use of anti-inflammatory drugs may be 

harmful and is not appropriate for chronic use due to many systemic side effects in 

patients with chronic metabolic disturbances such as diabetic nephropathy. 

However, since the activities of δ-5 and δ-6 desaturase are already reduced in 

diabetes and toxic effects of GLA as medicinal oil have not been reported, chronic 

administration of GLA, even at a high dose, may not induce the accumulation of its 

metabolites and thus will be not harmful. 

In summary, the results of my study demonstrate that GLA exerts anti-

inflammatory and anti-fibrotic effects in experimental diabetic nephropathy and in 

high glucose-stimulated renal cells, suggesting that GLA supplementation could be 

a valuable therapeutic option for the treatment of diabetic nephropathy. 
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V. CONCLUSION 

 In this study, I investigated the effect of gamma linolenic acid (GLA) on 

inflammation and ECM accumulation in experimental diabetic nephropathy and in 

HG-stimulated renal cells. 

1. Twenty-four-hour urinary albumin excretion at 3 months was significantly 

higher in DM compared to C rats, and GLA treatment significantly reduced 

albuminuria in DM rats. 

2. MCP-1 mRNA expression was significantly increased in DM kidney and in 

HG-stimulated mesangial cells and tubular epithelial cells compared to C kidney 

and NG cells, respectively, and this increase was significantly abrogated by GLA 

treatment. The levels of MCP-1 in the renal cortical tissue and conditioned 

culture media showed a similar pattern to the mRNA expression. 

3. ICAM-1 mRNA and protein expression was significantly increased in DM 

kidney and in HG-stimulated mesangial cells and tubular epithelial cells 

compared to C kidney and NG cells, respectively, and these changes were 

significantly ameliorated by GLA treatment. 

4.  Fibronectin mRNA and protein expression were significantly increased in 

DM kidney and in HG-stimulated mesangial cells and tubular epithelial cells 

compared to C kidney and NG cells, respectively, and GLA treatment 

significantly attenuated these increases in fibronectin expression. 

5. Immunohistochemical staining revealed that the number of ED-1 (+) cells 

within glomeruli and tubulointerstitium was significantly higher in DM compared 
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to C rats, and this increase in ED-1 (+) cells was significantly abrogated by the 

administration of GLA. 

6. The extent of glomerular and tubulointerstitial fibrosis assessed by Mason’s 

trichrome staining was significantly severer in DM compared to C kidney, and 

this change was significantly ameliorated by GLA treatment. 

 

In conclusion, GLA attenuates not only inflammation via inhibiting enhanced 

MCP-1 and ICAM-1 expression but also ECM accumulation in diabetic 

nephropathy. 
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ABSTRACT (IN KOREAN) 

 

실험적 당뇨병성 신병증에서 gamma linolenic acid 가  

염증반응 및 세포외 기질 축적에 미치는 영향 

 

<지도교수 강신욱> 

 

연세대학교 대학원 의과학과 

 

김 도 희 

 

 

배 경  : 당뇨병성 신병증은 투석이나 이식이 필요한 말기 신부전증의 

가장 많은 원인 질환이다. 당뇨병성 신증에서 특징적인 병리학적 변화는 

사구체 및 세뇨관의 비후와 세포외 기질의 축적이며, 이러한 변화와 발생 

및 진행에는 고혈당에 의해 유도된 각종 성장 인자들의 활성화, 세포 외 

기질의 생성 증가, 세포 외 기질 단백 분해 효소의 생성 감소 등이 

관여하는 것으로 알려져 있다. 최근에는 당뇨병 환자나 실험적 당뇨 동물 

모델의 사구체 및 세뇨관-간질 내에 염증세포의 침윤이 관찰될 뿐만 
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아니라 염증 반응과 밀접한 관련이 있는 monocyte chemotactic 

protein-1 (MCP-1)과 intracellular adhesion molecule-1 (ICAM-1)의 

발현이 당뇨 신장 내에 증가되어 있다는 연구 결과들이 발표되면서 

염증반응이 당뇨병성 신병증의 병태생리에 중요한 역할을 할 것으로 

생각되어지고 있다.  

Gamma linolenic acid (GLA)는 필수 지방산으로, 식물성 oil 성분으로 

보충하거나 불포화 지방산인 linoleic acid (LA)에서 𝛿-5 및 𝛿-6 

desaturase를 통해 형성되는 것으로 알려져 있다. 당뇨병이나 알코올 

섭취 등은 이들 효소의 활성을 억제시킴으로써 상대적으로 GLA의 

감소가 유발되며, 이러한 GLA의 감소가 당뇨병성 신경병증 및 심혈관 

합병증과 관련이 있다는 보고가 있다. GLA는 고포도당으로 자극한 

신경세포에서 advanced glycation endproduct의 생성을 감소시켜 

당뇨병성 신경병증을 개선시키며, 아토피성 피부염 등의 피부 질환에서는 

염증반응을 호전시키는 것으로 알려져 있다. 또한, GLA 및 LA는 여러 

세포에서 다양한 자극에 의해 유도되는 염증반응을 개선시키는 것으로 

보고되고 있으며, 이러한 과정에 특히 Mitogen Activated Protein 

Kinase나 Peroxisome proliferator-activated receptor-gamma 

pathway가 관여하는 것으로 알려져 있다.  

신장 질환의 경우, GLA가 신섬유화 동물 모델에서 대식세포의 침윤과 

메산지움의 확장을 억제시켰을 뿐만 아니라 신기능의 악화를 

예방하였다는 보고는 있었으나, 당뇨병성 신병증에서 GLA의 효과에 
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대한 연구는 전무한 실정이다. 이에 본 연구자는 당뇨병성 신병증 동물 

모델과 고포도당으로 자극한 신세포를 대상으로 GLA가 염증반응과 

밀접한 관련이 있는 MCP-1과 ICAM-1의 발현에 미치는 영향과 

대표적인 세포외 기질인 fibronectin의 발현에 미치는 영향을 연구하였다. 

 

방 법 : 생체 내 실험으로는 Sprague-Dawley 백서 32마리를 대조군 

(8마리), 당뇨군 (8마리), 그리고 GLA (450 mg/kg/day, 구강 투여), 투여 

대조군 (8마리) 및 당뇨군 (8마리)으로 나누어 사육한 뒤, 당뇨 유발 

12주 후에 신장 피질 조직을 분리하였다. 또한 생체 외 실험으로는 백서 

메산지움 세포와 세뇨관 상피세포를 정상 포도당군 (5.6 mM), 정상 

포도당 + 만니톨군 (24.4 mM), 정상 포도당+GLA (10 or 100 μM) 

처치군, 고포도당 (30 mM), 그리고 고포도당+GLA (10 or 100 μM) 

처치군으로 나누어 24시간 배양하였다. 신장 조직 및 배양액 내 

monocyte chemotactic protein-1 (MCP-1) 농도는 ELISA를 이용하여 

측정하였으며, 신장 조직 및 배양세포 내 MCP-1 mRNA 발현은 real-

time PCR을 이용하여 분석하였다. ICAM-1과 fibronectin의 mRNA와 

단백 발현도 각각 real-time PCR과 Western blot으로 확인하였다. 또한, 

신장 조직 내 ICAM-1과 fibronectin의 단백 발현, 그리고 신장 내 침윤 

대식세포는 면역조직화학염색법으로 관찰하였고, 사구체 및 세뇨관-간질 

내 섬유화 정도는 Masson’s trichrome 염색 (MT염색)으로 관찰하였다. 

 



46 

 

결 과 : 

1. 24시간 뇨알부민 배설은 대조군에 비하여 당뇨군에서 유의하게 

높았으며 (p<0.05), GLA 투여 당뇨군에서는 당뇨군에 비하여 

뇨알부민 배설 증가가 의미있게 억제되었다. 

2. 신장 피질 조직 및 메산지움 세포와 세뇨관 상피세포 내에서 

MCP-1의 mRNA발현 및 단백은 당뇨군과 고포도당군에서 각각 

대조군과 정상 포도당군에 비하여 의의있게 증가되었으며, GLA 

투여로 MCP-1 mRNA 및 단백의 발현 증가가 유의하게 

억제되었다. 

3. ICAM-1 mRNA와 단백 발현도 당뇨 신장 조직 및 고포도당으로 

자극한 메산지움 세포와 세뇨관 상피세포에서 각각 대조군과 

정상 포도당군에 비하여 의미있게 증가되었으며, GLA 처치로 

이러한 ICAM-1의 발현 증가가 의의있게 억제되었다. 

4. 신장 피질 조직 및 메산지움 세포와 세뇨관 상피세포 내 

fibronectin의 발현은 당뇨군과 고포도당군에서 유의하게 

증가되었으며, 이러한 fibronectin의 발현 증가는 GLA에 의하여 

의미있게 억제되었다. 

5.  면역조직화학염색상 사구체 및 세뇨관-간질 부위의 ICAM-1과 

fibronectin 단백의 발현은 당뇨군에서 의의있게 증가되었으며, 

GLA 투여로 당뇨군에서의 발현 증가가 유의하게 억제되었다. 

6. ED-1 항체를 이용한 면역조직화함염색으로 확인한 침윤 
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대식세포의 수는 당뇨군에서 대조군에 비하여 의미있게 많았으며, 

당뇨군에서의 대식세포의 침윤은 GLA에 의하여 의의있게 

감소되었다. 

7. MT 염색법으로 확인한 사구체 및 세뇨관-간질 섬유화는 

당뇨군에서 대조군에 비하여 유의하게 심하였으며, GLA에 의하여 

의미있게 억제되었다. 

결 론 : 이상의 결과로 백서 당뇨병성 신병증에서 GLA가 MCP-1과 

ICAM-1의 발현 증가를 의의있게 억제시킴으로써 대식세포의 침윤이 

감소되었을 것으로 생각된다. 또한, 메산지움 세포와 세뇨관 상피세포에 

대한 직접적인 효과뿐만 아니라 이러한 항염증 기전을 통하여 세포외 

기질의 축적이 경감되었을 것으로 사료된다. 따라서, 항염증 및 항섬유화 

효과가 있는 GLA가 당뇨병성 신병증의 발생 및 진행 억제에 유용할 

것으로 생각된다. 

 

 

 

 

 

 

핵심 되는 말 :  GLA, 당뇨병성 신병증, 메산지움 세포, 세뇨관 상피세포, 

고포도당, 염증반응, MCP-1, ICAM-1, fibronectin 
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