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Abstract 

 

Regulation of Sp-family Transcription Factor Activity by Novel 

Protein-Protein Interaction with Corepressors 

  

Jeong-Ahn Lee 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

(Directed by Professor Man-Wook Hur) 

 

Sp1 is an important transcription factor involved in the expression of many cellular 

and viral genes. Sp1 activates transcription by binding to the GC-box in proximal 

promoter region. Sp-family proteins are characterized by three C2H2 zinc fingers at their 

C-termini. Sp1 can bind to target promoter through zinc fingers. So far, the zinc finger 

DNA binding domain (ZFDBD) was considered to be important only in the recognition of 

the GC-Box. However, we found that the DBD is an motif which regulates transcriptional 

activity of Sp-family transcription factors by novel protein-protein interaction. The 

ZFDBDs of Sp1, Sp3, and Sp4 can interact with corepressor proteins such as SMRT, 

NCoR, BCoR by mammalian two hybrid and GST pull down assay.      
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We also found that the inhibitory domains (IDs) of Sp-family interact with 

corepressors. The protein-protein interaction of Sp1 protein is critical in the transcriptional 

regulation by Sp-family transcription factors. Our data also suggest that the interaction 

between the ZFDBD and corepressors may be regulated by MAP kinase signaling 

pathway.              

 

Key Words : Sp1, zinc finger DNA binding domain (ZFDBD), inhibitory domain (ID), 

corepressor, MAP kinase 
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Regulation of Sp-family Transcription Factor Activity by Novel 

Protein-Protein Interaction with Corepressors 

 

(Directed by Professor Man-Wook Hur) 

 

Department of Medical Science 

The Graduate School, Yonsei University 

 

Jeong-Ahn Lee 

 

I.  Introduction 

 

The transcription is an essential process by which a large number of genes are 

regulated for development, growth, and survival of eukaryotic organisms. The organisms 

make use of a variety of mechanisms for the expression of a specific set of genes.1 The key 

step of transcription in the complex of genome of eukaryotes is binding of RNA 

polymerases to the promoter region. Eukariotic RNA polymerases are classified into RNA 

polymerase I, II and III according to the genes they transcribed. RNA polymerase I 

transcribes large, tandem repeated, ribosomal RNA genes and RNA polymerase II 

transcribes the protein-coding genes (mRNA genes) as well as some small nuclear RNA 

(snRNA) genes. RNA polymerase III is engaged in the transcription of an eclectic 
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collection of genes whose main common features are encoding structural or catalytic 

RNAs.2  

The transcription of a gene that involves RNA polymerase II is controlled by 

regulatory elements such as proximal promoter, enhancers, silencers, and 

boundary/insulator elements around a core promoter.3-5 Transcriptional regulation is 

achieved by combinatorial action of regulators that bind to distinct promoter and enhancer 

elements. Among the cis-acting DNA elements, G-rich element such as the GC-box 

(KRGGMGKRRY) is important in the expression of many ubiquitous, and tissue-specific 

genes.6 Sp1 is a well characterized sequence-specific DNA binding protein that plays a 

role in the transcription of many cellular and viral genes that contain GC boxes in their 

promoters.7-10 Additional human and rodent transcription factors (Sp2, Sp3, Sp4) similar in 

structural and transcriptional properties to Sp1 were cloned, and form a Sp-multigene 

family.6 Sp1, Sp3, and Sp4 bind to the same recognition sequence (GC boxes) with nearly 

identical affinity.11,12 Sp1 and Sp4 generally act as transcriptional activators. In contrast, 

Sp3, in most case, acts as a repressor and rarely as an activator.6,12-16 Sp2 has a DNA 

binding specificity different from those of Sp1, Sp3, and Sp4.17  

The Sp-multigene family is an important regulator of cell cycle, differentiation, and 

development.6 Sp1 acivates many different type genes such as simian virus 40 (SV40) and 

thmidine kinase (TK), mouse dihydrofolate reductase (DHFR), and many housekeeping 

and tissue-specific genes.12-16 Sp1 transcription factor forms multimeric complex through 

phosphorylation and glycosylation.17-21 Sp1 interacts with nuclear proteins such as TATA-

box binding protein TBP and TBP associated factors dTAFII130, hTAFII130, and 

hTAFII55.22-25 Also, Sp1 interacts with retinoblastoma related protein p107, transcription 
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factors such as YY1, E2F, and CRSP (cofactor required for Sp1 activation).26-32 The Sp1 

knock-out mice exhibit severe developmental retardation. Therefore, Sp1 is an essential 

transcription factor in differentiated cells.6 Sp2 was shown to regulate T-cell antigen 

receptor α (TCRα) gene but little is known about other function of Sp2.6,33 Sp3 exists in 

three different isoforms and the structure and the arrangement of the recognition sites 

appear to determine whether Sp3 is in transcriptionally inactive or active state.6 In contrast 

to other ubiquitous factors, the expression of Sp4 is limited to a few tissues. Sp4 is 

expressed predominantly in brain and knock-out of mouse Sp4 gene leads to behavioral 

defects.16,34 

Four Sp-family proteins have similar domain structures (Fig. 1) and are evolutionally 

closely related.6 All proteins have highly conserved C2H2 type zinc finger DNA binding 

domain at the C-terminal and belong to Krüppel-like zinc finger superfamily. The proteins 

consist of several domains, i.e. N terminus-inhibitory domain (a.a. 1-82, ID), 

serine/threonine-rich domains (a.a. 87-143; a.a. 243-350, S/T-rich region), glutamine-rich 

domains (a.a. 138-232; a.a. 351-500, Q-rich region), zinc finger DNA binding domain (a.a. 

622-720, ZFDBD), and C terminus D domain (a.a. 721-788).6,35 The S/T-rich region is 

regulated by phosphorylation and is important in the regulation of Sp1. The Q-rich region 

with characteristics of acid-blob are important in transcriptional activation.36 Recently, it 

has been reported that Sp-family proteins are post-translationally modified by various 

mechanisms. For example, Sp1 is phosphorylated by Erk2, PKC, casein kinase II, PKA, 

and Sp3 is SUMOylated by PIAS1.37-41 The zinc finger DNA binding domain (ZFDBD) of 

Sp-family is the most highly conserved part of the proteins.6 D domain has critical role in 

the synergistic activation of Sp1.20 
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Figure 1.  Schematic representation of four Sp-family members, Sp1, Sp2, Sp3 and 

Sp4 (Suske G., Gene ;237:291-300). 
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Currently available data suggest that Sp1 and Sp4 act as transcription activators, and 

Sp3 acts as a transcription repressor in general.6 However, we came up with an idea that 

there must be a certain mechanism of regulating the activities of Sp-family transcription 

factors regardless of their properties as transcription activator or repressor. We initially 

suspected that the inhibitory domains (IDs) of Sp1 and Sp3 might serve as negative 

regulators of their activities by interacting with the proteins that can inhibit transcription. 

We also suspected that there must be a reason on the high conservation of amino acid 

sequence of ZFDBD other than target recognition. It may interact with other proteins, and 

the interacting protein might act as negative regulator by controlling the recognition of 

target GC-box by ZFDBD .      

Our research hypothesis is that the ZFDBD of Sp-family is not be in freely accessible 

naked state. Our investigation indeed show that the activities of Sp-family transcription 

factors may be regulated by novel protein-protein interaction that involves corepressors 

(SMRT, NCoR, BCoR), IDs and ZFDBDs.  
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II.  Materials and Methods 

 

1.  Construction of mammalian two hybrid plasmid vectors expressing Sp-family 

ZFDBDs and IDs 

 

The ZFDBDs of Sp1, Sp3 and Sp4 were amplified from their cDNAs by polymerase 

chain reaction (PCR) (PCR condition: 94℃ 5 min, 94℃ 30 sec, 55℃ 30 sec, 72℃ 1 min. 

30 cycles, followed by 72℃ 5 min. Sp1 ZF PCR forward primer MWH 562: 5'-GAT CGT 

CGA CCC GGA TCC GAA GGA AGG GGC TCG GGG GAT CCT-3', Sp1 ZF reverse 

primer MWH 563: 5'-GAT CTC TAG AGA ATT CCT AAC TCA GAG CTA CAC CTG 

GGC CTC-3', Sp3 ZF forward primer MWH 571: 5'-GAT CGT CGA CCC GGA TCC 

AGG GTA GCT TGC ACC TGT CCC AAC-3', Sp3 ZF reverse primer MWH 572: 5'-GAT 

CTC TAG AGA ATT CCT ATC GCG CAG CTT CCA CAG ATG CCA-3', Sp 4ZF 

forward primer MWH 560: 5'-GAT CGT CGA CCC GGA TCC AGG AGA AGG AAG 

AGG CAG TAA TGA-3', Sp4 ZF reverse primer MWH 561: 5'-GAT CTC TAG AGA ATT 

CCT AGT AAC AGA TGA GTC CAG TTC TCC-3') and cloned into pBIND vector 

(SalІ/XbaІ) (Promega, Madison, WI, USA) for GAL4 fusion Sp-family ZFDBDs fusion 

constructs.  

Also, the IDs of Sp1 and Sp3 transcription factors were amplified from 

Matchmaker human liver cDNA library (Clontech, Palo Alto, CA, USA) or cDNA using 

PCR (PCR condition: Sp1 ID: 94℃ 5 min, 94℃ 30 sec, 50℃ 30 sec, 72℃ 1 min. 30 

cycles followed by 72℃ 5 min, Sp3 ID: 94℃ 5 min, 94℃ 30 sec, 55℃ 30 sec, 72℃ 1 
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min. 30 cycles, followed by 72℃ 5 min). The PCR products were cloned into pBIND 

(SalI/XbaІ) and pBIND (BamHІ/NotІ) (Clontech), respectively. The sequences of the 

constructs were confirmed by dideoxy chain termination DNA sequencing using DNA 

sequencing kit (Amersham Pharmacia Biotech Inc., Piscataway, NJ, USA). VP16-

corepressors, NCoR (a.a. 1007-2043), and BCoR (a.a. 112-753) fusion constructs (pKH 

73/110 EF-NCoR, pKH 135 EF-BCoR) were kindly provided by Drs. Ronald Evans (The 

Salk Institute, CA, USA), and Vivian Bardwell (University of Minnesota, MN, USA), and 

VP16-SMRT fusion protein was kindly offered by Dr. Dominique Leprince (Institut 

Pasteur de lille, France). 

 

 

2.  Preparation of recombinant Sp-family ZFDBDs and IDs 

 

a.  Construction of bacterial over-expression plasmids for Sp-family ZFDBDs and 

IDs 

   

DNA fragments encoding the ZFDBD regions of Sp1,Sp3 and Sp4 were obtained 

from the cDNA templates by polymerase chain reaction (PCR condition: 94℃ 5 min, 

94℃ 30 sec, 55℃ 30 sec, 72℃ 1 min. 30 cycles, followed by 72℃ 5 min. Sp1 ZF 

forward primer MWH 532: 5'-CGA TCG GAT CCC GCT TCA TGA GGA GTG ACC 

ACC-3', Sp1 ZF reverse primer MWH 533: 5'-CGA TCT CTA GAC TCG AGT CAC TTG 

TCA TCG TCG TCC TTG TAG TCC AGA GCT ACA CCT GGG CCT CC-3', Sp3 ZF 

forward primer MWH 571: 5'-GAT CGT CGA CCC GGA TCC AGG GTA GCT TGC 
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ACC TGT CCC AAC-3', Sp3 ZF reverse primer MWH 572: 5'-GAT CTC TAG AGA ATT 

CCT ATC GCG CAG CTT CCA CAG ATG CCA-3', Sp4 ZF forward primer MWH 560: 

5'-GAT CGT CGA CCC GGA TCC AGG AGA AGG AAG AGG CAG TAA TGA-3', Sp4 

ZF reverse primer MWH 561: 5'-GAT CTC TAG AGA ATT CCT AGT AAC AGA TGA 

GTC CAG TTC TCC-3') and cloned into EcoRІ/BamHІ sites of pGEX4T3 (Amersham 

Pharmacia Biotech Inc). Also, the IDs of Sp1 and Sp3 were obtained from the 

Matchmaker human liver cDNA library and cDNA respectively by PCR (PCR condition: 

Sp1 ID: 94℃ 5min, 94℃ 30 sec, 50℃ 30 sec, 72℃ 1 min. 30 cycles followed by 72℃ 

5 min, Sp3 ID: 94℃ 5 min, 94℃ 30 sec, 55℃ 30 sec, 72℃ 1 min. 30 cycles, followed 

by 72℃ 5 min). The PCR products were cloned into the EcoRІ/BamHІ sites of pGEX4T3 

and BamHІ/NotІ sites of pGEX4T3 (Amersham Pharmacia Biotech Inc), respectively. The 

DNA sequences of constructs were confirmed by dideoxy chain termination DNA 

sequencing using DNA sequencing kit. 

 

 

b.  Bacterial over-expression of Sp-family ZFDBDs and IDs 

 

GST fusion protein expression plasmids, pGEX4T3-Sp1 ZFDBD, Sp3 ZFDBD, Sp4 

ZFDBD, pGEX4T3-Sp1 ID and pGEX4T3-Sp3 ID were transformed into the expression 

host E. coli ER2566 by heat shock method.42 Transformed single colony was inoculated 

into 2×YT medium (Bacto-tryptone 16g, Bacto-yeast extract 10g, NaCl 5g per 1 liter 

Biobasic, Canada) containing 100 µg/ml ampicillin and cultured until O.D600nm reaches 

0.5 at 37℃. E. coli were induced to express the fusion proteins with IPTG (isopropyl-1-



 

- 11 - 

thio-β-D-galactopyranoside, 0.5 mM) for 5 hrs. The bacteria were collected by 

centrifugation at 1,2000 rpm and lysed by sonication for 40 sec at power 35 (Fisher, 

Dismembrator, model 300) in E. coli lysis buffer 300 µl (1% Triton X-100, 0.1% β-

mercaptoethanol, 2 mM EDTA, pH 8.0, 1 mg/ml lysozyme, and 0.2 mM PMSF in PBS). 

Over-expressed proteins were resolved by a 10% SDS-PAGE and the gel was stained with 

Coomassie Brillant Blue.  

 

c.  Purification of recombinant GST fusion proteins 

  

GST fusion Sp-family proteins were over-expressed in large scale (200 ml) with 

2×YT containing 100 µg/ml ampicillin. After bacterial cells were pelleted by 

centrifugation at 1,2000 rpm, and bateria were lysed in E. coli lysis buffer and the 

supernatant was collected from lysed bacterial cell debris by centrifugation at 1,2000 rpm, 

for 30 min at 4℃. GST fusion proteins were purified using glutathione-agaroge 4 Beads 

(Peptron, Taejeon, Korea). Purified proteins were resolved by 10% SDS-PAGE and 

protein concentration was determined according to Bradford method.43 

 

3.  Cell culture and transient transfection 

 

African green monkey kidney cells (CV-1) cell were grown in Dulbecco’s Modified 

Eagle Medium (DMEM) supplemented with 10% fetal bovine serum and penicillin (100 

units/ml)/streptomycin (100 µg/ml) (Invitrogen, CA, USA). Plasmids were transformed 

into E. coli DH5α and prepared a by alkaline lysis methods in large scale (250 ml) and 
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purified by CsCl/EtBr ultra centrifugation.         

Cells were inoculated on a six-well tissue culture plates at a density of 1×105 

cells/well in 2 ml of DMEM medium. After growing the cells for 24 hrs, cells were 

transiently transfected with LipofectAmine Plus reagent (Invitrogen) according to the 

manufacturer’s recommended protocol in serum free DMEM medium. After 3 hrs, cells 

were supplied with fresh complete DMEM and allowed to grow for 48 hrs. Cells were 

harvested and lysed in 150 µl of reporter lysis buffer (Promega) and vortexed for 1 min 

and centrifuged at 1,2000 rpm, for 3 min at 4℃. Cellular extracts (20 µl) were analyzed 

for β-galactosidase activity by mixing with 180 µl of substrate solution (o-nitrophenyl-β-

D-galactopytanoside 4 mg/ml in 0.1 M sodium phosphate, pH7.5; 0.1 M sodium phosphate 

buffer, pH 7.5; 100× Mg2+ (0.1 M MgCl2; 4.5 M β-mercaptoethanol )). Luciferase reporter 

assays were performed with 5 µl of cell extracts using 50 µl Luciferase Assay System 

assay reagent (Promega) on Luminometer (Microplate Luminometer LB 96V, EG & G 

Berthold). Luciferase activities were normalized with β-galactosidase activity. 

 

 

4.  In vitro protein-protein interaction assays between ZFDBDs or IDs with 

corepressors 

 

a.  Construction of corepressors expression plasmids for in vitro translation 

 

DNA fragments encoding SMRT (a.a. 194-657) and NCoR (a.a. 1709-2215) were 

amplified from their cDNA templates by PCR (SMRT PCR condition: 94℃ 5 min, 94℃ 
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30 sec, 60℃ 1 min , 72℃ 1 min. 30 cycles, followed by 72 ℃ 5 min. SMRT forward 

primer MWH 454: 5'-GAT CGA ATT CGG TAC CAT GGC CTC GGA CAG CGC CAT 

CAC ATA CCG-3', SMRT reverse primer MWH 455: 5'-GAT CTC TAG AGC TAG CTC 

ACA GCG CCG CCG TGT CGG GGT AGC CGC GG-3', NCoR PCR condition: 94℃ 5 

min, 94℃ 30 sec, 52℃ 1 min , 72℃ 2 min. 30 cycles, followed by 72 ℃ 5 min. NCoR 

forward primer MWH 691: 5'-GGA TCG GTA CCA TGG CAA GTG TGA GAG GGA 

ACG GGA ACG-3', NCoR reverse primer MWH 692: 5'-GGA TCT CTA GAT CAC TTA 

CGA AAA ATC TCC TGC TTC TTT GAT TTA-3') and cloned into the KpnІ/XbaІ sites of 

the pcDNA 3.0 (Invitrogen). BCoR (a.a.112–753) was amplified from their cDNA 

templates by PCR (BCoR PCR condition: 94℃ 5 min, 94℃ 30 sec, 60℃ 1 min , 72℃ 1 

min. 30 cycles, followed by 72℃ 5 min. BCoR forward primer MWH 687: 5'-GGA TCA 

AGC TTA CCA TGG GGA TTT CTT CGG AAA GAA ATC CAG-3', BCoR reverse 

primer MWH 688: 5'-GGA TCT CTA GAT CAG GCT CTC TCA TGG GAC CGG GAT 

CTC C-3') and cloned into the HindⅢ/XbaⅠsites of the pcDNA 3.0 (Invitrogen). 

 

 

b.  Preparation of [35S ]-methionine labelled corepressor peptides in vitro 

 

pcDNA 3.0-corepressors expression plasmids (1µg) were incubated with TNT Quick 

Coupled Transcription/Translation extracts (Promega) containig 40 µl TNT Quick Master 

Mix, 4 µl [35S]-methionine (1175.0 Ci/mol, PerkinElmer Life Sciences, Inc. Boston, MA, 

USA), 4 µl amino acid mixture minus methionine at 30℃, for 90 min. Expression of 

polypeptides was analyzed by running 2 µl out of total mixture on a 10% SDS-PAGE. 
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c.  In vitro GST-pull down assay 

 

Purified GST fusion proteins (5µg) were incubated with GSH-agarose (Sigma, St. 

Louis, MO, USA ) for 1 hr in HEMG buffer (40 mM HEPES, pH 7.9, 100 mM KCl, 0.2 

mM EDTA, 5 mM MgCl2, 0.1% NP-40, 10% glycerol, 1.5 mM DTT, protease inhibitor 

cocktail 1 tablet/50 ml of protease inhibitor cocktail, Roche, Germany) at 4℃. After the 

agarose-GST-protein complexes were washed with 1 ml cold HEMG buffer 3 times, 20 µl 

[35S]-methionine labelled corepressors were incubated in HEMG buffer at 4℃ for 4 hrs. 

The reaction mixtures were centrifuged at 3,000g, 4℃ and removed supernatant and 

washed 5 times with cold HEMG buffer. The bound proteins were resolved by 10% SDS-

PAGE and the SDS-PAGE gels were dried and exposed to X-ray film using image 

intensifying screens (Kodak, CT, USA). 

 

5.  Transient transfection using MAP kinase signaling pathway regulatory  chemi- 

cals 

 

CV-1 cells were inoculated on a six-well tissue culture plates at a density of 1×105 

cells/well in 2 ml of DMEM medium. Reporter plasmid pG5-Luc, GAL4-Sp1 ZF and 

VP16-corepressors were prepared by alkaline lysis methods in large scale (250 ml) and 

CsCl/EtBr ultra centrifugation. After growing the cells for 24 hrs, cells were transiently 

transfected with LipofectAmine Plus reagent (Invitrogen) according to the manufacturer’s 

recommended protocol in the serum free DMEM medium. After 3 hrs, cells were supplied 

with fresh complete DMEM. After 24 hrs, cells were treated with MAP kinase regulatory 
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chemicals (EGF, U0126) and were allowed to grow for 24 hrs. Cells were harvested and 

lysed in 150 µl of reporter lysis buffer (Promega). Cellular extracts (20 µl) were analyzed 

for β-galactosidase activity. Luciferase reporter assays were performed with 5 µl of cell 

extracts supernatant using Luciferase Assay System (Promega). Luciferase activities were 

normalized with coexpressed β-galactosidase activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

- 16 - 

III.  Results 

 

1.  The ZFDBDs and IDs of Sp-family were successfully over-expressed in E. coli 

ER2566 

 

For protein-protein interaction studies, we prepared various recombinant proteins. 

GST-Sp1 ZFDBD (a.a. 622-720), GST-Sp3 ZFDBD (a.a. 584-711), GST-Sp4 ZFDBD (a.a. 

632-751) were expressed in E. coli ER2566. Also, we also over-expressed GST-Sp1 ID 

(a.a. 1-82) and GST-Sp3 ID (a.a 500-568) in E. coli ER2566. Each of the proteins were 

resolved by SDS-PAGE and analyzed for expression level. The recombinant proteins were 

successfully over-expressed and purified (Fig. 2). The size of GST fusion proteins are 

GST-Sp1 ZFDBD, 37.78 kDa; GST-Sp3 ZFDBD, 40.97 kDa; GST-Sp4 ZFDBD, 40.09 

kDa; GST-Sp1 ID, 36.02 kDa; GST-Sp3 ID, 34.4 kDa. The IDs were expressed abundantly, 

but the expression level of ZFDBDs relatively low compared with IDs. 
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Figure 2.  Bacterial over-expression of recombinant ZFDBDs and IDs. (A) GST-Sp1 

ZFDBD (a.a. 622-720), GST-Sp3 ZFDBD (a.a. 584-711), GST-Sp4 ZFDBD (a.a. 632-751) 

were over-expressed in E. coli ER2566. Each of the proteins are resolved by SDS-PAGE 

and analyzed for expression level. The size of GST (lane 1) is 37.8 kDa, GST-Sp1 ID (lane 

2, T; lane 3, S) is 36.02 kDa, GST-Sp3 ID (lane 4, T; lane 5, S) is 34.4 kDa, GST-Sp1 

ZFDBD (lane 6, T; lane 7, S) is 37.78 kDa, GST-Sp3 ZFDBD (lane 8, T; lane 9, S) is 

40.97 kDa, GST-Sp4 ZFDBD (lane 10, T; lane 11, S) is 40.09 kDa (T, total protein. S, 

soluble protein). (B) Purification of recombinant proteins A, GST only; B, GST-Sp1 ID; C, 

GST-Sp3 ID; D, GST-Sp1 ZFDBD; E, GST-Sp3 ZFDBD; F, GST-Sp4 ZFDBD 
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2.  The ZFDBDs and IDs of Sp-family proteins can repress transcription once 

targeted to proximal promoter by GAL4 DBD system 

 

Our preliminary experiments showed that the Sp1 ZFDBD can interact with mSin3A, 

HDAC and POZ-domain. Accordingly, we suspected that transcription factor modules 

such as ZFDBDs and IDs of Krüppel-like zinc finger superfamily may interact with other 

polypeptides and this interaction may be important in the regulation of transcription. We 

constructed several GAL4 fusion expression plasmids by subcloning genes encoding Sp-

family ZFDBDs or IDs into pBIND (Promega). CV-1 cells were transiently transfected 

with the GAL4 fusion expression plasmids. Our data showed that ZFDBDs and IDs were 

able to repress potently (Fig. 3). The repression extent of Krüppel-like ZFDBD was 35% 

to 90%. The IDs of Sp1 and Sp3 repress transcription by more than 90%. Most of the 

GAL4 fused ZFDBDs and IDs reduced transcription of the reporter gene compared to 

GAL4 DBD control. However, GAL4 Sp1 ZFDBD was not able to repress transcription 

below the control level. These data suggest that most of the ZFDBDs or IDs can repress 

transcription. And transcriptional repressions were more prominent with the IDs than with 

the ZFDBDs. The transcription repression varies significantly depending on the member 

of the Sp-family.  
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Figure 3.  Transcription repression by Sp-family ZFDBDs and IDs.  CV-1 cells were 

transiently transfected with luciferase reporter plasmid pG5-Luc and GAL4-ZFDBDs, 

GAL-IDs fusion protein expression plasmids of Krüppel-like family proteins. Cell extracts 

were analyzed for reporter activities and normalized with β-galactosidase activity. (A) 

Promoter targeted ZFDBDs of Sp3, Sp4, FBI-1, GKLF but not Sp1 ZFDBD repress 

transcription. (B) The IDs of Sp1 and Sp3 potently repress transcription. 
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3.  Dose-dependent transcription repression by ZFDBD and ID of Sp1 

 

The ZFDBDs and IDs were targeted to proximal promoter repressed transcription. To 

examine the dosage effect, CV-1 cells were transfected with increasing amount of 

expression vectors (0.1 µg to 0.7 µg ) of GAL4-ZFDBD and ID of Sp1. Sp1 ID 

significantly repressed transcription by more than 80% at 0.7 µg. GAL4-Sp1 ZFDBD did 

not repress transcription compared to GAL4-DBD control as we observed in Fig. 4. 

Although GAL4-Sp1 ZFDBD activated transcription by 2 fold at 0.1 µg, additional 

transcription GAL4-Sp1 ZFDBD did not repress transcription below the control. This data 

showed that both Sp1 ZFDBD and ID repressed transcription and Sp1 ID repressed 

transcription much more potently than Sp1 ZFDBD. 
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Figure 4.  Dose dependent transcription repression by ZFDBD and ID of Sp1. CV-1 

cells were transiently transfected with increasing amount of expression of GAL4-Sp1 

ZFDBD, Sp1 ID and luciferase reporter plasmid pG5-Luc. Cell extracts were analyzed for 

reporter activities and normalized with β-galactosidase activity. (A) Promoter activity is 

significantly decreased by increasing amount of Sp1 ID expression vector. (B) Sp1 

ZFDBD do not decrease transcription below the control level.  
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4.  The ZFDBDs and IDs of Sp-family interact with corepressors in vivo 

 

Our preliminary experiments showed that Sp1 ZFDBD interacts with mSin3A, 

HDAC and the POZ domain of FBI. These lines of data suggest that ZFDBD is an 

important protein-protein interaction motif between Sp1 and other proteins including 

corepressor. Here, we investigated using mammlian two hybrid system whether the Sp-

family ZFDBDs interact with other corepressors such as SMRT, NCoR, and BCoR or not. 

We constructed GAL4-Sp-family ZFDBDs or IDs and VP16-corepressor expression 

plasmids. CV-1 cells were transiently transfected with pG5-Luc, GAL4 fusion plasmid, 

and VP16 fusion plasmid. Then luciferase activity was measured.   

Interestingly, the molecular interaction between ZFDBDs or IDs and corepressors 

varies significantly (Fig. 5A-C). The Sp1 ZFDBD interacted more strongly with SMRT, 

BCoR but slight weakly with NCoR (Fig. 5A). The interaction between Sp3 ZFDBD and 

corepressors was very different from other ZFDBDs (Fig. 5B). The interaction of Sp3 

ZFDBD and corepressor was clear with NCoR but not so certain with SMRT and BCoR. 

The interaction of Sp4 ZFDBD and corepressors was strongest among the ZFDBDs tested. 

The interaction between Sp4 ZFDBD and SMRT was more than 27 fold stronger than the 

control. And the interaction of Sp4 ZFDBD and NCoR or BCoR was about 10 fold, 17.5 

fold respectively. The interaction between IDs of Sp-family and corepressor was about 3.5 

fold to 9 fold of the control, and SMRT and NCoR interacted stronger than BCoR. Our 

data suggest that Sp-family ZFDBDs interact with corepressors. The intensity of molecular 

interaction vary significantly depending on the Sp-family ZFDBDs. The data suggest that 

the Sp-family ZFDBDs are not in naked state and form complexes with corepressors. And 
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the difference in the molecular interaction with corepressors may be the key factor in the 

transcriptional regulation of Sp-family transcription by modulating the naked state of 

ZFDBDs.  
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Figure 5.  Sp-family ZFDBDs and IDs interact with corepressors in vivo. CV-1 cells 

were transfected with pG5-Luc, GAL4 bait expression plasmid, VP16 expression plasmid, 

and control pCMV β-gal plasmid. Cells were harvested and analyzed for reporter 

luciferase activities. The Sp-family ZFDBDs interact with corepressors (A-C). Also the 

IDs of Sp1 and Sp3 interact with corepressors (D-E). The interaction considerably differs 

depending on the domains tested. Sp4 ZFDBD interacts with corepressors most strongly. 

The interaction of Sp3 ZFDBD with NCoR is clear but not so certain with SMRT and 

BCoR. 
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5.  The ZFDBDs and IDs of Sp-family interact with corepressors in vitro 

 

To investigate whether the interaction between Sp-family ZFDBDs and corepressors 

is direct or not, we performed in vitro GST-pull down assay. The GST and GST-Sp-family 

ZFDBDs or GST-IDs bound to agarose was incubated with in vitro translated [35S]-

Methionine labelled corepressors. After precipitation and washing of the complex, the 

precipitants were analyzed by SDS-PAGE and autoradiography. The Sp-family ZFDBDs 

or IDs directly interacted with corepressors (Fig. 6). The size of SMRT, NCoR, and BCoR 

polypeptides used was 47.6 kDa, 55 kDa, 69.6 kDa, respectively. Our data show that Sp-

family ZFDBDs and IDs are key module mediating the direct molecular interaction 

between Sp-family and corepressor proteins. 
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Figure 6.  The ZFDBDs and IDs of Sp-family protein directly interact with the 

corepressors in vitro. GST-ZFDBD or GST-Sp ID fusion proteins were incubated with in 

vitro synthesized [35S]-Methionine labelled corepressor polypeptides, and pulled down. 

Precipitated samples were resolved by 10% SDS-PAGE and autoradiographyed. (A) GST-

agarose pull down of ID (lanes 4-6) and ZFDBD of Sp1 (lanes 7-9). Lanes 1-3, pull down 

with GST-agarose only. (B) GST-agarose pull down of ID (lane 1-3) and ZFDBD of Sp3 

(lane 4-6). (C) GST-agarose pull down of ZFDBD of Sp4. (D) Input, corepressors added in 

binding reactions. Arrows indicated the positions of the corepressors pulled down.  
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6.  The interaction of Sp1 ZFDBD with corepressors may be regulated by MAP 

kinase signaling pathway 

 

   It was reported that Sp1 is phosphorylated by Erk2, PKC-ζ, casein kinase, or PKA and 

dephosphorylated. Also, Sp1 was shown to be glycosylated, and deglycosylated by 

lipopolysaccharide. Interestingly, Sp3 is silenced by SUMOylation.37-41 The modifications 

are important in the regulation of Sp-family transcription functions.  

We suspected that the molecular interaction of Sp-family ZFDBDs and corepressors 

may be controlled by various signaling pathways. First, we suspected that Sp1 binding to 

GC-box is modified with MAP kinase pathway. We transiently transfected CV-1 cells with 

reporter plasmid pG5-GC-Luc and the transfected cells were treated with MAP kinase 

control reagents such as EGF (activator), and U0126 (MEK inhibitor). Our result showed 

that Sp1 binding to GC-box is activated by EGF and repressed by U0126 (Fig. 7A).     

Second, we tested whether the interaction between Sp1 ZFDBD and corepressors is 

influenced by MAP kinases signaling pathway. It was reported that different corepressor 

pathways regulated differentially. We transiently transfected CV-1 cells with pG5-Luc and 

GAL4-Sp1 ZFDBD and VP16-SMRT, VP16-NCoR, VP16-BCoR and the transfected cells 

were treated with MAP kinase control reagents. The interaction of Sp1 ZFDBD between 

SMRT is decreased by MAP kinase reagents regardless of activator and repressor (Fig. 7B). 

It was reported that interaction surface of protein is shieled by phosphorylation.44 We 

guess that this phenomenon is due to the phosphorylation of SMRT by MAP kinase 

signaling pathway. Also, our data showed that the interaction of Sp1 ZFDBD between 

NCoR is activated by EGF and repressed by U0126. The interaction of Sp1 ZFDBD 
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between BCoR is activated by EGF and repressed by U0126 but not to control. Our data 

suggest that the interaction of Sp1 ZFDBD between corepressors is regulated  MAP 

kinase signaling pathway variously although the details of regulation is obscure at this 

time. 
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Figure 7.  Interaction of Sp1 ZFDBD with corepressors may be regulated by MAP 

kinase signaling pathway. (A) CV-1 cells were transiently transfected with reporter 

plasmid pG5-GC-Luc. After 24 hrs, cells were treated with MAP kinase regulatory 

reagents such as EGF (50 ng/ml), U0126 (10 µM). (B) The interaction between the bait 

(ZFDBD) and fishes (corepressor) was analyzed by mammalian two hybrid assays in the 

presence or absence of activator (EGF) or inhibitor (U0126) of MAP kinase signaling 

pathway. Interaction of Sp1 ZFDBD with VP16 is not affected either by EGF or U0126, 

but interaction of Sp1 ZFDBD with corepressors (SMRT, NCoR, BCoR) is regulated by 

MAP kinase regulators.  
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IV.  Discussion 

 

The molecular mechanism of key biological processes can be understood by 

investigating the network of protein-protein interactions involved. Sp1 transcription factor 

regulates many cellular and viral gene expression by binding to the GC-boxes located in 

the proximal promoter. Sp1 was firstly purified and isolated as a transcription factor 

recognizing the adenovirus major late promoter (AdML) and form a family with the 

factors like Sp2, Sp3, and Sp4.45 So far, Sp1 was shown to interact with various proteins 

(e.g., TBP, dTAF110, TAFII130, TAFII55, Rb, YY1, E2F, CRSP) and the interaction 

proved to be very important in the regulation of many cellular functions.6-10     

We and other investigators recently found that the most highly conserved part of Sp1, 

i.e. the ZFDBD, is involved in the protein-protein interaction with other proteins such as 

the POZ-domains of FBI-1, mSin3A, and histone deacetylase 1 (HDAC1). In this study, 

we investigated and found that the Sp1 ZFDBD, previously known to be important only in 

the recognition of its target sequence, is involved in molecular interaction with other 

regulatory proteins and the interaction is important in the regulation of Sp1 activity.  In 

addition, we also investigated the novel protein-protein interactions involving Sp-family 

IDs located at N-terminus with corepressors (SMRT, NCoR, BCoR). The molecular 

interaction provides a novel and intriguing way of regulating Sp-family transcription 

factors. Although Sp1 and Sp4 are known as transcription factors in general, the 

interaction with corepressors can explain how they can act as a transcription repressors in 

certain instances.6,12-16 Also, it is expected that the repressor members of the Krüppel like 
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zinc finger transcription factors family including Sp-family member interact with 

corepressors and repress transcription by corepressor associated HDAC dependent 

chromatin compaction.  

Our data clearly suggest that the ZFDBDs of Sp family are not in ‘naked’ state and 

accordingly cannot freely access its target regulatory sequence.  Instead, the ZFDBDs are 

associated with other molecules, e.g. corepressors in our case. Sp family may be one 

component of large multiprotein complex having corepressor molecule in it. The intensity 

of molecular protein-protein interaction varies significantly depending on the ZFDBDs. 

The ZFDBD of Sp4 interacts with 3 times more strongly than that of Sp1 or Sp3. The 

difference in the intensity of molecular interaction may be significant in the regulation of 

various gene expression because the zinc fingers of Sp1, Sp3, and Sp4 recognize their 

target GC-boxes with almost the same affinity and specificity. Without the difference in 

the interaction, the transcription of a specific gene may be simply regulated by the context 

or composition of Sp-family members. We can suspect that transcription may be largely 

contributed by Sp1 because the molecular interaction involving Sp1 ZFDBD and 

corepressor is relatively weak compared with Sp3 or Sp4, and ZFDBD of Sp1 are 

relatively in more ‘naked’ form. However, in certain instances where the molecular 

interaction between Sp3 or Sp4 ZFDBDs are weaken by cellular needs, the ZFDBDs of 

Sp3 or Sp4 become naked, bind to its target GC-box, and control gene transcription.  

Our data suggest that the molecular interaction between the ZFDBDs and corepressor 

may an important regulatory aspect of numerous cellular and viral gene expressions. The 

molecular interaction may be the target of regulation by various cellular processes. 

Previously, it was reported that members of Sp-family could be drastically regulated by 
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various means of modification such as phosphorylation, glycosylation, acetylation and 

SUMOlylation.37-41 Also, the Sp1 binding site of p21Waf/Cip1 promoter is the target of MAP 

kinase signaling pathway.46 We investigated whether MAP kinase signaling pathway 

regulated the molecular interaction involving ZFDBD. We transfected the cells with 

mammalian two hybrid vectors and subsequently treated the cells with EGF and U0126. 

Sp1 reporter pG5-GC-Luc itself responds well to EGF and U0126, suggesting that MAP 

kinase pathway really control Sp1 activity although its mechanism is obscure at this 

moment. Interestingly, we also observed some effect of these drugs on the molecular 

interaction between ZFDBDs and corepressors. Although premature, our data suggest that 

the interaction can be regulated by cellular signaling process and the type of regulation 

differs depending on the types of corepressors interacted.  

In short, our investigations suggest that the activities of Sp-family transcription 

factors can be regulated by novel protein-protein interaction involving the ZFDBDs or IDs. 

The molecular interaction may be important in the regulation of many cellular and viral 

gene expressions.  
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V.  Conclusion 

 

1. The ZFDBDs of Sp-family transcription factors directly interact with corepressors 

(SMRT, NCoR, BCoR). 

2. The IDs of Sp1 and Sp3 directly interact with corepressors (SMRT, NCoR, BCoR). 

3. The molecular interaction of Sp-family proteins with corepressors is highly conserved 

and their interactions may be important in the regulation of many viral and cellular gene 

expressions. 

4. The interaction of Sp-family protein with corepressors is highly variables and may be 

regulated by MAP kinase signaling pathway.  

5. The ZFDBD, a module previously known to function only in binding to the promoter 

regulatory cis-element, may harness diverse cellular regulatory information via protein-

protein interactions and regulates biological processes by controlling transcription.  
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국문요약 

 

Sp-family 전사인자의 새로운 단백질-단백질 상호작용에 의한 전사조절 

 

<지도교수 허만욱> 

 

연세대학교 의과학과 

이정안 

 

Sp1은 수많은 세포 및 바이러스 유전자의 발현에 중요한 전사인자이다. Sp1은 

주로 proximal promoter 상의 GC-box에 결합하여 전사를 활성화한다. 우리는 

현재까지 promoter의 발현 조절 부위의 인식에만 중요한 것으로 알려진 

전사인자의 DNA binding domain (DBD)인 zinc finger가 단백질-단백질 상호작용을 

통하여 전사 수준에서의 유전자 발현조절에 중요한 역할을 한다는 것을 

발견하였다. Sp1 zinc finger DBD는 POZ-domain, histone deacetylase 등과 결합할 수 

있으며, 이러한 상호작용에 의하여, 전사활성에 필요한 Sp1의 조절부위 

인식과정이 결정적으로 영향을 받는다. 또한 놀랍게도, 전사활성자 Sp1, Sp4나 

억제부류인 Sp3의 경우, 이들의 zinc finger부위가 SMRT, NCoR, BCoR, mSin3A와 

같은 종류의 corepressor 단백질과 결합함을 발견하였다. 또한 이들이 갖는 

inhibitory domain (ID)들도 이들 단백질들과 단백질-단백질 상호작용함을 

보여주었다. 따라서 Sp1 계열의 단백질들은 세포 내에서 노출된 zinc finger로 
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존재하는 것이 아니라, 이들 단백질들과 결합하여 일차적으로 target 인식이 

봉쇄된 형태로 존재하는 것으로 생각된다. 흥미로운 것은 각 단백질간의 

이러한 상호작용의 정도가 상당한 차이를 보이며, 이러한 차이가 비록 이들 

zinc finger가 노출된 상황에서 GC-Box에 동일한 친화성을 갖고 결합할 수 

있지만, 생체 내에서 어떤 Sp-family 전사인자가 실제로 target을 인식하는가를 

결정하는 중요한 요인이 될 수 있다. 아울러 이러한 zinc finger-corepressor 

단백질간의 상호작용은 MAP kinase 신호전달 경로의 조절자들에 의하여 그 

상호작용이 조절되어, 노출된 zinc finger의 양을 조절함으로서 유전자 

발현조절을 달성하는 것으로 생각되고 있다.                     
 

핵심되는 말: Sp1, zinc finger DNA binding domain (ZFDBD), inhibitory domain (ID), 

corepressor, MAP kinase 
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