(HGF)

가

(HGF)

가

2002 6

	_		
1.			
2.			
	_		
1.		(HGF)	
2.		HGF	
3.			
4.	HGF	HGF	

1. HGF _____ 11

1.				HGF	 12
2.	HGF				 13
3.		HGF			 14
4.		HGF			 15
5.			HGF		 16

- -

(HGF)

가

(HGF)

가 breast cancer HGF 가 가

HGF

가 , HGF

가 .

72 HGF

(Quantikine human HGF colorimetric sandwich ELISA kit, R&D, Minneapolis, MN, USA)

. 55 , HGF

<u>+</u>

. HGF

(<u>+</u>), 426(<u>+</u>120) pg/mL

가 . HGF

가 .

HGF

가가 . HGF

가 , Her-2/neu over-

expression, DNA aneuploidy, grade

.

HGF가 가

가

가 .

: (HGF), ELISA, ,

,

(HGF) 가

< >

1.

(hepatocyte growth factor, HGF) scatter factor ,

1,2

HGF ,

in vitro , HGF가 focal adhesion kinase paxillin phosphorylation HGF c-MET intrinsic kinase domain 가 protooncogene (stromal cell) (fibroblast)가 HGF stromal fibroblast HGF가 HGF 5,6 HGF 가 가 가 7,8 가

가 .

HGF ELISA 가

.

, HER-2/neu over-expression,

가

DNA ploidy, grade HGF HGF

ELISA HGF

가 .

II.

1.

2001 7 2002 4

breast carcinoma

60

14 . B

С

. T stage

carcinoma in situ 8 , T1 27 , T2 17 , T3 5 ,

T1 2 , T2 5 , T3 1 , T4 3 ,

T stage 3 ,

6.3 <u>+</u> 4 .

53 . ,

, ,

. HGF

<u>+</u> .

14 8

6 . ,

computed tomography scan

X - ray bone scintigraphy

2.

가.
HGF Vacutainer system

(Becton - Dickinson, Franklin Lakes, NJ, USA)

, EDTA anticoagulant

tube

- 70°C

•

HGF Quantikine human HGF colorimetric sandwich ELISA kit (R&D, Minneapolis, MN, USA)

enzyme immunoassay technique microplate pre-

coating monoclonal antibody HGF

enzyme HGF polyclonal

antibody 450nm

40 pg/mL - 4000 pg/mL

가 .

•

Kruskal - Wallis ANOVA

paired t-test ,

t-test, oneway ANOVA, Mann-Whitney test

. p<0.05

·

III.

1. (HGF)

53 HGF <u>+</u>

426 <u>+</u> 120 pg/mL .

HGF 가

(p<0.05). HGF <u>+</u>

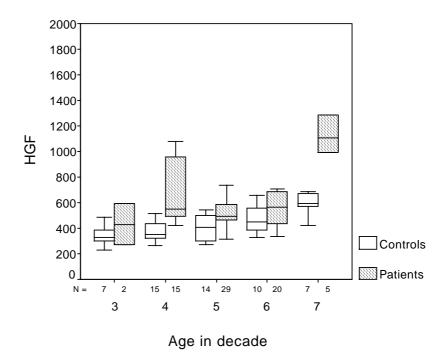
(1).

1. HGF

()		(pg/mL)
20-29	7	347 <u>+</u> 88
30-39	15	375 <u>+</u> 81
40-49	14	399 <u>+</u> 99
50-59	10	474 <u>+</u> 109
60-69	7	597 <u>+</u> 92
	53	426 <u>+</u> 120

Note * <u>+</u>

2. HGF


71 HGF <u>+</u>

784 <u>+</u> 847 pg/mL . HGF

, 20 60

HGF 가 .(

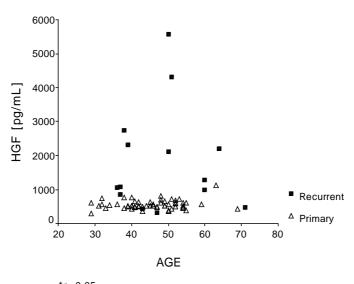
1).

1. HGF

3. HGF

,

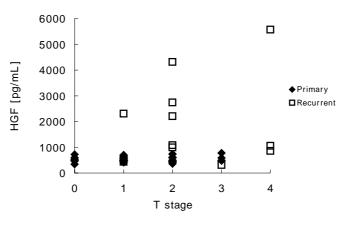
HGF 가 가 ,


t - test

Whitney test T - stage

HGF 가 가

. T2 stage 가


(p=0.02) (3).

*p<0.05

2.

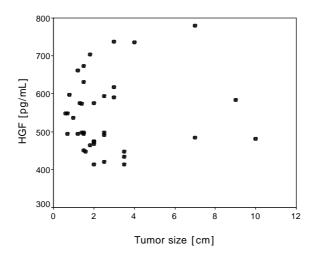
HGF

3.

HGF

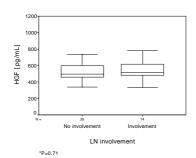
4. HGF

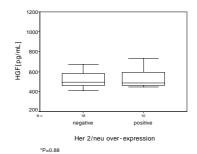
HGF ,

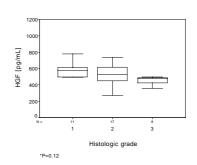

, Her 2/neu over - expression, DNA aneuploidy,

grade 가

. HGF Pearson correlation, t - test


, p=0.58; LN involvement, p= 0.71; Her 2/neu over- expression, p=0.88; DNA index, p=0.27; grade


p=0.12) (4,5).


p = 0.58

4. HGF

1200
10001

5. HGF

IV.

, ,

,

(HGF) ,

7-9.

HGF (<u>+</u>

) 426(<u>+</u>120) pg/mL , 20 347(<u>+</u>88)

pg/mL, 30 375(\pm 81) pg/mL, 40 399(\pm 99) pg/mL, 50

474(+109) pg/mL, 60 597(+92) pg/mL

가 가 가 .

HGF carotid arterial remodeling

가(>65) HGF 가가 가

⁷. Toi 205

HGF

(393 + 246 pg/mL, +)가 가 HGF 가 가 HGF가 carcinogenesis ¹⁰⁻¹⁵. Genichiro 2001 cancer front 가 HGF/c - Met co - expression ². Toi 200

20

HGF 가

27% 가

HGF가 가 가 가 HGF가 가 protease, plasminogen activator, heparitinase HGF extracellular matrix bound HGF form 16 HGF 가 가 14 11 . HGF up - regulation HGF 가 up - regulation 가

HGF 가 17. HGF 가 HGF 가 , Her 2/neu overexpression, DNA aneuploidy Toi HGF 가 가 가 가 가 가

T2 stage

HGF 가 가 HGF

가

. HGF

가

가가 .

HGF

.

V.

HGF

가 , HGF ELISA

가 71 53

HGF

HGF

HGF

HGF 가가 , , , , , , Her-2/neu over-expression, DNA aneuploidy, grade

22

HGF가 가

가

.

가

•

- Brinkmann V, Foroutan H, Sachs M, Weidner KM,
 Birchmeier W. Hepatocyte growth factor/scatter
 factor induces a variety of tissue-specific
 morphogenic programs in epithelial cells. J Cell Biol
 1995; 131: 1573 –86.
- Genichiro E, Eizaburo S, Toshimi S, Osamu T, Kohji
 M. Expression of the hepatocyte growth factor/c Met pathway is increased at the cancer front in breast carcinoma. Pathol Int 2001; 51: 172 8.
- Jiang WG, Hiscox S, Matsumoto K, Nakamura T.
 Hepatocyte growth factor/scatter factor, its
 molecular and cellular and clinical implications in

- cancer. Crit Rev Oncol /Hematol, 1999; 29: 209 48.
- 4. Bottaro DP, Rubin JS, Faletto DL, Chan L, Kmiecik TE, Vandewoude GF, et al. Identification of the hepatocyte growth factor as the c-met protooncogene product. Science 1991; 258: 802 - 4.
- Jin L, Fuchs A, Schnitt SJ. Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 1997; 79: 749 – 60.
- 6. Yamashita J, Ogawa M, Yamashita S, Nomura K, Kuramoto M, Saishoji T, et al. Immunoreactive hepatocyte growth factor is a strong and independent predictor of recurrence and survival in human breast cancer. Cancer Res 1994; 54: 1630 3.
- 7. Yamamoto Y, Kohara K, Tabara Y, Miki T.

Association between arterial remodeling and plasma concentration of circulating hepatocyte growth factor.

J Hypertens 2001; 9: 1975 - 9.

- Taniguchi T, Kitamura M, Arai K, Iwasaki Y,
 Yamamoto Y, Igari A, et al. Increase in the circulating
 level of hepatocyte growth factor in gastric patients.
 Br J Cancer 1997; 75: 673 7.
- Toi M, Taniguchi T, Ueno T, Asano M, Funata N,
 Sekiguchi K, et al. Significance of circulating hepatocyte growth factor level as a prognostic indicator in primary breast cancer. Clin Cancer Res
 1998; 4: 659 64.
- 10. Jeffers M, Rong S, Anver M, Woude GFV. Autocrine hepatocyte growth factor/scatter factor - met

- signaling induces transformation and the invasive/metastatic phenotype in C127 cells.

 Oncogene 1996; 13: 853 61.
- 11. Kuniyasu H, Yasui Y, Yokozaki H, Kitadai Y, Tahara
 E. Aberrant increase of c-met mRNA in human
 gastric carcinomas. Int J Cancer 1993; 55: 72 5.
- 12. Furukawa T, Duguid WP, Kobari M, Matsuno S, Tsao MS. Hepatocyte growth factor and met receptor expression in human pancreatic carcinogenesis. Am J Pathol 1995; 147: 889 95.
- 13. Joseph A, Weiss GH, Jin L, Fuchs A, Chowdhury S, O'Shaugnessy P, et al. Expression of scatter factor in human bladder carcinoma. J Natl Cancer Inst 1995; 87: 372 7.

- 14. Tuck AB, Park M, Sterns EE, Boag A, Elliott BE.
 Coexpression of hepatocyte growth factor and receptor(met) in human breast carcinoma. Am J
 Pathol 1996; 148: 225 32.
- 15. Seslar S, Nakamura T, Byer SW. Regulation of fibroblast hepatocyte growth factor/scatter factor expression by human breast carcinoma cell lines and peptide growth factors. Cancer Res 1993; 53: 1233 -8.
- 16. Mars WM, Zarnegar R, Michalopoulos GK. Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol 1993; 143: 949-58.
- 17. Taniguchi, T, Toi M, Inada K, Imazawa T, Yamamoto

Y, Tominaga T. Serum concentrations of hepatocyte growth factor in breast cancer patients. Clin Cancer Res 1995; 1: 1031 - 4.

Abstract

Clinical usefulness of circulating hepatocyte growth factor (HGF) in breast cancer

Hyun - Ju Sung

Department of Medicine

The Graduate School, Yonsei University

(Directed by Professor Kyung - Soon Song)

Hepatocyte growth factor (HGF) is a cytokine modulating epithelial cell proliferation and motility. Circulating HGF level is frequently increased in a variety of tumors, including advanced breast cancer. The clinical usefulness of

measuring circulating HGF in breast cancer patients was evaluated in this study.

The plasma HGF levels in both primary and recurred breast cancer patients (n=71) were measured by ELISA method using Quantikine human HGF colorimetric sandwich ELISA kit(R&D, Minneapolis, MN, USA), and the results were compared with those of age matched healthy controls (n=53). The mean (+SD) plasma levels of HGF were also compared between primary and recurrent breast cancer patients.

The correlation of circulating HGF level and conventional prognostic factors of breast cancer such as tumor size, lymph node involvement, Her - 2/neu over - expression, DNA aneuploidy was studied to further evaluate the clinical

usefulness of HGF as a new prognostic indicator in breast cancer.

The mean (\pm SD) plasma HGF levels were increased in breast cancer patients (784 \pm 847 pg/mL), compared with those of age matched healthy control women (426 \pm 120 pg/mL) (p<0.05). Patients with recurrent breast cancer (1839 \pm 1535 pg/mL) showed increased HGF levels compared with primary breast cancer (592 \pm 132 pg/mL) (p<0.05).

No significant correlations between plasma HGF levels and conventional prognostic indicators of breast cancer including tumor size, lymph node involvement, Her-2/neu over-expression, DNA aneuploidy, and histologic grade were found.

The above findings may suggest that the measurement of plasma HGF level in breast cancer patients may be useful for early detection of metastasis or recurrence.

Key Words: hepatocyte growth factor (HGF), ELISA,

primary breast cancer, recurrent breast

cancer, prognostic indicator

33