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Figure 1. Mechanism of Ras processing and the role of FPT
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Figure 3. (G. Scarpelli . Cancer Research. 1992)
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Figure 5. BOP
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E. H&E stain ~ 200 F. H&E stain =~ 200
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Figure 6. BOP

A. H&E stain ~ 200 B. H&E stain =~ 200

C. H&E stain ~ 400 D. H&E stain =~ 200

E. H &E stain = 400 F. H & E stain ~ 100
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Figure 7. BOP  FTI
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Figure 8. BOP  FTI (20 )

A. H&E stain = 200 B. H & E stain ~ 200

C. H&E stain =~ 200 . D. H&E stain ~ 200

E. H&E stain ~ 200 F. H&E stain =~ 200
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Abstract

The Chemoprevention Effect of Farnesyl-transferase
Inhibitor on Pancreatic Cancer induced by BOP ( N-
nitrosobis (2-oxopropyl) amine ) in Female Syrian Golden
Hamsters

Hye Won Chung

Department of Medicine

The Graduate School, Yonsei University

(Directed by Professor Si Young Song )

Background: Pancreatic ductal adenocarcinoma is a highly lethal
malignancy and resistant to traditional cytotoxic therapy. K-
ras oncogene mutation has been shown to be frequent event in
this. Ras protein serves as connector between signals generated
at plasma membrane and nuclear effectors. Early stage
disruption of Ras signaling pathway can have significant
potency as a chemopreventive strategy. The activation of Ras
protein depends upon its posttranslational farnesylation. High
rates of active K-ras oncogene mutations in pancreatic ductal
adenocarcinoma have generated considerable interest in the
therapeutic application of novel farnesyltransferase inhibitors
(FTIs).

In in vitro experiments and transgenic mouse models, FTIs
has been proved to suppress of growth of pancreatic cancer
cells and induce apoptosis. But, the mechanism has been unknown

yet. Mutation of K-ras oncogene is early event in the
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carcinogenesis of pancreatic cancer, so the use of FTIls at
early stage for chemopreventive effect on pre-cancerous
condition ( eg. chronic pancreatitis ) is considerable interest.
But, a comprehensive analysis of the chemopreventive effect of
FTIs on pancreatic cancer cells has not been performed. So we
conducted the experiment to determine chemopreventive effect of
FTIs at pre-cancerous stage of pancreatic cancer, which induced
by N-nitrosobis (2-oxopropyl) amine (BOP) in hamsters

Method: We used 32 female Syrian Golden Hamsters, which were
divided into two groups. In one group, we administrated BOP
(15mg/kg) subcutaneously once a week for 12 weeks and FTIs
(50mg/kg) orally daily from 9 weeks to terminal day. In the
other group, only BOP was administrated. We sacrified them at
16 weeks and 20 weeks after BOP injection.

Redult: At 16 weeks, 1in all control cases perilobular and
lobular fibrosis, neo-tubular complex formation, and islet cell
hyperplasia were observed, and in main duct, papillary
hyperplasia occurred in half of cases and dysplastic hyperplsia
in other half of cases. Most of neo-tubular complex had single
layer, and in some cases papillary hyperplasia was seen, but
not dysplastic hyperplasia. Unlike usual pancreatic duct, these
tubular complex was associated with loss of acinar cells and
located at periphery of lobule.

At 20 weeks, in 87.5% of cases, grossly 5-10 mm sized, hard,
and fixed nodules were observed, remnant pancreas was atrophied.
These nodules had the morphology of ductal adenocarcinoma, and
located at periphery of lobule where acinar cells previously
had been. These malignant nodules were separated from main
pancreatic duct, and in main pancreatic duct, papillary
hyperplasia and dysplasic hyperplasia were observed, but no

evidence of malignant transformation was seen.
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At 16 weeks, in experimental cases, like control cases,
perilobular and lobular fibrosis, neo-tubular complex formation,
and islet cell hyperplasia were observed, but the degree was
less severe. Most of neo-tubular complex had single layer.
However, in main pancreatic duct, there was no difference of
papillary hyperplasia and dysplastic hyperplasia between
experimental cases and control cases.

Changes at 20 weeks were quite different from control group
that no adenocarcinoma was found at peripheral lobule. Neo-
tubular complex were formed at focal lobules in some cases, and
most of pancreas maintained their acinar structures. Although,
at main pancreatic duct, papillary hyperplasia and dysplastic
hyperplasia were still persisted like control cases.

Discussion: Interestingly, neo-tubular complex formation and
malignant transformation from acinar cell were significantly
inhibited in experimental cases, but changes at main pancreatic
duct were not different between two groups. Possible
explanation is that stem cells of human pancreas cancer, which
were associated with ras oncogene mutation in 90% of cases,
might be existed at neo-tubular complex originated from acinar
cells, ano hyperplasia of main pancreatic duct might be
associated with factors other than ras oncogene.

Above results suggested FTl possessed chemopreventive effzaci
for BOP-induced pancreas cancer 1in hamster by inhibiting
activation of Ras protein in condition that pancreatic main
duct would not change 1into malignancy. Further studies

regarding its clinical application are expected.

Key  word : FTIs, BOP, Hamster, pancreatic cancer,

chemoprevention.
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