2001 12

_

,

•

,

,

,

•

•

.

.

가

•

•

2001 12

- v -

Fig. 1-1. XRD patterns of the heat-treated stainless steel wires10
Fig. 1-2. XRD patterns of the heat-treated stainless steel wires11
Fig. 2. Scanning electron micrographs of the surface morphology of the
heat-treated stainless steel wires13
Fig. 3-1. Anodic polarization curves of the heat-treated stainless steel wires.15
Fig. 3-2. Anodic polarization curves of the heat-treated stainless steel wires.16
Fig. 4-1. Nickel ion release of heat-treated Remanium according to the
period of immersion in artificial saliva(ppb)20
Fig. 4-2. Nickel ion release of heat-treated Permachrome according to the
period of immersion in artificial saliva(ppb)22
Fig. 4-3. Nickel ion release of heat-treated Colboloy according to the
period of immersion in artificial saliva(ppb)24
Fig. 4-4. Nickel ion release of heat-treated Orthos according to the
period of immersion in artificial saliva(ppb)26
Fig. 5. Surface morphology of the wires after ion release testing for 12
weeks immersion

Table 1. Chemical compositions of orthodontic stainless steel wires4
Table 2. Constituents of artificial saliva
Table 3. Response Index
Table 4. Microhardness(Hv) of the heat-treated stainless steel wires12
Table 5-1. Nickel ion release of heat-treated Remanium according to the
period of immersion in artificial saliva(ppb)19
Table 5-2. Nickel ion release of heat-treated Permachrome according to the
period of immersion in artificial saliva(ppb)21
Table 5-3. Nickel ion release of heat-treated Colboloy according to the
period of immersion in artificial saliva(ppb)23
Table 5-4. Nickel ion release of heat-treated Orthos according to the
period of immersion in artificial saliva(ppb)25
Table 6-1. Significant difference of nickel ion release between
heat-treating conditions in Remanium
Table 6-2. Significant difference of nickel ion release between
heat-treating conditions in Permachrome
Table 6-3. Significant difference of nickel ion release between
heat-treating conditions in Colboloy
Table 6-4. Significant difference of nickel ion release between
heat-treating conditions in Orthos
Table 7-1. Significant difference of nickel ion release between
heat-treated wires in vacuum
Table 7-2. Significant difference of nickel ion release between
heat-treated wires in air
Table 7-3. Significant difference of nickel ion release between
heat-treated wires in argon
Table 8. Cytotoxicity of heat-treated stainless steel wires

-

가

가

.

.

가

.

					0.016 × 0	.022	4
(Dentarum	Remanium,	Unitek		Permachrome,	G&H	Colboloy
Ormc	o Orthos)		,	,	가		
			24				
					12		
1.					가		가
2.	가				, 4가		
	-		가				

3.

가

.

가

(p < 0.05).

4. Remanium colboloy7 (p<0.05).

5.

•

가

: , , ,

()

•

1900 (gold wire)가 ^{1,2,3,4}). 1920 가 가 가 가 . 5) 가 •

, 18-20% 66-72% 7-10% , 0.08-2% 6,7).

가 가 가 . 가

가

.

•

가⁸⁾.

Funk⁹⁾

가 .

. Ingerslev¹⁰⁾ 450 가가 18-8 375 20 25 350 , Marcotte¹¹⁾ 가 spring 750 11 . , Backofen Gales¹²⁾ , , Howe 13) . Lane Nikolai¹⁴⁾ 가 , Thurow¹⁵⁾ •

 Nikolai¹⁶⁾
 가
 가
 가

 가
 가
 가
 , 가

7; ¹⁷⁾ , 18) , ¹⁹⁾

・ フト

가²⁰⁾.

가

Edie²¹⁾ nitinol

Lee $^{22)}$, Her \emptyset $^{23)}$

. T om s^{24}

- 2 -

.

가

(electrogalvanic current) . Lugowski ²⁵⁾

. , , , Fernandez³¹⁾, Spiechowicz³²⁾, Romaguera³³⁾

,

.

3x5 mm

,

. Greig³⁵⁾ Dickson³⁶⁾ headgear , Rickles³⁷⁾ Levy ³⁸⁾ . , Haudrechy ^{39,40)}

가

.

,

. Loon³⁴⁾

가

.

.

가.

0.016×0.022

Remanium (Dentaurum, Ispringen, Germany), Permachrome (3M Unitek, Monrovia, USA), Colboloy (G&H, Greenwood, USA) Orthos (Ormco, Glendora, USA) . Table 1 .

٠

1.

•

	(Vac), (Air),	(Ar) 37
,	(Fc:furnace cooling)	(Wc:water cooling) 2
가.	500	, 6 ,
20	1	

Table 1. Chemical compositions of orthodontic stainless steel wires (weight %)

Specimen	Fe	Cr	Ni	Si	С	S	Classification
Remanium	71.25	18.75	8.29	1.13	0.11	0.006	302 S.S.
Permachrome	69.17	19.92	9.00	1.56	0.08	0.003	304 S.S.
Colboloy	70.42	19.71	8.65	0.79	0.08	0.002	304 S.S.
Orthos	66.68	19.45	8.79	1.77	0.08	0.004	304 S.S.

 1×10^{-4} T orr 가 800 T orr . 가 5 20 . . 2. X-ray (XRD; X-ray diffracrometer, D-Max Rint 2400 model, Rigaku, Japan) X-ray Cu target Κ scan 95°, scan rate 4. /min range 30° . 3. (Scanning Electron Microscope, S-2700 Model, Hitachi, Japan) 4. 가 Micro . Vickers Hardness Tester (MXT - 7E Model, Matsuzawa Seiki Co., Japan) 100g 5,9 . 가 5. • Table 2 . 1**cm**² . 37 7 ⊧ 10**M**ℓ/min 30 bubbling , 10

- 5 -

Constituent	Concentration (g/)			
NaCl	0.40			
KCl	0.40			
$CaCl_2 \cdot 2H_2O$	0.80			
Na ₂ S · 5H ₂ O	0.01			
$CO(NH_2)_2(Urea)$	1.00			
Distilled water	1000 M@			

Table 2. Constituents of artificial saliva

* Formulated by Indiana University

7.

12

(Hiscope, HIROX

•

KH-1000, Micro Hiscope System, Japan)

8.

ethylene oxide gas (NPG, Albadent Co., USA) 1**cm**²가 Polyethylene , -MEM L-929 cell $3 \times 10^{5} / Me$ 10 90mm petri dish 가 M₽ 24 -MEM Eagle's agar medium 10Me 45 50 petri dish 가 30 . Eagle's agar medium 가 Neutral red vital stain 10**Me** 30 . 37 , 5% $CO_{\rm 2}$ 24 . Petri dish Zone index , inverted phase contrast microscope(CK2, Olympus, Japan) 가 lysis Lysis index 4 Zone index . Response index (Table 2) Mohammad⁴¹⁾가 Lysis index 가 .

Response index = Zone index / Lysis index

- 7 -

Тε	ıble	3.	Response	Index
----	------	----	----------	-------

Index	Description of Zone
Zone index	
0	No detectable zone around or under sample
1	Zone limited to area under sample
2	Zone not greater than 5mm in extension from sample
3	Zone not greater than 10mm in extension from sample
4	Zone not greater than 5mm in extension from sample,
4	but not involving entire plate
5	Zone involving entire plate
Lysis index	
0	No observable lysis
1	Up to 20% of zone lysed
2	20% - 40% of zone lysed
3	40% - 60% of zone lysed
4	60% - 80% of zone lysed
5	Over 80% lysed within zone

9.

•

가.		7	ł			
1.						
XRD	4					
	(111)) (1	10)			
•	Remanium	(79.9 ± 2.89	%) P	ermachi	$rom e(76.3 \pm 2.)$	6%)
					, Colboloy	$(42.8 \pm 2.4\%)$
Orthos (37.8 ± 3.2%)					. ,
XR	D		가	가	가	가.
	XRD					
		(Fig.	1).			
2.						
	Remanium	(456.1 ± 14	.1Hv)	가		
Permachrome(479.	7±17.7Hv), (Colboloy (5	22.6 ± 1	0.1Hv)		Orthos (586.2
±33.0Hv)가 가						
:	가	가	0.4	ŀ%	22.9%	
				가	가	
		가				
가					가가	
가			Rem	anium	가	가
Colboloy가 가	가	(Table 4	4).		

•

- 9 -

		Vickers Hardness (Hv)			
		Fc	Wc		
	control	456.1 ± 14.1	456.1 ± 14.1		
Domonium	Vac	499.5 ± 12.3	497.5 ± 23.5		
Kemanium	Air	553.7 ± 16.8	529.1 ± 30.0		
	Ar	560.5 ± 10.8	548.9 ± 22.6		
	control	479.7 ± 17.7	479.7 ± 17.7		
Dorm och rom o	Vac	515.5 ± 13.8	507.9 ± 22.1		
F et machtome	Air	571.2 ± 27.7	520.3 ± 21.3		
	Ar	565.5 ± 9.3	552.6 ± 19.9		
	control	522.6 ± 10.1	522.6 ± 10.1		
Colholoy	Vac	526.9 ± 19.6	524.7 ± 21.1		
Colocity	Air	559.5 ± 16.7	529.1 ± 22.4		
	Ar	564.0 ± 20.9	559.1 ± 28.2		
	control	586.2 ± 33.0	586.2 ± 33.0		
Orthos	Vac	614.3 ± 221	598.1 ± 4.2		
Offilos	Air	621.0 ± 20.5	615.5 ± 11.0		
	Ar	644.9 ± 23.1	617.1 ± 14.2		

Table 4. Microhardness(Hv) of the heat-treated stainless steel wires

. 가

1. 가

(OV SCE) 7 . Remanium ,

,

0.1V (SCE) 120 150µA/ cm² 7ト . 0V (SCE) 7ト . -

7.Permachrome, 1μ A/ cm² 0.2μ A/ cm².......

 71
 320mV(SCE)
 .

 240mV(SCE)
 ,
 200mV(SCE)

. Colboloy , 가 0.3µA/ cm²가 690mV (SCE) 가가 . 가가 .

Orthos , $4.8\mu\text{A/cm}^2$ 510mV(SCE). $7 \downarrow 0.6\mu\text{A/cm}^2$ $7 \downarrow$

310 mV(SCE)

(Fig. 3).

가)

2.

가

.

4가

 Remanium
 31.8993ppb(1D)
 55.5303ppb(12W)

 37}
 1.8391ppb(1D)
 16.2803ppb(12W)

 47.4888ppb(1D)
 156.5364ppb(12W)
 .

 7¹
 7¹

.

. Orthos 가 ...

. Remanium Orthos Orthos 12W 가 . Permachrome Colboloy Colboloy 가 (Table 5, Fig. 4).

) , 7 . 47 , (55.2784-273.0309ppb) 7 , (18.9415-83.9791ppb) (1.8391-55.5303ppb) 7 .

(33.0073-212.7102ppb) 7 (11.1328119.2850ppb) 7 ・ Orthos 7

.

- 17 -

Table 5-1. Nickel ion release of Remanium according to the period of

immersion in artificial saliva (ppb)

	Con	trol	Fc		W		
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	4.4024	0.8812	31.8993	10.2893	69.9732	13.5314	*
3D	3.2916	0.5743	49.1677	9.5817	70.5769	10.8342	*
1W	5.4392	1.9006	53.5179	11.2160	74.7127	10.7740	*
2W	4.5667	1.5791	58.2503	3.8902	75.7146	8.2795	*
4W	4.1222	0.5511	55.7498	9.2581	69.5628	2.8106	*
8W	3.7706	0.6593	53.1734	6.2438	103.4620	6.1685	*
12W	10.3321	3.6968	55.5303	1.4683	109.7258	15.8389	*

Air

	Control		F	Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	4.4024	0.8812	80.5269	9.8064	66.2724	12.3910	
3D	3.2916	0.5743	64.1697	8.9626	71.0160	3.1182	
1W	5.4392	1.9006	73.8415	7.5835	82.6143	9.6834	
2W	4.5667	1.5791	113.4514	16.0974	99.6604	6.0285	
4W	4.1222	0.5511	115.5351	15.9058	103.8174	6.1261	
8W	3.7706	0.6593	128.6788	4.9052	101.2299	14.0112	*
12W	10.3321	3.6968	167.1226	10.0978	100.0839	7.1871	*

Ar

	Control		F	Fc		W c	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	4.4024	0.8812	65.7917	12.4221	47.0985	14.2622	
3D	3.2916	0.5743	63.5229	7.8462	52.8374	13.6564	
1W	5.4392	1.9006	62.2891	8.9650	59.0043	10.7372	
2W	4.5667	1.5791	55.4515	10.0138	63.4082	3.3748	
4W	4.1222	0.5511	69.3734	9.7399	60.6548	5.9160	
8W	3.7706	0.6593	87.2894	4.2408	67.3126	6.6551	*
12W	10.3321	3.6968	83.9791	6.7416	69.3716	3.9075	*

* Kruskal-Wallis test

* $P\!<\!0.05$: significant difference between cooling methods in same period

Table 5-2. Nickel ion release of Permachrome according to the period of

immersion	in	artificial	saliva	(nnh)
mmersion	111	artificiar	sanva	(ppv)

Vac

	Control		F	Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7233	0.5728	1.9065	0.7517	47.4888	8.5580	*
3D	3.2549	1.9192	3.6072	1.7148	46.8420	5.9119	*
1W	3.7729	1.2756	4.9154	2.4291	49.1251	8.1620	*
2W	3.9076	1.0861	4.5438	1.0461	47.3480	10.0194	*
4W	4.2703	1.0981	5.9595	2.4411	49.4022	5.4528	*
8W	6.4896	3.9675	9.8242	2.7450	53.4137	6.3739	*
12W	7.4192	2.1101	9.9811	2.5714	68.4357	4.5199	*

Air

	Control		Fc		Wc		
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7233	0.5728	55.2784	13.2756	45.9064	8.0294	
3D	3.2549	1.9192	60.4432	2.1930	56.8993	5.3460	
1W	3.7729	1.2756	59.8388	14.6741	48.3366	13.5044	
2W	3.9076	1.0861	43.7836	3.9162	43.3575	10.6864	
4W	4.2703	1.0981	60.5005	8.7029	57.1176	8.9222	
8W	6.4896	3.9675	63.4291	2.7522	65.8213	2.4855	
12W	7.4192	2.1101	139.7810	14.9998	110.1748	16.9984	*

Ar

	Control		Fc		Wc		
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7233	0.5728	23.3775	2.5994	30.6686	3.2514	*
3D	3.2549	1.9192	43.1205	11.2833	44.7821	9.1896	
1W	3.7729	1.2756	47.9906	10.3946	55.3564	9.1110	
2W	3.9076	1.0861	45.9937	3.8433	52.5441	7.9748	
4W	4.2703	1.0981	42.4681	6.8966	56.2026	20.1005	
8W	6.4896	3.9675	46.7901	8.4253	48.0255	12.4294	
12W	7.4192	2.1101	42.0909	4.5645	47.6442	4.6724	*

* Kruskal-Wallis test

* $P\!<\!0.05$: significant difference between cooling methods in same period

Table 5-3. Nickel ion release of Colboloy according to the period of

immersion in artificial saliva (ppb)

Vac

	Control		F	Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7853	0.7879	1.8391	0.1907	88.3688	12.9411	*
3D	1.9320	0.5969	1.9463	0.5339	120.1637	16.1885	*
1W	4.9972	1.1610	5.4916	0.6929	124.7040	19.6479	*
2W	4.8072	1.2317	6.0865	1.5369	114.7978	10.7805	*
4W	3.5956	0.5314	5.5123	1.4733	89.1109	9.3850	*
8W	3.7711	1.2749	5.9864	0.3317	102.2880	12.9642	*
12W	3.8978	0.5811	7.8226	3.1956	132.7106	12.7106	*

Air

	Control		Fc		W c		
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7853	0.7879	105.3637	13.1013	97.4699	3.6879	
3D	1.9320	0.5969	113.0791	3.8133	111.6116	5.6202	
1W	4.9972	1.1610	124.1186	12.2402	127.8352	12.2292	
2W	4.8072	1.2317	121.1287	18.2286	136.6308	7.2247	
4W	3.5956	0.5314	123.4372	10.0564	136.5226	7.7516	
8W	3.7711	1.2749	141.2334	8.4118	140.4505	9.5565	
12W	3.8978	0.5811	273.0309	3.1277	212.7102	12.3354	*

Ar

	Con	Control		Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	1.7853	0.7879	37.0331	4.1510	85.8508	12.2788	*
3D	1.9320	0.5969	54.5262	9.7922	97.1998	9.9917	*
1W	4.9972	1.1610	69.1775	12.6366	127.5884	10.9965	*
2W	4.8072	1.2317	60.6074	9.0339	110.4435	5.5992	*
4W	3.5956	0.5314	44.6764	3.0055	111.3625	8.5361	*
8W	3.7711	1.2749	47.0580	4.4142	118.2860	10.7187	*
12W	3.8978	0.5811	47.5624	4.2983	119.2850	9.8545	*

* Kruskal-Wallis test

* $P{<}0.05$: significant difference between cooling methods in same period

Table 5-4. Nickel ion release of Orthos according to the period of

immersion in artificial saliva (ppb)

Vac

	Con	Control		Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	2.5556	0.8664	6.0679	3.1698	69.4200	6.2881	*
3D	2.6045	0.8700	5.4419	2.5399	76.7279	8.9825	*
1W	3.3692	1.2208	4.8608	1.6906	71.9248	11.5935	*
2W	3.7810	0.8318	5.1497	2.4008	67.4972	12.3125	*
4W	4.7309	1.1039	4.6975	1.6814	71.4728	12.0148	*
8W	4.8373	1.2965	4.8409	1.1828	72.3809	9.3838	*
12W	10.4238	1.9969	16.2803	2.9334	156.5364	6.9422	*

Air

	Con	Control		Fc		Wc	
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	2.5556	0.8664	74.5604	11.7563	33.0073	7.6880	*
3D	2.6045	0.8700	76.7279	8.9825	26.9124	3.3381	*
1W	3.3692	1.2208	72.9526	8.1412	27.5578	6.0869	*
2W	3.7810	0.8318	74.1598	12.4938	29.7273	5.2600	*
4W	4.7309	1.1039	73.2266	7.0212	30.9118	4.0416	*
8W	4.8373	1.2965	73.2528	5.0657	32.7996	3.5387	*
12W	10.4238	1.9969	163.8361	13.9241	67.3476	9.5420	*

Ar

	Control		Fc		W c		
	Mean	Std	Mean	Std	Mean	Std	P < 0.05
1D	2.5556	0.8664	18.9415	3.3148	11.1328	2.5910	*
3D	2.6045	0.8700	17.7084	3.6664	9.0463	1.2719	*
1W	3.3692	1.2208	16.1163	3.6703	7.8263	4.0580	*
2W	3.7810	0.8318	19.7325	1.5744	8.4777	2.2663	*
4W	4.7309	1.1039	19.8178	5.2927	11.1284	1.1075	*
8W	4.8373	1.2965	19.8912	5.0441	14.8024	3.1802	*
12W	10.4238	1.9969	52.0653	12.9418	40.0225	10.1512	

* Kruskal-Wallis test

* $P{<}0.05$: significant difference between cooling methods in same period

		Fc		W c				
	Vac	Air	Ar	Vac	Air	Ar		
1D	b	а	а	а	ab	b		
3D	b	a	ab	а	a	b		
1W	b	a	ab	ab	а	b		
2W	b	а	b	b	а	с		
4W	b	а	b	b	а	с		
8W	с	а	b	а	а	b		
12W	b	а	b	а	а	b		

Table 6-1. Significant difference of nickel ion release between heat-treating conditions in Remanium

* Tukey grouping method

* a, b, c : significant difference between heat-treating conditions in same period (P < 0.05)

Table 6-2. Significant difference of nickel ion release between heat-treating conditions in Permachrome

		Fa			Wa			
	FC			wc				
	Vac	Air	Ar	Vac	Air	Ar		
1D	с	а	b	а	а	b		
3D	с	а	b	ab	а	b		
1W	b	а	а	а	а	а		
2W	b	а	а	а	а	а		
4W	с	а	b	а	а	а		
8W	с	а	b	ab	a	b		
12W	с	а	b	b	а	с		

* Tukey grouping method

* a, b, c : significant difference between heat-treating conditions in same period (P < 0.05)

		Fa		-	Wa			
	ГС			w c				
	Vac	Air	Ar	Vac	Air	Ar		
1D	с	а	b	а	а	а		
3D	с	а	b	а	а	b		
1W	с	а	b	а	а	а		
2W	с	а	b	b	а	b		
4W	с	а	b	b	а	а		
8W	с	а	b	b	а	ab		
12W	с	а	b	b	a	b		

Table 6-3. Significant difference of nickel ion release between heat-treating conditions in Colboloy

* Tukey grouping method

* a, b, c : significant difference between heat-treating conditions in same period (P < 0.05)

Table 6-4. Significant difference of nickel ion release between

		Fc		Wc				
	Vac	Air	Ar	Vac	Air	Ar		
1D	с	a	b	а	b	с		
3D	с	a	b	а	b	с		
1W	b	а	b	а	b	с		
2W	b	а	b	а	b	с		
4W	с	а	b	а	b	с		
8W	с	а	b	а	b	с		
12W	b	а	b	а	b	с		

heat-treating conditions in Orthos

* Tukey grouping method

* a, b, c : significant difference between heat-treating conditions

in same period (P<0.05)

	Fc				W c				
	Remanium	Permachrome	Coboloy	Orthos	Remanium	Permachrome	Coboloy	Orthos	
1D	а	b	b	b	a	a	а	b	
3D	а	b	b	b	b	с	а	b	
1W	а	b	b	b	b	с	а	b	
2W	а	b	b	b	b	с	а	b	
4W	а	b	b	b	b	с	а	b	
8W	а	b	b	b	а	b	а	b	
12W	a	c	с	b	с	d	b	а	

Table 7-1. Significant difference of nickel ion release between

heat-treated wires in vacuum

* Tukey grouping method

* a, b, c, d : significant difference between wires in same period (P < 0.05)

Table 7-2. Significant difference of nickel ion release between

	Fc				W c				
	Remanium	Permachrome	Coboloy	Orthos	Remanium	Permachrome	Coboloy	Orthos	
1D	b	с	а	bc	b	с	а	с	
3D	bc	с	а	b	а	b	а	с	
1W	b	b	а	b	а	b	a	с	
2W	а	с	а	b	а	b	а	b	
4W	а	b	а	b	b	с	a	d	
8W	b	c	а	c	b	c	a	d	
12W	b	b	а	b	b	b	а	с	

heat-treated wires in air

* Tukey grouping method

* a, b, c, d : significant difference between wires in same period (P < 0.05)

	Fc				W c				
	Remanium	Permachrome	Coboloy	Orthos	Remanium	Permachrome	Coboloy	Orthos	
1D	а	с	b	с	b	b	а	с	
3D	а	b	ab	с	b	b	а	с	
1W	ab	b	а	с	b	b	а	с	
2W	ab	b	а	с	b	с	а	d	
4W	а	b	b	с	b	b	а	с	
8W	а	b	b	с	b	с	а	d	
12W	а	b	b	b	b	с	а	с	

Table 7-3. Significant difference of nickel ion release between

heat-treated wires in argon

* Tukey grouping method

* a, b, c, d : significant difference between wires in same period (P < 0.05)

			Zon In de	e ex	Ly Inc	sis lex	Response Index
	con	trol	0	1	0	1	0/1
	X 7	Fc	1	1	1	1	1/1
Remanium	vac	Wc	1	1	1	1	1/1
	A •	Fc	1	1	0	1	1/1
	Air	Wc	1	1	1	2	1/2
	A	Fc	1	1	1	1	1/1
	Ar	Wc	1	1	1	1	1/1
	con	trol	0	1	0	1	0/1
	Vaa	Fc	1	1	1	1	1/1
	vac	Wc	1	1	1	1	1/1
Permachrome	A •	Fc	1	1	1	2	1/2
	Air	Wc	1	1	1	1	1/1
	Ar	Fc	1	1	1	1	1/1
		Wc	1	1	1	1	1/1
	con	trol	0	1	0	1	0/1
	N7	Fc	1	1	1	1	1/1
	vac	Wc	1	1	1	1	1/1
Colboloy	A *	Fc	1	1	1	1	1/1
-	Air	Wc	1	1	2	3	1/3
	A	Fc	1	1	1	1	1/1
	Ar	Wc	1	1	1	1	1/1
	con	trol	0	1	0	1	0/1
	Vaa	Fc	0	1	0	1	0/1
	vac	Wc	1	1	1	1	1/1
Orthos	A *	Fc	1	1	2	3	1/3
	Air	Wc	1	1	1	2	1/2
	A	Fc	1	1	1	1	1/1
	Ar	Wc	1	1	1	1	1/1
Positiv	e (NPG)		3	4	3	4	3/4
Negative (Polyethylene)			0		()	0/ 0

Table 8. Cytotoxicity of the heat-treated stainless steel wires

•

-

- 33 -

•

- 34 -

가 . 가 XRD (.) , 가 가 Colboloy가 Remanium Permachrome 가 Orthos가 가 . Remanium 가 가 가 가 0.4% 22.9% 가 . 가 가 . 가 가 . , 5 , sulfide film oxide film 가 (passivated layer) 가 , , , $^{43)}$. Ewers Greener⁴⁴⁾ -58mV 212mV(SCE) pH 6.1 7.9 --17mV 152.5mV(SCE) _ , 가 . -300 300mV(SCE)

- 35 -

· . 가 가 가 . , , , ,

.

가 , (0V SCE) 가 . -

. 가

가 . 가 가 가 가

- 36 -

51,52)

.

가 53).

가

ppb , •

. 4가 . Remanium

12W)

Remanium

3가

가

가 (Orthos, 10ppb 60 가

•

-• 가

.

•

.

가

가

•

가 .

(5µg 10µg) (0.43µg/L)

가 2 - 3

, 54,55)

,

۷۲ .

.

- 40 -

가 가 가

가

1

•

.

•

•

,

(Remanium, Permachrome, 4 Colboloy, Orthos) . 가. 1. 가 2. , 4가 가 -. -3. 가 가 (p<0.05). 4.

•

,

.

Remanium Colboloy가 (p<0.05).

5. フト .

- 1. Gaston, N.G. : Chrome alloy in orthodontics, Am. J. Orthod., 37:779-797, 1951.
- 2. Kohl, R.W. : Metallurgy in orthodontics, Angle Orthod., 34:37-52, 1964.
- 3. Richman, G.Y. : Pratical metallurgy for the orthodontist, Am. J. Orthod., 42:573-587, 1956.
- 4. Ricketts, R.M. : Bioprogressive therapy, Rocky Mountain Orthodontics, Denver, 1979.
- Wilkinson, J.V. : Some metallurgical aspects of orthodontic stainless steel, Angle Orthod., 48:192-206, 1962.
- 6. , :

, 15:163-172, 1985.

- Phillips, R.W. : Skinner's science of dental materials,8th ed., W. B. Saunders Co., Philadelphia, pp.602, 1982.
- 8. : 7ŀ,

2:151-197, 1995.

- 9. Funk, A.C. : Heat treatment of stainless steel, Angle Orthod., 21:129-138, 1951.
- 10. Ingerslev, C.H. : Influence of heat treatment on the physical properties of bent orthodontic wire, Angle Orthod., 36:236-247, 1966.
- 11. Marcotte, M.R. : Optimum time and temperature for stress relief heat treatment of stainless steel wire, J. Dent. Res., 52:1171-1175, 1973.
- 12. Backofen, W.A., Gales, G.F. : Heat treating stainless steel for orthodontics, Am. J. Orthod., 38:755-765, 1952.
- 13. Howe, G.L., Greener, E.H., Crimms, D.S. :Mechanical properties and stress relief of stainless steel orthodontic wire, Angle Orthod.,

- 42 -

38:244-249,1968.

- 14. Lane, D.F., Nikolai, R.J. : Effects of stress relief on the mechanical properties of orthodontic wire loops, 50:139-145, 1980.
- 15. Thurow, R.C. : Edgewise orthodontics, The C.V. Mosby Co., pp.42-66, 1982.
- Nikolai, R.J. : Bioengineering analysis of orthodontic mechanics, Lea and Febiger, Philadelphia, pp.113-144, pp.233-269, 1985.
- 17. , , :

, 2:399-409, 1986.

18. , :

:

- , 2:208-213, 1985.
- 19. ,

, 22:591-602, 1992.

- Hwang, C.J., Shin, J.S., Cha, J.Y. : Metal release from simulated fixed orthodontic appliances, Am. J. Orthod. Dentofac. Orthop., 120:383-391, 2001.
- 21. Edie, J.W., Andreasen, G.F., Eaytoun : Surface corrosion of nitinol and stainless steel under clinical conditions, Angle Orthod., 51:319-324, 1981.
- Lee, J., Lucas, L., Oneal, J., Lacefield, W., Lucas, J. : In vitro corrosion analysis of nickel base alloy, J. Dent. Res., 64:317, Abstract No. 1285,1985.
- HerØ, H., Valderhaug, J., Jorgensen, R.B. : Corrosion in vivo and in vitro of a commercial NiCrBe alloy, Dent. Mater., 3:125-130, 1987.
- 24. Toms, A.P. : The corrosion of orthodontic wire, European J. Orthodontics, 10:87-97, 1988.
- 25. Lugowski, S.J., Smith, D.C., McHugh, A.D., Loon, J.C. : Release of metal ions from dental implant meterials in vivo : Determination of Al, Co, Cr, Mo, Ni, V, and Ti in organ tissue, J. Biomed. Mater. Res.,

25:1442-1458, 1991.

- Arvidson, K., Johansson, E.G. : Galvanic series of some dental alloy, Scand J.dent. Res., 85:485-491, 1977.
- Block, G.U., Yeung, M. : Asthma induced by nickel, J.Am. Med.assoc., 247:1600-1602,1982.
- Fisher, J.R., Rosenblum, G.A., Thomson, B.D. : Asthma induced by nickel, J. Am. Med. Assoc., 248:1065-1066, 1982.
- 29. Bencko, V. : Nickel : a review of its occupational and environmental toxicology, J. Hgy. Epidemiol. Microbiol. Immunol., 27:237-277, 1983.
- Bass, J.K. : Nickel hypersensitivity in the orthodontic patient, Am. J. Orthod. Dentofac. Orthop., 103:280-285, 1993.
- 31. Fernandez, J.P., Veron, C., Hildebrand, H.F., Martin, P. : Nickel allergy to dental prosth eses, Contact Dermatitis, 14:312-327, 1986.
- 32. Spiechowicz, E., Glantz, O., Axell, T. : Oral exposure to a nickel-containing dental alloy of persons with hypersensitivity skin reaction to nickel, Contact Dermatitis, 10:206-211, 1984.
- 33. Romaguera, C., Grimalt, F., Vilaplana, J. : Contact dermatitis from nickel
 : an investigation of its sources. Contact Dermatitis, 19:52-57, 1988.
- Loon, L.A.J., Elsas, P.W., Joost, T., Davidson, C.L. : Contact stomatitis and dermatitis to nickel and palladium, Contact Dermatitis, 11:294-297, 1984.
- 35. Greig, D.G.M. : Contact dermatitis reaction to a metal buckle on a cervical headgear, Brit. Dent. J., 155:61-62, 1983.
- 36. Dickson, G. : Contact dermatitis and cervical headgear, Brit. Dent. J., 156:112, 1983.
- 37. Rickles, N.H. : Allergy in surface lesions of the oral mucosa, Oral Surg., 33:744-754, 1980.
- 38. Levy, A., Hanau, D., Foussereau, J. : Contact dermatitis in children,

Contact Dermatitis, 6:260-262, 1980.

- Haudrechy, P., Foussereau, J., Mantout, B., Baroux, B. : Nickel release from nickel-plated metals and stainless steels, Contact Dermatitis, 31:249-255, 1994.
- Haudrechy, P., Mantout, B., Frappaz, A., Rousseau, D., Chabeau, G., Farue, M., and Claudy, A. : Nickel release from stainless steel, Contact Dermatitis, 37:113-117, 1997.
- Mohammad, A. R., Mincer, H.H., Younis, O., Dilliugham, E., Siskin, M. : Cytotoxicity evaluation of root canal sealers by the tissue culture-agar overlay technique, Oral Surg., 45:768-773, 1978.
- 42. Gjerdet, N.R., Herø, H. : Metal release from heat-treated orthodontic archwires, Acta. Odontol. Scand., 45:409-414, 1987.b
- 43. Castle, J.E., Qui, J.E. : Corrosion science, 29:591-603, 605-616
- 44. Ewers, G.J., Greenne, E. H. : The electrochemical activity of the oral cavity a new approach, J. Oral Rehab., 12:469-476, 1985.
- 45. Maijer, R., Smith, D.C. : Corrosion of orthodontic bracket bases, Am. J. Orthod. Dentofac. Orthop., 81:43-48, 1982.
- 46. Maijer, R., Smith, D.C. : Biodegradation of orthodontic bracket system, Am. J. Orthod. Dentofac. Orthop., 90:195-198, 1986.
- 47. Bishara, S.E., Barrett, R.D., Selim, M.I. : Biodegradation of orthodontic appliances. Part . Changes in the blood level of nickel, Am. J. Orthod. Dentofac. Orthop., 103:115-119, 1993.
- Barrett, R.D., Bishara, S.E., Quinn, J.K. : Biodegradation of orthodontic appliances. Part . Biodegradation of nickel and chromium in vitro, Am. J. Orthod. Dentofac. Orthop., 103:8-14, 1993.
- 49. Berge, M., Gjerdet, N.R., Hensten-Pettersen, A. : Corrosion of silver soldered orthodontic wires, Acta. Odontol. Scand., 40:75-79, 1982.
- 50. Kerosuo, H., Moe, G., Kelven, E. : In vitro release of nickel and

chromium from different types of simulated orthodontic appliances, Angle Orthod., 65:111-116, 1995.

- 51. Bergman, M., Bergman, B., Soremark, R. : Tissue accumulation of nickel released due to electrochemical corrosion of non-precious dental casting alloys, J. Oral Rehabil., 7:325-330, 1980.
- Magnusson, B., Bergman, M. Bergman, B., Soremark, R. : Nickel allergy and nickel and nickel-containing dental alloys, Scand. J. Dent., 90:163-167, 1982.
- 53. Schriver, W.R. : Allergic response to stainless steel wire, Oral Surg., 42:578-581, 1976.
- Dunlap, C.L., Vincent, S.K., Barker, B.F. : Allergic reaction to orthodontic wire : report of case, J. Am. Dent. Assoc., 118:449-450, 1989.
- 55. Van Hoogstraten, I.M.W., Anderson, K.E., Von Blomberg, B.M., Bruynzeel, D.P., Burrows, D. : Reduced frequency of nickel allergy upon oral nickel contact at early age, Clin. Exp. Immunol., 85:441-445, 1991.

Abstract

Physical properties and nickel ion release of orthodontic stainless steel wires according to heat treatment methods

Ja-Young Shin

Department of Dentistry, the Graduate School, Yonsei University (Directed by professor **Kyoung-Nam Kim** D.D.S., Ph.D.)

Heat treatment is applied to orthodontic stainless steel wires in order to relieve the stresses that result from cold working and the manipulation by orthodontists. The quality and the thickness of the oxide films formed on the surface of the heat-treated wires may be various and it is considered that the oxide films can influence on the properties of the heat-treated wires. The purpose of this study was to investigate the influence of the heat-treating conditions and cooling methods on the mechanical properties, corrosion resistance, the amount of metal ion release, and cytotoxicity of the heat-treated wires.

In this study, 4 types of stainless steel wires (Remanium of Dentarum, Permachrome of Unitek, Colboloy of G&H, Orthos of Ormco) in 0.016×0.022 were selected for the experiments. These wires were heat-treated in vacuum, air, argon environment and were either cooled in a furnace or a waterbath. 4 control groups and 24 experimental groups were divided according to wires, heat-treating conditions and cooling methods. In each group, basic physical properties, corrosion resistance, the amount of nickel ion release and

- 47 -

cytotoxicity were observed. The amount of nickel ion release in artificial saliva was measured for up to 12 weeks.

The results were as follows :

- In all groups, microhardness was increased after heat-treatment compared with control groups irrespective of heat-treating conditions and cooling methods.
- 2. The corrosion resistance was highest in the vacuum heat treatmentfurnace cooling experimental group by potentiodynamic method.
- 3. The amount of nickel ion release was lowest in the vacuum heat treatment-furnace cooling group and significant difference was shown compared with other experimental groups. The amount of nickel ion release was highest in the groups which were heat-treated in the air and significant difference was shown (p<0.05).
- 4. The amount of nickel ion release was highest in Remanium & Colboloy and significant difference was shown (p < 0.05).
- 5. Cytotoxicity was mild in the experimental groups but the response index of the air groups was a little higher than other groups.

According to these results, stainless steel wires have excellent anti-corrosive properties when heat-treated in the vacuum and cooled in a furnace.

key words : heat-treating conditions, cooling methods, nickel ion release

- 48 -