사람 정상 중이점막 배양에서 배양기간에 따른 상피세포의 분화

연세대학교 대학원 의과학사업단
최재영

소개서
사람 정상 중이점막 배양에서
배양기간에 따른 상피세포의 분화

지도 윤 주 헌 교수

이 논문을 석사학위 논문으로 제출함

2002년 12월 일

연세대학교 대학원
의과학 사범 단
최재영
차 례

국문요약 .. 1

I. 서론 ... 3

II. 재료 및 방법 ... 5

1. 인체중이점막상피세포의 계대배양과 상피세포의 분화유도를 위한 air-liquid interface (ALI) 배양 ... 5
2. 형태학적 관찰 .. 6
3. 면역세포화염색 .. 6
4. 점액과 리소자임의 면역적 검출 및 정량 ... 7
5. 점액과 리소자임의 mRNA 발현을 위한 reverse transcription(RT)- polymerase chain reaction(PCR) .. 8

III. 결과 .. 9

1. 배양기간에 따른 인체중이점막의 형태학적 변화 ... 9
2. 배양기간에 따른 면역세포와 섬모세포의 구성비 .. 10
3. 배양기간별 점액 및 리소자임의 분비량의 변화 .. 11
4. 배양기간별 점액 및 리소자임 mRNA의 발현 양상 ... 12

IV. 고찰 .. 13

V. 결론 .. 16

참고문헌 ... 17

영문 요약 ... 20
그림 차례

그림 1. 배양기간에 따른 인체중이점막상피세포의 형태학적 변화 9
그림 2. 혈류 4 주 후의 배양세포의 전자현미경 소견 10
그림 3. 배양기간에 따른 점액과 리소자임의 분비량의 변화 11
그림 4. 배양기간에 따른 점액과 리소자임 mRNA의 발현 양상 12

표 차례

표 1. 배양기간에 따른 분비세포와 설모세포의 구성비 10
사람 정상 중이점막 배양에서
배양기간에 따른 상피세포의 분화

최근 배양기술의 발달로 중이점막의 계대배양이 성공적으로 이루어지고 있다. 하지만 이러한 계대배양에 있어서 분비세포와는 달리 상피세포로의 분화는 현재까지 성공되지 못하고 있다. 본 연구의 목적은 계대 배양된 인체중이점막 상피세포 (human middle ear epithelial, HMEC)를 상피세포로 분화시킬 수 있는 배양법을 확립하고, 이를 성공한다면 배양 시기별 상피세포와 분비세포의 구성비율을 확인하고자 하였다. 또한 배양시기별 점액과 리소자임의 분비량 및 그 mRNA의 발현양상을 알아보고자 하였다.

정상적 형태를 보이는 중이점막을 수술 중 재취하여 이를 단일세포로 분리하여 계대배양한다. 계대배양된 세포는 Air-Liquid Interface(ALI) 배양법을 통하여 형류 후 2일, 1주일, 2주일, 3주일, 4주일간 배양한다. 각 배양시키마다 면역형 광염색법과 dot-blotting방법을 이용하여 심모세포와 분비세포의 비율과 점액과 리소자임의 분비량을 측정한다. 또한 Reverse transcription-polymerase chain reaction(RT-PCR)을 통하여 점액(MUC5AC, MUC5B, MUC8)과 리소자임 mRNA의 발현정도를 알아본다.

심모세포의 분화는 형류 후 약 16에서 18일 사이에 처음으로 관찰되었다. 이후 심모세포의 비율은 배양기간에 따라 늘어 형류 후 4주에는 10.6%까지 증가한다. 이에 비하여 분비세포의 비율은 배양 초기부터 40% 내외로 두드러진 변화를 보이지 않는다. 점액과 리소자임 단백질의 분비량은 형류 후 2주까지는 증가하다가 이후에는 변화가 없었다. 점액 mRNA의 경우 MUC5B와 MUC8
의 경우 배양기간에 따라서 증가하나, MUC5AC의 경우 합류 2주에 가장 발현이 증가하였다가 이후 감소하였다.

이상의 결과에서 연구자는 ALI 배양법을 통하여 계대배양된 인체중이점막상피세포가 섬모세포로 분화 할 수 있음을 확인하였고, 섬모세포로의 분화는 분비세포에 비하여 늦음을 관찰하였다. 이와 더불어 점액유전자 중 MUC5B와 MUC8 mRNA는 배양기간에 비례하여 증가함을 알 수 있었다.

핵심되는 말 : 중이점막상피세포, 세포배양, 분비, 섬모세포, 분화
사람 정상 중이점막 배양에서
배양기간에 따른 상피세포의 분화

<지도 윤 주 현 교수>
연세대학교 대학원 의과학사업단
최 재 영

I. 서론

삼출성 중이염 등 각종 중이 절환의 병인에 있어서 중이점막 상피가 중요한 역할을 한다는 사실이 밝혀지면서 여러 연구자들이 중이점막 상피세포를 배양하고자 하였다. 이러한 배양은 대부분 실험 동물에서 시도되었으며, 사람의 경우 주로 조직배양으로 실험이 진행되어왔다.1,2 그러나 중이 점막은 실질적으로 세정한 수 있는 조직의 양이 적기 때문에 계대배양을 통해 세포의 수를 증가시키는 것이 동일한 조건을 갖는 세포에서 다양한 실험이 진행하기 위해서는 필수적이다.

중이점막 상피세포의 계대배양은 백서3나 전철라4등에서 이루어졌으며, 최근 Moon등5과 Buchman등6은 사람의 중이점막상피세포를 성공적으로 계대배양 하였다고 보고하였다. 그러나 이들은 배양된 세포가 상피세포의 특성과 분비능력 을 가지고 있다는 것은 확인하였으나, ciliogenesis에 의해 섬모세포로 분화되는
것은 확인한 후 못하였다. 따라서 이러한 배양 세포에서는 설모에 관한 연구는 불가능하며, 이와 같은 결과는 배양된 세포의 분화가 완전하게 이루어지지 않았음을 나타내기 때문에 분화정도에 따라 다양한 실험 결과를 가져올 수 있음을 알게 된다.

중이점막은 상기도와 같은 호흡기관으로 이루어져 있으며, 점액과 더불어 리소자, 박토뿐만 등의 장액성 분비물을 분비한다. 이 분비물들은 세균 침투를 막는 등 생체 방어 작용을 담당하고 있는데, 이들의 과다한 생성은 여러 중이질환의 중요한 병인임을 알 수 있다. 특히 점액의 과분비나 분비물의 정도 변화는 점액성모수동체계(mucociliary transport system)의 장애를 초래하여 중이질환의 만성화의 원인이 되는 것으로 알려져 있다. 지금까지 중이점막에서 발현되는 점액유전자가 있다는 연구는 동물9이나 종이관찰9에서 주로 이루어졌으며 사람의 경우 Moon 등5이 배양된 중이점막세포에서 다양한 점액유전자가 발현된다는 것을 보고하였다. 그러나 기관지9나 코 점막10의 경우 배양된 상피세포의 분화정도에 따라 점액유전자의 발현양성이 변하는 것으로 알려져 있어 중이점막의 경우에도 배양된 세포가 인체와 같이 성모세포를 가지는 호흡기관으로 분화된 경우 발현되는 점액유전자는 Moon 등5의 결과와는 다를 수 있을 것으로 생각한다.

이에 연구자는 사람의 passage-2 중이점막 상피세포 (human middle ear epithelial cells; HMEC)를 장기간 배양하여 중이점막 상피세포도 성모세포로 분화되는지를 조사하고, 성모세포로 분화된다면 배양기간에 따른 성모세포와 분비세포의 구성비를 알아보고자 하였다. 이와 함께 배양기간에 따른 점액과 리소자임 단백질과 mRNA의 발현 양상을 조사하고자 하였다.
II. 재료 및 방법

1. 인체중이접막상피세포의 계대배양과 상피세포의 분화유도를 위한 air-liquid interface (ALI) 배양

화학적 미로 절제술이나 경미로접근술로 청신경종양을 제거 받은 환자들의 정상으로 보이는 중이접막과 와우갑각(promontory)에서 채취하였다. 본 실험에 대해서는 접막을 채취하였던 3명의 환자에게는 실험의 내용을 알리고 동의를 얻었다.

채취한 접막을 1% pronase(type 14)가 포함되어 있는 Dulbecco’s modified Eagle’s medium (DMEM; Gibco, NY, USA) 와 Ham’s F12 nutrient mixture (F12, Gibco)의 1:1 혼합용액에서 18시간 동안 처치하여 상피세포를 분리하였다. 이를 플라스틱 용기에 적재한 후 37℃의 배양기에서 30분간 배양하여 상피모세포 등을 제거하고 다시 플라스틱 용기에 배양하였다. 배양액으로는 bronchial epithelial cell basal medium (BEBM)를 사용하였으며, 이때 청가한 호르몬과 성장인자는 Moon 등5에서와 같이. 배양액은 평판 하루 후에 갈아주었으며, 그 후로는 2일에 한번씩 갈아주었다. 50~60% 합류(confluence)를 이루는 시점에서 trypsin/EDTA를 이용하여 단세포로 유리시킨 후 세포의 수가 2000 cells/cm²이 되도록 회식하여 플라스틱 배양용기에서 이차배양을 하였으며, 이 passage-2 세포가 60~70%의 합류를 이루었을 때 다시 단세포로 만들어 역화질소에 6×10⁵cell/vial로 냉동 보관하였다.

세포의 분화를 위해서는 반투과성막으로 상하가 구분된 배양기 (Transclear, Costar Corp., Cambridge, MA, USA)에 BEBM과 DMEM을 1:1로 혼합한 무혈장 배양액을 넣고, 냉동 보관된 passage-2 HMEEC을 4×10⁴cells/cm² 밀도로 평
판 부유하였다. 이때 배양액에 점가한 호르몬과 성장인자들은 epidermoid growth factor를 25 ng/ml에서 0.5 ng/ml로 조정한 것 이외에는 계대 배양할 때와 동일하다. 세포들은 첫 9일간은 배양액에 잠긴 상태로 두며 배양액은 격일로 갈아주었다. 배양 10일째 위쪽 배양액을 제거하여 세포의 apical surface를 공기에 노출시켰으나 아래쪽 배양액은 매일 교환하였다. 배양은 37℃, 5% CO₂에서 진행하였다. 배양시기는 하루를 이룬 후 2일, 1주일, 2주일, 3주일, 4주 일로 하였으며, 각 시기 당 3 well을 배양하였고 동일한 배양을 3회 반복하였 다.

2. 형태학적 관찰

배양세포는 위상차 현미경(Olympus Light microscope, Vanox-S type, Japan)을 이용하여 분화 과정을 배양 관찰하였으며, 각 배양시기마다 세포의 분화 정도와 섬모세포의 존재를 확인하기 위하여 조직학적 슬라이드를 만들어 H & E 염색을 시행하였다. 또한 각 배양시기마다 주사전자현미경(SEM: H-800, Hitachi, Japan)을 이용하여 세포의 형태를 관찰하였다. 이를 위해서 chamber slide에 배양된 세포를 4℃의 2.5% glutaraldehyde에 4-6시간 고정시킨 후 0.1 M 인산 완충액으로 세척하였다. 1% osmium tetroxide에 2시간 다시 고정한 후 탈수과정을 거쳐 critical point drying 후 금도금 (300μm 두께)하하여 관찰하 였다.

3. 면역세포화학염색

각 배양시기마다 10⁵개의 세포로 cytopin 슬라이드를 만들어 4℃의 아세 톤: 메칠알코올 1:1용액에 고정한 후 분비세포와 섬모세포의 비율을 확인하기
4. 점액과 리소자임의 면역적 검출 및 정량

각 배양시기마다 배양된 세포의 상층에서 24시간 동안 채취된 분비물에서 점액과 리소자임의 양을 dot blotting으로 정량하였다. 순수 인체 점액(a generous gift from Dr. Davis, University of North Carolina, NC, USA)과 리소자임(Sigma, St. Louis, MO, USA)을 표준으로 사용하였으며, 점액에 대한 일차항체로는 단클론 항체인 H6C5 (1:1000, a generous gift from Dr. Davis, University of North Carolina, NC, USA)를 사용하였고, 리소자임에 대한 일차 항체로는 다크론 항체인 rabbit anti-serum항체 (1:1000, Dako, Capenteria, USA)를 사용하였다. 채취된 분비물과 표준들은 일정한 비율로 혼합하여 나이트로셀룰로즈막에 작용하여 일차항체와 반응시킨 후 peroxidase conjugated goat anti-mouse 혹은 anti-rabbit IgG에 반응시켰으며, chemiluminescence (ECL kit, Amersham, Buckinghamshire, UK)로 발색시켰다. Standard curve를 linear regression analysis를 이용하여 그린 후 각 검사물의 발색정도와 비교하여 그 양을 정량하였다. 분비물의 실험결과를 평균±표준편차로서 표시하였다.
5. 적혈구 리소자일의 mRNA 발현을 위한 reverse transcription(RT)-polymerase chain reaction(PCR)

3가지 점액(MUC5AC, MUC5B, MUC8)과 리소자일 그리고 대조유전자로 사용한 β-2 microglobulin(β-2M)의 mRNA 에 대하여 Gene Amp PCR kit(Perkin Elmer Biosystems, Foster City, CA, USA)와 Gene Amp PCR system 2400(Perkin Elmer Biosystems)을 이용하여 RT-(PCR)을 시행하였다. 그 방법을 간단히 소개하면 각 배양세포에서 추출된 total RNA 1μg를 random primers와 Moloney murine leukemia virus reverse transcriptase를 이용해 cDNA로 역전사(RT)시켰다. 이때 생성된 cDNA 4μl를 취하여(β-2M의 경우에는 0.4μl) 최종농도가 AmpliTaq DNA polymerase (QIAGEN: Valencia, CA, USA)는 2.5U/100μl, primer는 0.2mM, MgCl₂는 1.5mM이 되도록 혼합한 후 이를 증폭시켰다. 이때 사용한 primer는 Yoon15 등이 사용한 것과 같다. β-2M의 primer는 Clontech Laboratories Inc.(Palo Alto, CA, USA) 제품을 사용하였다. 반응물을 증폭주기는 denaturation은 95°C에서 1분간, annealing은 MUC5AC, β-2M과 리소자일은 60°C에서 1분간, MUC5B와 MUC8은 55°C에서 1분간 시행하였으며, extension은 72°C에서 1분간 시행하였다. 각 중복주기를 MUC5AC와 MUC8은 35회, MUC5B는 27회, 리소자일은 25회 그리고β-2M은 30회 반복하였 다. 최종 산물이 mRNA로부터 생기고 genomic DNA 오염이 없었다는 것을 증명하기 위해 RT reaction에서 reserve transcriptase를 생략하므로써 음성대조군으로 삼았다.

PCR 산물은 50ng/ml ethidium bromide가 포함된 2% Seakem agarose gel(FMC Bio-Products, Rockland, ME, USA)에서 1시간동안 전기영동으로 분리한 후 CSC Chemoluminescence Detection Module ver 1.0(Raytest, Straubenhardt, Germany)로 band의 형광상태를 측정하였다.
III. 결 과

1. 배양기간에 따른 인체중이점막의 형태학적 변화

위상차 현미경으로 관찰한 결과 배양세포는 배양 후 10일에 합류를 이루었으며, 합류 후 2주에서 3주 사이에 ciliary beating을 통해 섬모세포가 관찰되기 시작하였다. 조직학적 소견상 합류 후 2일에는 단층의 입방형 세포가 관찰되었고, 합류 후 2주에는 1-2층의 입방형 세포가 자랐으나 섬모는 관찰되지 않았다. 그러나 합류 후 3주에는 여러 층으로 분화된 세포에서 섬모가 드물게 관찰되었으며, 합류 후 4주에는 극성을 갖는 원주세포와 함께 다수의 섬모가 관찰되었다 (그림 1). 합류 후 4주의 세포는 주사전자현미경 (SEM)으로 관찰한 결과 정상으로 보이는 섬모를 가지고 있었다 (그림 2).

그림 1. 배양기간에 따른 인체중이점막 상피 세포의 형태학적 변화. 합류 후 2일에는 단층의 입방형 상피세포가 관찰되었고 (A), 합류 후 2주에는 한 두층의 세포로 증식하였으나 섬모세포는 관찰되지 않는다 (B). 합류 후 3주에는 여러 층으로 이루어진 상피세포에서 드물게 섬모세포를 관찰할 수 있었고 (arrowhead, C), 합류 4주가 되면 상피세포는 원주세포로 분화되고, 많은 섬모를 관찰할 수 있었다 (D).
2. 배양기간에 따른 분비세포와 섬모세포의 구성비

Cytospin 슬라이드에서 β-tubulin에 양성반응을 보이는 섬모세포는 합류 후 2주까지는 관찰되지 않다가 합류 후 3주에는 전체세포의 3.0±0.7%가 섬모세포로 분화되었으며, 합류 후 4주에는 전체 세포의 10.6±1.2%가 섬모세포로 분화되었 다. 반면 점액항체인 H6C5에 양성반응을 보이는 분비세포의 비율은 합류 후 2일 (41.1±3.1%), 1주 (36.3±4.2%), 2주 (36.0±2.9%), 3주 (33.6±4.7%), 4주 (39.7±1.2%)에 큰 변화가 없었다 (표 1).

표 1. 배양기간에 따른 분비세포와 섬모세포의 구성비.

<table>
<thead>
<tr>
<th>Days after confluence</th>
<th>Ciliated cells (%)</th>
<th>Secretory cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0</td>
<td>41.1±3.1</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>36.3±4.2</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>36.0±2.9</td>
</tr>
<tr>
<td>21</td>
<td>3.0±0.7</td>
<td>33.6±4.7</td>
</tr>
<tr>
<td>28</td>
<td>10.6±1.2</td>
<td>39.7±1.2</td>
</tr>
</tbody>
</table>

Data are mean ± Standard Deviation

Ciliated cell: anti-cilia antibody (β-tubulin) positive cell.
Secretory cell: anti-mucin antibody (H6C5) positive cell.
3. 배양기간별 점액 및 리소자임의 분비량의 변화

10^6 세포당 점액의 분비량은 합류 후 2일에는 27.8±5.1 mg/10^6 cells, 합류 후 1주에는 133.1±41.3 mg/10^6 cells, 합류 후 2주에는 218±10.6 mg/10^6 cells로 급격히 증가하다가, 합류 후 3주 (224.8±21.9 mg/10^6 cells)와 4주 (233.9±53.5 mg/10^6 cells)에는 큰 변화를 보이지 않았다. (그림 3A)

10^6 세포당 리소자임의 분비량도 합류 후 2일 (0.38±0.02 mg/10^6 cells), 합류 후 1주 (0.78±0.09 mg/10^6 cells), 합류 후 2주 (1.68±0.13 mg/10^6 cells)까지는 급격히 증가하였으며, 합류 후 3주 (2.03±0.20 mg/10^6 cells), 4주 (2.33±0.25 mg/10^6 cells)에는 그 증가율이 감소하였다.(그림 3B)

(A) (B)

그림 3. 배양기간에 따른 점액(A)과 리소자임(B)의 분비량의 변화. 점액과 리소자임의 분비량은 합류 후 2일에서 2주까지는 증가하다가 그 이후에는 유의한 변화를 보이지 않았다.
4. 배양기간별 절약 및 리소자임 mRNA의 발현 양상

RT-PCR을 통해 배양기간에 따라 발현되는 절약과 리소자임 mRNA의 변화를 알아보았다. MUC5B의 경우 배양 초기부터 합류 후 4주까지 발현이 꾸준히 증가하였으며, MUC5AC의 경우 합류 후 2주까지는 발현이 증가하다가 그 이후에는 발현정도가 감소되어 합류 후 4주에는 미미하였다. 이와 반대로 MUC 8의 경우 합류 후 3주까지는 발현이 약하다가 합류 후 4주에는 mRNA의 발현정도가 크게 증가하였다. 결과적으로 합류 후 2주까지는 MUC5B와 MUC 5AC가 주로 발현되었으며 MUC8의 발현은 미미하였다. 반면 합류 후 4주에는 MUC5B와 함께 MUC8이 주로 발현되었으며 MUC5AC의 발현은 억제였다. 리소자임의 경우 합류 후 2주까지 mRNA의 발현 정도가 점차 증가하는 양상이었다 (그림 4).

<table>
<thead>
<tr>
<th>Day after confluence</th>
<th>2</th>
<th>14</th>
<th>21</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUC5AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC5B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MUC8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysozyme</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β 2-M</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

그림 4. 배양기간에 따른 절약과 리소자임 mRNA의 발현 양상. MUC5B와 MUC8의 발현은 배양기간에 미세하여 증가하였으나, MUC5AC의 경우 합류 후 2주에 가장 증가된 후 배양기간이 길어질수록 발현이 감소하였다.
인체의 중이 점막은 분비세포, 섬모세포, 기저세포 등으로 이루어진 상기도 호흡상피의 일부이다. 최근 배양기술의 발달로 중이 점막의 계대배양에 성공적으로 이루어졌으나, 지금까지의 계대 배양에서는 조직 배양할 때와는 달리 배양세포가 섬모세포로 분화되는 것은 확인하지 못하였다. 이와 같은 현상은 세포가 배양액 속에 잠겨 있어 섬모의 발생이 물리적으로 방해받기 때문인 것으로 여겨진다. 연구자는 기관지 점막이나 코점막과 같은 상기도 점막에서 세포의 표면을 공기에 노출시키는 air-liquid interface(ALI) 방법으로 섬모세포가 분화된다는 사실에 착안하여, 사람의 passage-2 중이점막 상피세포를 ALI 방법으로 장기간 분화를 유도하였다. 이 결과 세포가 합류를 이루지 4주 후에는 일부의 세포에서 섬모상피세포로의 분화를 확인할 수 있었다.

섬모에 특이적인 β-tubulin에 대한 항체로 확인한 결과 섬모세포는 합류 후 2주까지는 관찰되지 않다가 합류 후 3주에는 소수의 섬모세포가 관찰되었고 합류 4주에는 인체의 유스타키안 트브 주위의 중이 점막과 유사한 약 10.6%의 세포가 섬모로 가지고 있었다. 반면 점액 분비세포는 합류 후 2일부터 40% 내외로 이후 큰 변화가 없었다. 이처럼 분비세포가 섬모세포보다 일찍 분화하는 것은 기도 점막상피세포 배양시 일반적인 현상이며 다양한 연구에서 배양시 섬모세포가 나타난 시점은 유사한 방법으로 기도점막을 배양할 때보다 10일 정도 늦은 것이다. 이는 중이점막상피의 경우 상기도에 비하여 섬모세포의 비율이 적고, 생체 내에서 노출된 가스 분압이 다르며 또한 폐쇄된 공간에 노출되어 있어 상피세포도 서로 다른 특성을 가지기 때문이다. 이와 같은 결과를 통해 연구자의 배양방법을 이용한 섬모세포에 대한 연구를 할 때에는 합류 후 4주 이상 배양한 후 시행해야 할 것으로 생각한다.
연구자는 배양시기에 따른 점액과 장액성 분비물인 리소자임의 분비량을 Dot-blotting을 이용해 정량적으로 측정하였다. 점액의 분비량은 합류 2주 후까지는 급격히 증가하였으며 이후 4주까지는 큰 변화가 없었다. 리소자임의 경우도 합류 후 2주까지 그 분비량이 증가하였으며, RT-PCR로 확인한 mRNA의 발현 정도도 이와 유사한 양상이었다. 이와 같은 결과는 분비세포의 분화비용은 앞서 언급한대로 합류 후 2일부터 일정하지만 그 분비량은 합류 후 2주가 지나야 plateau phase에 도달함을 나타내는 것이다. 분비량이 plateau phase에 도달하는 시기는 섬모세포의 발현시기와 마찬가지로 다른 상기도점막배양13,16 보다 늦은 것이다. 따라서 이러한 배양방법으로 중이점막의 분비물에 관한 연구를 하기 위해서는 합류 후 14일 경에 시행하는 것이 적당할 것으로 생각한다.

점액의 과분비는 분비액의 점도를 높여 점액수송체계의 기능을 저하시키기 때문에 중이질환의 만성화의 원인이 된다. 따라서 정상적이거나 병적인 상태의 중이점막에서 어떠한 점액이 분비되는지를 확인하는 것은 중요하다. 현재까지의 중이점막에서 발현되는 점액유전자에 관한 연구를 살펴보면 백서에서 MUC2 유전자가 주로 발현된다고 하였으며7 인체에서는 중이산출액이 MUC5AC와 MUC5B 항체와 반응한다고 하였다.8 하지만 정상중이점막의 경우 어떠한 점액이 주로 발현되는데에 관한 연구는 아직까지 없으며 다만 Moon 등5의 보고에 의하면 passage-2 중이점막상피세포에서 MUC1, MUC2, MUC5AC와 MUC5B 등의 다양한 점액유전자가 발현되었다고 하였다. 하지만 기도상피세포 배양시 그 분화정도에 따라 분비되는 점액의 양상이 변한다고 알려져 있으며9,10 중이점막에서도 충분히 분화된 세포에서의 점액분비 양상은 Moon 등5의 보고와는 다를 수 있다.

연구자는 현재까지 밝혀진 13개의 점액유전자 중 MUC5AC와 MUC5B와 MUC8 유전자 발현 양상을 조사하였다. MUC5AC와 MUC5B의 경우 상기도에
서 발현되는 대표적인 젤액유전자로 알려져 있으며 앞서 언급한 바와 같이 중이 젤막에서도 그 발현이 보고되었다. *MUC8*의 경우 중이점막에서의 발현에 대한 보고는 없으나 중이와 인접한 정상 코점막이나 비용에서 발현되므로 중이점막 에서도 이 유전자의 발현양상을 알아보았다.

본 실험에서 *MUC5B*의 발현량은 분화됨에 따라 증가하여 기관지 젤막9이나 코 젤막10과 유사한 양상을 보았으나, 배양후기에 *MUC5AC*가 감소하고 *MUC8*이 증가하는 것은 상기도 젤막과는 상반된 결과이다. 이러한 차이는 세포배양방법과 배양기간의 차이에 그 원인이 있을 수 있다. 즉 본 연구에서는 Bernacki 등10과 는 달리 collagen이 matrix를 배양에 사용하지 않았으며, 또한 저자들의 실험에서 *MUC8*의 발현이 증가하고, *MUC5AC*의 발현이 약해지는데는 약 38일 이상의 기간이 필요하였는데 Thornton 등9 이전의 연구에서는 세포를 21일 이상 배양하지 않았다. 그러나 이러한 차이에도 불구하고 본 연구결과는 중이점막의 젤액 유전자 발현양상이 상기도와는 다를 수 있을음을 의미한다. 즉 분화된 인체의 정상중이점막에서는 *MUC5B*와 *MUC8*이 주요 젤액일 가능성이 있음을 나타냈다고 하겠다.
V. 결 론

연구자는 사람의 정상 중이점막 상피세포도 ALI를 이용하여 섬모세포로의 분화가 가능하며, 이러한 섬모세포의 분화는 분비세포의 분화에 비하여 늦게 나타날 수 있었다. 또한 세포의 분화가 진행될수록 MUC5B와 MUC8이 발현이 증가함을 확인할 수 있었다.

Abstract

Ciliary and secretory differentiation of normal human middle ear epithelial cells according to the culture time

Jae Young Choi

Department of Medical Sciences
The Graduate School, Yonsei University

(Directed by Professor Joo-Heon Yoon)

Recent technical advances permit serial culture of normal human middle ear epithelial (NHMEE) cells. However, the ciliary differentiation of these cells has not been achieved. The purpose of this study was to establish a culture system to differentiate serially cultured NHMEE cells into ciliated cells. If the ciliated cells were to develop, the percentage of ciliated cells and secretory cells throughout the duration of culture would be measured. We also examined the levels of mucin and lysozyme secretion and their mRNAs in a time-dependent manner.

Normal appearing human middle ear mucosa was harvested and subcultured after enzymatic disaggregation. These cells were differentiated in air–liquid interface (ALI) culture for 2 days, 1 week, 2 weeks, 3 weeks and 4 weeks after confluence. On each culture period the ratio of ciliated cells and secretory cells and the amount of mucin and lysozyme secreted from the cultured cell were measured by immunohistochemical study and dot
blotting. The level of mucin gene 5AC (MUC5AC), MUC5B, MUC8 mRNAs and the level of lysozyme mRNA were measured on each culture periods by reverse transcription(RT)-polymerase chain reaction(PCR).

Ciliogenesis usually started on the 16th–18th day after confluence. The percentage of ciliated cells increased over time up to 10.6% but that of secretory cells remained at about 40% throughout culture duration. By the 14th day after confluence, the amounts of mucin and lysozyme secretion increased rapidly and then maintained a plateau. The expression levels of MUC5B, MUC8 and Lysozyme increased with culture time. Especially MUC8 showed the dramatic increase on the 28th day after confluence. In contrast, the level of MUC5AC mRNA showed a peak on the 14th day after confluence, and then decreased.

Ciliary differentiation of NHMEE cells can be induced by ALI culture system. Our study also suggests that secretory function develops earlier than ciliogenesis, and that the expressions of MUC5B and MUC8 mRNAs increase as a function of differentiation.

Key Words: human middle ear epithelial cell, cell culture, secretion, differentiation