척수손상모델에서
인간골수중간엽줄기세포의
주입 방법에 따른 이식 효과 비교

연세대학교 대학원
의학과
신 동 아
척수손상모델에서
인간골수중간엽줄기세포의
주입 방법에 따른 이식 효과 비교

지도교수 윤도흠

이 논문을 박사 학위논문으로 제출함

2009년 6월 일

연세대학교 대학원
의학과
신동아
신동아의 박사 학위논문을 인준함

심사위원__________________인
심사위원__________________인
심사위원__________________인
심사위원__________________인
심사위원__________________인
심사위원__________________인

연세대학교 대학원

2009년 6월 일
감사의 글

본 연구를 진행하고 논문을 완성하기까지 자상하신 가르침과
아낌없는 도움을 주신 지도교수 윤도흠 교수님께 진심 어린
감사의 말씀을 올립니다. 연구논문에 대해 자문해주신 장진우,
박국인 그리고 김현욱 교수님께 무한한 감사의 뜻을 전합니다.
연구 계획을 다듬어 주시고 논문이 나올 때까지 아낌없는 조언을
해주신 김긍년 교수님께 특별히 감사의 말씀을 드립니다.
존경하는 이규창, 정상섭, 김영수, 최종언 교수님을 비롯한
연세대학교 의과대학 신경외과학 교실 여러 선생님께 감사
드립니다.

마지막으로 지금까지 끝없는 사랑으로 저를 키워 주신
할머니와 어머니께 감사 드리고, 항상 현신적으로 내조해주신
사랑하는 아내 수현과 아들 재용에게 이 논문을 바칩니다.

저자 씀
차 례

국문요약.. 1

I. 서론.. 3
II. 재료 및 방법.. 6
 1. 실험 동물... 6
 2. 척수손상 백서의 제작 ... 6
 3. 사람 골수에서 MSCs의 분리 및 배양 7
 4. MSCs 이식... 8
 5. 수술 후 관리 및 행동기능검사 ... 10
 6. 조직검사.. 10
 7. 생착된 세포수 비교 ... 11
 8. 통계 처리.. 11
III. 결과... 12
 1. MSCs의 특성 ... 12
 2. 행동기능검사 결과 ... 14
 3. 조직검사 결과 ... 16
 4. 생착된 세포수 ... 24
IV. 고찰.. 26
V. 결론... 30

참고문헌... 31
영문요약... 39
그림 1. Third passage MSCs prepared from human bone marrow using a gradient dissociation and flask adherent method. .. 13

그림 2. FACS analysis of human MSCs surface marker14

그림 3. Average BBB scores in each group................. 16

그림 4. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating engraftment of MSCs in the spinal cord 2 weeks after intraleisional injection 18

그림 5. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating engraftment of MSCs in the spinal cord 2 weeks after intracisternal injection............... 19

그림 6. Photomicrographs obtained from sagittal
sections of the spinal cord demonstrating
engraftment of MSCs in the spinal cord 2
weeks after intravenous injection 20

그림 7. Photomicrographs obtained from sagittal
sections of the spinal cord demonstrating
absence of MSCs beyond the injury sites............21

그림 8. Photomicrographs obtained from sagittal
sections of the spinal cord demonstrating
absence of MSCs and large cavity in the spinal
cord 2 weeks in control group 22

그림 9. Photomicrographs obtained from the spleen of
the intravenous injection group 2 weeks after
transplantation... 23

그림 10. Total number of viable transplanted cells in
six midline longitudinal sections 25
표 1. BBB scores of both legs in each group 15

표 2. Total number of viable transplanted cells in six midline longitudinal sections of each group 24
국문요약

척수손상모델에서 인간골수중간엽줄기세포의
주입 방법에 따른 이식 효과 비교

척수손상은 외관상 보이는 일차 손상 외에 이차 손상이 발생하며 그 부위는 일차 손상 부위보다 더 넓어 줄기세포를 손상 부위에만 국소 주입하는 방법 외에 다른 주입 방법을 연구하는 것은 중요한 의미가 있다. 줄기세포를 이용한 척수손상의 치료에 관한 연구는 많이 있지만 주입 방법을 서로 비교한 연구는 없다. 본 연구는 척수손상이 발생한 백서에게 사람의 골수중간엽줄기세포 (bone marrow derived mesenchymal stem cells, MSCs) 를 이식하는 가장 효과적인 방법을 찾고자 병변내주입법 (intralesional injection), 뇌수조내주입법 (intracisternal injection), 정맥내주입법 (intravenous injection) 의 이식효과를 행동기능과 생착된 세포수를 서로 비교하였다. 백서에 New York University (NYU) 충격기로 중등도 척수손상 모델을 만들고 7일 후 기증자의 골수에서 채취하여 4주 간 배양한 MSCs를 위의 세가지 방법으로 각각 3.0 x 10^5, 10.0 x 10^6, 20.0 x 10^6 개의 세포를 이식하였다. 행동기능은 Basso-Beattie-Bresnahan (BBB) 검사를 주 1 회 6주까지 시행하여
평가하였다. 조직학적 검사는 이식 후 2, 4, 6주 척수손상 부위의 시상 절편을 만들어 anti-human nuclei antibody (AHNA) 와 DAPI로 염색하여 이식된 MSCs 존재 여무를 확인하였고 생착된 세포수를 측정하였다. BBB 점수는 줄기세포 주입 후 6 주째 시행한 결과 뇌수조내주입군이 가장 높았고 (11.0±0.3, 평균±표준편차) 그 다음으로 병변내주입군 (10.4±0.5), 정맥내주입군 (10.0±0.5), 대조군 (9.4±0.7) 순 이었다 (P<0.05). 2, 4주째 시행한 조직검사 상 생착된 MSCs는 병변내주입군에서 가장 많이 검출되었고 (5.0x10^2, 4.3x10^2) 그 다음으로 뇌수조내주입군 (3.0x10^2, 2.7x10^2), 정맥내주입군 (1.0x10^2, 0.2 x10^2) 순 이었다 (P<0.05). 정맥내주입군은 주입된 MSCs의 상당 수가 손상 부위에 도달하기 전 비장에 걸려진 것을 확인할 수 있었다. AHNA검사 상 뇌수조내주입군 및 정맥내주입군에서 척수의 다른 부위에서는 MSCs가 발견되지 않았다. 항후 생착율을 높일 수 있다면 고식적인 병변내주입법에서 덜 침습적인 뇌수조내주입법으로 대체될 수 있을 것으로 사료된다.

핵심 되는 말: 척수손상, 골수중간엽줄기세포, 이식, 행동기능검사
척수손상모델에서 인간골수중간엽줄기세포의 주입 방법에 따른 이식효과 비교

〈지도교수 윤 도 흠〉

연세대학교 대학원 의학과

신 동 아

I. 서론

줄기세포는 과학적 탐구 대상에서 환자 치료 수단으로 확대되어 의학의 핵심 연구 과제로 주목 받고 있다. 줄기세포는 발생 단계에서 인체의 모든 장기를 형성하고 성장을 마친 후에도 체내 여러 기관에 존재하여 손상된 장기나 조직의 기능을 복원하는데 중요한 역할을 하는 것으로 알려져 있다. 최근 수 년 사이 줄기세포에 관한 연구 논문이 폭발적으로 증가하고 발전 속도도 매우 빨라서 수 년 내에 환자 치료의 한 방법으로 자리잡게 될 것으로 보인다. 줄기세포 분야 중에서도 가장 연구가 활발한 분야가 지금까지 고식적인 방법으로는 완전 회복이 불가능한 척수손상이다. 척수손상은 외상으로 척수 신경이 파괴되어 온전한 근육을 가지고 있지만 신경 신호를 뇌로부터 전달받지 못해 운동 기능...
장애를 초래한다. 현재까지 척수손상의 주된 치료는 척수손상의 원인이 되는 손상 척추를 정복하고 고정하는 것과 부신피질홀몬 등의 약물을 주입하여 척수의 이차 손상을 예방하는 것이었다.12, 13 그라나 손상된 척추가 정복되고 고정되더라도 손상된 신경이 소생하는 것은 별개의 문제이며 부신피질홀몬도 완전 척수손상이나 8시간이 경과된 불완전 척수손상의 경우에는 치료 효과가 없는 것으로 알려져 있다. 따라서 손상된 신경 세포를 되살리거나 대체하는 것만이 궁극적인 치료라 할 것이다. 척수손상에 대한 세포 치료의 가능성을 제기한 것은 1996년 Olson과 Cheng에 의한 슈반세포 (schwann cell) 이식 실험이다.14 이 실험은 척수를 5mm의 길이로 절제한 다음 슈반세포를 이식한 결과 하지 기능이 일부 회복되었다고 보고하였다. 14 이는 포유동물에서 중추신경 재생이 확인된 최초의 실험이었다. 이후 1997년 Li와 Raisman이 후각초성세포 (olfactory ensheathing cell) 로 척수신경을 재생하였고15 2000년 Vacanti 등이 신경줄기세포를 성공적으로 이식하였다.16 2001년에는 골수중간엽줄기세포 (bone marrow derived mesenchymal stem cell, MSCs)가 X-선으로 탈수조화된 척수 척삭을 재생한다는 연구 결과가 발표되는 등 줄기세포를 이용한 수많은 연구가 이어지고 있다.17-19 지난 10여 년 간 많은 종류의 세포가 연구되었으며 많은 치료 잠재력이 확인되고 있으며 그 중에서도 특히 MSCs의 치료효과가 많은 연구에서 입증되고 있다.19-22 MSCs는 골수에 존재하며 조혈모세포 (hematopoietic stem cell) 를 부양하는 것이 주된 역할이지만 신경
세포로 분화할 수 있는 전구자 역할과 함께 축삭의 형성을 돕고 손상부위를 치료하는 여러 가지 물질을 분비하는 역할도 하는 것으로 밝혀졌다. MSCs의 장점은 체취하기 쉽고, 자가이식이 가능하며, 증식이 용이하다는 것이다. 또한 MSCs는 면역학적 환경을 낮아 이종이식도 가능할 것으로 밝혀졌다.

현재까지 주된 이식방법은 병변내주입법이었다. 그러나 이 방법은 줄기세포를 병변 내로 직접 주입하면서 손상된 척수에 이차 손상을 초래할 수 있으며 손상된 척수의 적대적 환경 속에 줄기세포를 직접 노출시켜 생존율을 떨어뜨릴 수 있는 문제가 제기되어 왔다. 이 방법을 임상 적용할 경우 척수를 노출하기 위하여 상처부위를 절개하는 수술이라는 과정이 필요하여 척수손상으로 신체적으로 허약한 환자에게 큰 신체적 부담을 주게 되는 문제가 있다. 병변 부위에 직접 줄기세포를 이식하는 방법의 대안으로 뇌척수액 속으로 주입하는 방법과 정맥 내로 주입하는 방법이 소개되었다. 그러나 현재까지 척수손상모델에서 이식 방법들을 서로 비교한 논문은 없다.

본 연구는 척수손상이 발생한 백서에게 사람의 골수에서 체취하여 정제한 MSCs를 이식하는 효과적인 방법을 찾고자 병변내주입법 (intralesional injection), 뇌수조내주입법 (intracisternal injection), 정맥내주입법 (intravenous injection)을 행동기능 항상의 정도와 생존된 세포수를 서로 비교 분석하고 각각의 장단점을 알아 임상에서 어떤 방법이 가장 효율적인가를 밝히고자 하였다.
II. 재료 및 방법

1. 실험 동물

본 실험은 저자 소속 기관에서 임상시험심사위원회 (Institutional Review Board) 와 동물시험심사위원회 (Institutional Animal Care and Use Committees)의 승인을 받고 진행하였다. 모든 실험은 임상 시험 권고 사항 및 동물 실험 윤리 규정을 준수하였다. 본 실험에서는 300~350g무게의 수컷 Sprague-Dawley 백서를 이용하였다. 백서는 총 48마리 중 12마리씩을 척수손상 후 아무 것도 주입하지 않은 대조군, 뇌수조로 MSCs를 주입한 뇌수조내주입군 (intracisternal injection group), 병변 내로 직접 MSCs를 주입한 병변내주입군 (intralesional injection group), 척수손상 후 정맥으로 MSCs를 주입한 정맥내주입군 (intravenous injection group)에 배정하였다.

2. 척수손상 백서의 제작

백서에 pentobarbital (Han Lim Pharm, Seoul, Korea)을 50mg/kg의 용량으로 복강 내 주사하고 atropine sulfate (Huons, Seoul, Korea)를 0.8mg/kg의 용량으로 근육 주사하여 마취 한 뒤 중등도 척수손상 모델 (moderate contusion model)을 제작하였다. 전기면도기를 사용하여 제8-9 흉추 마디를 중심으로 넓게 제모하고 베탈полн으로 소독하였다. 마취된 백서를 실험테이블 위에 복와위로 눕히고 제8-9 흉추 마디에서
피부절개를 하고 척추 후궁을 노출시킨 다음 척수가 손상되지 않도록 후궁절제술을 시행하였다. 백서를 척수손상 모델 제작 도구인 NYU (New York University) 충격기에 올려 놓고 클램프로 가시 돌기를 단단히 고정한 뒤 척수 상방 25mm 지점에서 직경 2mm, 무게 10g인 추를 떨어뜨리 중등도 척수손상 모델로 제작하였다.31, 32 시술을 마치면 손상 부위를 봉합하고 항생제인 kanamycin (Yuhan, Seoul, Korea) 을 0.6cc/kg의 용량으로 근육 주사하였다. 회복되는 동안 체온 소실이 없도록 보온패드와 직장 체온계를 이용하여 체온을 일정하게 유지하였다. 백서는 영상 20도의 조건에서 사육하였고 방광 기능 약화로 스스로 배뇨를 할 수 없는 경우 방광을 손으로 압박하여 오줌을 빼 주었다.

3. 사람 골수에서 MSCs의 분리 및 배양

척추 유합 수술을 받는 환자 5명에게서 환자의 동의 하에 장골 이식 시 골수 혈액 3ml를 채취하였다. 골수 혈액 3ml를 부피가 1:2되도록 RPMI 1640 (Gibco, Uppsand, NY, USA) 으로 희석한 뒤 4개의 원추형 시험관에 4ml Ficoll-Hypaque (d=1.077g/ml, Pharmacia, Uppsala, Sweden) 위에 조심스럽게 중층하였다. 2,000rpm에서 10분간 원심 분리하여 형성된 저비중의 단핵구층을 피펫으로 흡입하여 새로운 시험관에 옮겼다. PBS 용액을 첨가하여 1000rpm으로 10분, 800rpm으로 10분 썩 2회 세척하여 단핵구를 얻었다. 60ml 배양접시에 5 x 10^6 개씩 분리하여 10% heat inactivated fetal bovine serum (FBS) 와 50U/ml penicillin, 0.05mg/ml
 streptomycin이 첨가된 Dulbecco’s Modified Eagle Medium (DMEM, Gibco, Grand Island, NY, USA)에서 배양하였다. 배양기의 온도는 37도, 이산화탄소의 농도는 5%로 유지하였다. 배양 72시간 후에 배양 접시에 부착되지 않은 세포는 배지를 갈아 주면서 제거하였다. 그 후 같은 조건에서 세포가 배양 접시에 가득 찼 때까지 배양하였다. 배양액은 48시간에 한 번씩 교체하였다. 배양된 세포를 0.05% 트립신과 0.02% EDTA를 첨가하여 세포를 때어낸 후 1x10⁵/ml 농도로 다시 배양한다. 같은 방법으로 3회 분리 배양 후 세포를 냉동 보관하였다. 이식하기 48시간 전에 세포를 심온에서 해동시켰다. 배양된 세포가 중간엽줄기세포임을 확인하기 위해 유세포분석기 (fluorescence activated cell sorter, FACS) 를 이용하여 CD 45-, CD 34-, CD 73+, CD 105+를 확인하였다.

4. MSCs 이식

MSCs는 척수손상을 주고 7일 후에 이식하였다. 백서에게 pentobarbital을 50mg/kg 농도로 복강 내 주사하여 마취한 후 수술을 준비하였다.

가. 병변내주입법

마취된 백서의 수술 부위를 척수에 추가 손상이 일어나지 않도록 주의하면서 제개방하였다. 10μl 해밀론주사기를 경막을 통고 병변 부위에 2mm 깊이로 삽입한 다음 1.0 x 10⁵ cells/μl 농도의 MSCs 3μl을 5분에
걸쳐 서서히 주입하였다. 시술을 마치면 손상 부위를 봉합하고 항생제인 kanamycin을 0.6cc/kg의 용량으로 근육 주사하였다. 회복되는 동안 체온 소실이 없도록 보온패드와 직장 체온계를 이용하여 체온을 일정하게 유지하였다.

나. 뇌수조내주입법
전기면도기를 이용하여 경추 1번을 중심으로 넓게 제모한 다음 베타딘으로 소독하고 머리를 뇌정위 수술대에 고정시켰다. 경추 1번을 중심으로 정중 절개하고 상온의 식염수로 지속적으로 세척하여 뇌조직이 열 손상을 받지 않도록 하면서 전기 드릴로 후두부에 직경 1mm 크기의 구멍을 뚫었다. 거대수조 (cisterna magna) 내로 10μl 해밀톤 주사기를 2mm 깊이로 삽입하고 뇌척수액이 밀려나오는 것을 확인한 다음 10.0 x 10^5 cells/μl의 MSCs 10μl를 5분에 걸쳐 서서히 주입하였다. MSCs 주입이 끝나면 이어서 5μl 생리식염수를 주입하여 바늘에 남아있는 세포를 밀어 넣었다. 시술을 마치면 손상 부위를 봉합하고 항생제인 kanamycin을 0.6cc/kg의 용량으로 근육 주사하였다. 회복되는 동안 체온 소실이 없도록 보온패드와 직장 체온계를 이용하여 체온을 일정하게 유지하였다.

da. 정맥내주입법
마취된 백서의 꼬리 정맥에 26G의 두피정맥관을 삽입하고 정맥혈이 밀려나오는 것을 확인한 다음 10.0 x 10^5 cells/μl의 MSCs 20μl를 25μl 해밀톤주사기를 이용하여 10분에 걸쳐 서서히 주입하였다. MSCs 주입이 끝나고 이어서 10μl 의 생리식염수를 주입하여 도관에 남아있는 세포를
밀어 넣었다. 시술을 마치면 항생제인 kanamycin을 0.6cc/kg의 용량으로 근육 주사하고 회복되는 동안 체온 소실이 없도록 보온패드와 직장 체온계를 이용하여 체온을 일정하게 유지하였다.

5. 수술 후 관리 및 행동기능검사
MSCs 이식 시 면역거부반응을 억제하기 위해 세포이식 2일 전부터 cyclosporine (Yuhan, Seoul, Korea)를 100g당 1mg의 농도로 이식 후 8주까지 투여하였다. 기능 회복정도는 Basso 등이 개발한 BBB (Basso-Beattie-Bresnahan) 점수를 사용하여 동물의 뒷다리의 기능회복단계, 후기회복단계로 총 21점으로 구분하여 측정하였다. BBB 점수는 초기 회복단계는 골반에서 발목까지의 관절의 움직임을 점수화하고 있으며, 중간 회복단계는 걸음걸이의 전체적인 조화와 꼬리의 회복상태를 점수화하고 있다. 주 일 회 실시하였으며 MSCs 주입 후 6주까지 실시하였다.

6. 조직검사
각 실험군에서 8마리씩을 MSCs 주입 후 2주, 4주, 6주에 고량의 urethane (Gibco, Uppsand, NY, USA)을 주입하여 안락사 후 생리식염수 및 4% paraformaldehyde를 심장을 통하여 관류시키고 척수를 적출하여, 조직을 10% formalin에 점액 고정하고 파라핀 블록을 만든 다음 6μm 두께의 관상 및 시상 절단을 시행하였다. 절단한 조직은 PBS에 희석된
1% H_2O_2에 15분간 숙성하고, 중단액 (PBS에 희석된 2% goat serum, 0.3% Triton X-100, 0.1% bovine serum albumin)에 상온에서 2시간 동안 방치한 후, 4°C에서 하루 밤 동안 mouse anti-human nuclei antibody (AHNA)를 처리하였다. 이차 항체로 Cy3-labeled anti-mouse IgG (Amersham Biosciences, Piscataway, NJ)를 사용하였다. 절편은 Vecashiled로 마운트하고 형광신호는 형광현미경으로 535/565nm (rhodamine, red)와 470/505nm (FITC, green)로 검출하였다. 조직을 PBS로 세척한 다음 PBS에 희석된 1μg/ml의 DAPI (Sigma-Aldrich, St. Louis, MO, USA)로 대조 염색 하였다.

7. 생착된 세포수 비교

척수손상 부위를 중심으로 양측으로 3개씩 시상 절단한 6개의 절편에서 형광현미경을 이용하여 anti-human specific nuclei antibody와 DAPI에 동시에 염색된 MSCs의 총 개수를 조사하고 2, 4, 6주에서 실험군과 대조군을 서로 비교 분석하였다.

8. 통계 처리

평균 간 통계학적 차이는 ANOVA 및 post hoc 검사로 P<0.05인 경우 유의한 것으로 판정하였다.
III. 결과

1. MSCs의 특성

용기 부착 방법을 사용하여 분리된 MSCs는 전형적인 기질세포의 다각형 구조를 보였다 (Figure 1 A, B). 첫 평판배양 후 세포가 배양접시에 가득 찼 때까지 3-4주가 소요되었고 이 세포들의 배가 시간은 3-4일이었다. MSCs는 특별한 성장 인자 없이 10% FBS만 첨가된 DMEM 배지에서 잘 증식하였다. 세 차례 계대 배양된 MSCs는 anti-CD105 항제를 사용한 면역 세포 화학 검사에서 90%가 양성반응을 보였다 (Figure 1C). 또한 human specific anti-mitochondrial antibody는 MSCs에 강하게 부착하였다 (Figure 1D). 또한 세포 표면 표지자에 대한 반응 검사상 CD73 과 CD105에는 양성 반응을 CD45 와 CD34에는 음성 반응을 보였다 (Figure 2).
Figure 1. Third passage MSCs prepared from human bone marrow using a gradient dissociation and flask adherent method. Phase contrast micrographs show the typical polygonal shape of stromal cells (A, B). Anti-CD105 antibody stains MSCs (C). MSCs are strongly stained by anti-human mitochondrial antibody (D).
Figure 2. FACS analysis of human MSC surface marker. A and B show that human MSC surface marker is positive, C and D show that hematopoietic cell surface marker is negative.

2. 행동기능검사 결과

척수손상 후 1 주째, MSCs를 주입하기 전에 시행한 평균 BBB 점수는 5.1±0.9로 그룹 간에 통계학적 차이가 없었다. MSCs 주입 후 검사 시기에 따른 BBB 점수는 Table 1에 정리되어있으며 양쪽 하지 사이에 통계학적 차이가 없었다. MSCs 주입 후 2, 3 주째는 병변내주입군이 가장 낮은 BBB 점수를 보였으나 통계학적으로 다른 그룹과 차이는 없었다 (Figure 3). MSCs 주입 후 6 주째 대조군과 비교하여 실험군이 통계학적으로 유의한 행동 기능의 향상을 보였다 (P<0.05, Figure 3). 6주째 시행한 BBB 점수는 병변내주입군이 가장 좋은 결과를 보였고
(11.0±0.3) 그 다음으로 병변내주입군 (10.4±0.5), 정맥내주입군 (10.0±0.5), 대조군 (9.4±0.7) 순이었다 (P<0.05, Figure 3).

Table 1. BBB scores of both legs in each group (mean±SD).

<table>
<thead>
<tr>
<th>Weeks</th>
<th>BBB scores</th>
<th>Group</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intralesional</td>
<td>Intracisternal</td>
<td>Intravenous</td>
<td>Control</td>
</tr>
<tr>
<td>0</td>
<td>Right</td>
<td>5.4</td>
<td>5.7</td>
<td>4.8</td>
<td>5.1</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>5.2</td>
<td>5.3</td>
<td>4.9</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>5.7±0.8</td>
<td>5.5±0.8</td>
<td>5.9±0.7</td>
<td>5.8±0.9</td>
</tr>
<tr>
<td>1</td>
<td>Right</td>
<td>6.0</td>
<td>5.3</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>6.1</td>
<td>6.9</td>
<td>5.7</td>
<td>5.3</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>6.1±0.8</td>
<td>6.6±1.2</td>
<td>6.8±0.9</td>
<td>6.6±1.0</td>
</tr>
<tr>
<td>2</td>
<td>Right</td>
<td>7.3</td>
<td>7.8</td>
<td>6.4</td>
<td>6.5</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>6.5</td>
<td>6.5</td>
<td>8.0</td>
<td>7.2</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>6.9±0.9</td>
<td>7.6±1.1</td>
<td>7.4±1.4</td>
<td>7.3±0.7</td>
</tr>
<tr>
<td>3</td>
<td>Right</td>
<td>7.8</td>
<td>9.3</td>
<td>7.5</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>8.4</td>
<td>7.8</td>
<td>8.7</td>
<td>8.4</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>8.1±0.7</td>
<td>8.5±0.8</td>
<td>8.1±0.6</td>
<td>7.9±0.7</td>
</tr>
<tr>
<td>4</td>
<td>Right</td>
<td>9.3</td>
<td>9.9</td>
<td>8.4</td>
<td>8.2</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>9.4</td>
<td>8.9</td>
<td>9.2</td>
<td>8.8</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>9.3±0.5</td>
<td>9.4±1.0</td>
<td>8.8±0.7</td>
<td>8.5±0.9</td>
</tr>
<tr>
<td>5</td>
<td>Right</td>
<td>10.3</td>
<td>10.5</td>
<td>9.3</td>
<td>8.5</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>9.8</td>
<td>9.9</td>
<td>9.6</td>
<td>9.5</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>10.0±0.7</td>
<td>10.2±1.0</td>
<td>9.4±1.1</td>
<td>9.0±1.0</td>
</tr>
<tr>
<td>6</td>
<td>Right</td>
<td>10.8</td>
<td>11.7</td>
<td>9.6</td>
<td>8.7</td>
</tr>
<tr>
<td></td>
<td>Left</td>
<td>10.1</td>
<td>10.3</td>
<td>10.4</td>
<td>10.1</td>
</tr>
<tr>
<td></td>
<td>Mean±SD</td>
<td>10.4±0.5</td>
<td>11.0±0.3</td>
<td>10.0±0.5</td>
<td>9.4±0.7</td>
</tr>
</tbody>
</table>
Figure 3. Average BBB scores in each group. The experimental groups show better improvement since 6 weeks after stem cell injection (P<0.05). The intracisternal injection group shows best improvement (P<0.05).

3. 조직검사 결과

조직은 AHNA로 염색하여 사람의 MSCs임을 확인하였고 DAPI 염색도 시행하였다. 두 염색 결과를 융합하여 서로 맞추어 보아 이식된 세포의 생사 여부를 확인하였다. 뇌수조내주입군과 정맥내주입군에서 MSCs의 안착이 선택적이지 않아보기 위해 척수손상 부위 외에 정상 조직도 잘라 염색해보고자. 병변내주입군은 주입 부위를 중심으로 MSCs가 구상으로
모여있는 반면 (Figure 4) 뇌수조내주입군은 손상된 척수의 배측부터 중심까지 안착되어 있었다 (Figure 5). 정맥내주입군의 경우 주입된 MSCs는 손상 부위 전반에 걸쳐 관찰되었으나 그 수가 매우 적었으며 척수손상 후 발생한 공동도 다른 실험군에 비해 크게 관찰되었다 (Figure 6). 대조군은 MSCs가 관찰되지 않았으며 척수손상 후 발생한 공동이 가장 크게 남아있었다 (Figure 7). 뇌수조내주입군과 정맥내주입군에서 척수손상 실험 당시 손상되지 않은 경수 부위를 단면으로 잘라 염색한 결과 MSCs는 발견할 수 없었다 (Figure 8). 정맥내주입군에서 비장을 적출하여 AHNA와 DAPI염색을 시행한 결과 다양의 MSCs를 발견할 수 있었다 (Figure 9).
Figure 4. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating engraftment of MSCs in the spinal cord 2 weeks after intralesional injection. A: AHNA staining showing presence of MSCs. B: DAPI staining. C: Merged view shows that the grafted MSCs (arrow) are crumpled in round shape (dotted circle).
Figure 5. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating engraftment of MSCs in the spinal cord 2 weeks after intracisternal injection. A: AHNA staining showing presence of MSCs. B: DAPI staining. C: Merged view showing that the injected MSCs (arrow) permeate into the injured site from the surface of the spinal cord (asterisk).
Figure 6. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating engraftment of MSCs in the spinal cord 2 weeks after intravenous injection. A: AHNA staining showing presence of MSCs. B: DAPI staining. C: Merged view showing scanty MSCs in the injured spinal cord (arrow). The intravenous injection group has larger cysts than the other experimental groups (asterisk).
Figure 7. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating absence of MSCs beyond the injury sites. A: AHNA staining of a sagittal section of the cervical spinal cord 2 weeks after intracisternal injection. B: AHNA staining of a sagittal section of the spinal cord adjacent to the injury site (asterisk) 2 weeks after intravenous injection.
Figure 8. Photomicrographs obtained from sagittal sections of the spinal cord demonstrating absence of MSCs and large cavity in the spinal cord 2 weeks in control group. A: AHNA staining showing absence of MSCs. B: DAPI staining. C: Merged view showing absence of MSCs.
Figure 9. Photomicrographs obtained from the spleen of the intravenous injection group 2 weeks after transplantation. A: AHNA staining showing presence of MSCs. B: DAPI staining. C: Merged view showing that a number of the injected MSCs are trapped in the spleen (arrow).
4. 생착된 세포수

실험군에서 생착된 세포수는 Table 2에 정리되어 있다. 2, 4주에 시행한 조직검사 상 생착된 MSCs는 병변내주입군 가장 많았고 (5.0x10^2, 4.3x10^3) 그 다음으로 뇌수조내주입군 (3.0x10^2, 2.7x10^2), 정맥내주입군 (1.0x10^2, 0.2x10^2) 순 이었다 (P<0.05, Figure 10). 생착된 세포수는 2주 이후 4주제부터 감소하여 6주제는 2주제와 비교하여 약 90% 정도가 감소됨을 알 수 있었다 (Figure 10).

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Group (x10^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intralesional</td>
</tr>
<tr>
<td>2</td>
<td>5.0±1.2</td>
</tr>
<tr>
<td>4</td>
<td>4.3±1.1</td>
</tr>
<tr>
<td>6</td>
<td>0.5±0.1</td>
</tr>
</tbody>
</table>
Figure 10. Total number of viable transplanted cells in six midline longitudinal sections. The intralesional injection groups show best engraftment until 4 weeks after stem cell injection ($P<0.05$). However, these differences disappear 6 weeks after stem cell injection as the cells are rejected.
IV. 고찰

척수손상은 뇌에서 생성된 운동신호가 근육에 전달되지 못하여 운동기능이 제한되고 말초에서 생성된 감각신호가 뇌에 전달되지 못하여 감각기능이 소실된다. 줄기세포가 척수의 이차 손상을 막고 손상된 부위를 수선할 수 있음을 밝혀지고 있다. 본 연구는 손상된 척수 부위에 줄기세포를 이식하는 효과적인 방법을 찾고자 백서와 고시적인 방법 외에 뇌척수액통로를 이용한 뇌수조내주입법과 혈관을 이용한 정맥내주입법으로 이식한 다음 기능회복의 정도와 생착된 세포수를 비교 분석하여 각각의 장점과 단점을 알아 보고 인체에 적용하는 경우 어떤 방법이 가장 효과적인가를 밝히고자 하였다.

본 연구에서 사람에서 분리 배양한 MSCs는 예상대로 조혈세포 표지자인 CD45와 CD34는 음성임에면서 MSCs 표지자인 CD73과 CD105는 양성으로 나타났다. 기존 연구에서와 마찬가지로 MSCs는 3~4주 정도면 배양 접시에 가득 찼으며 그 뒤 3~4일 이면 두 배가 되어 이식에 필요한 충분한 양을 만들 수 있었다. 또한 MSCs는 쉽게 채취하여 자가이식이 가능하다는 점과 이종이식에도 거부반응이 적은 것을 고려할 때 향후 임상적용의 좋은 세포주로 사료된다.

본 연구에서는 생착된 세포수는 병변내주입군이 가장 높았지만 행동기능은 병변내주입군이 가장 좋았는데 이것은 조직검사 상 병변내주입군은 주입 부위 중심으로 구상으로 모여 있어 주위 정상 조직에 종괴효과 (mass...
(effect)를 초래하는 것처럼 보였고 손상부위에 넓게 퍼져나가지 못한 반면에 뇌수조내주입군은 손상부위에 넓게 퍼져있어 척수손상을 통제 효과 없이 효과적으로 치료할 수 있었기 때문일 것으로 생각된다. 기존 연구에 따르면 병변내접접주입법은 일차 손상으로 인한 척수손상에 초래하면서 이차 손상을 줄 수 있고 일정 부피의 세포를 주입하면서 척수 내 압력의 증가로 이차 손상이 발생할 수 있다고 알려져 있다. 본 연구에서 주입 후 4주까지 병변내주입군의 BBB점수가 가장 낮은 것도 이러한 이유 때문으로 생각되지만 통계학적 의의는 없었다. 또한 병변내주입법은 임상적 적용하면서 전신마취 및 수술이 필요하여 저항력이 떨어진 환자의 신체에 큰 부담을 초래할 수 있을 것이다. 본 연구에서 사용된 뇌수조내주입법 역시 수술이 필요하나 임상적 적용은 요추천자로 한다면 수술 없이 즉시세포를 주입할 수 있을 것이다. 기존 연구에 따르면 척수손상부위는 국소적이거나 연관된 이차적 손상 부위는 넓게 분포한다고 알려져 있다. 따라서 손상 부위에 국소 적용을 한 병변내주입법이 유리할 것으로 생각된다. 그러나 본 실험에서 병변내주입군이 병변내주입군 보다 무려 33배 수의 세포를 사용하여 동일한 조건이 아니기에 직접 비교는 불가능하였다. 뇌척수액내로 줄기세포를 주입하는 방법은 요추천자의 형태가 된다면 반복주입이 가능하다는 것이 큰 장점이라고 할 수 있다. Bakshi 등은 요추천자로 MSCs를 뇌척수액내로 한 차례 주입할 때 보다 3차례 주입하는 것이 약 2.3배 높은 생착율을 보였다고
보고하였다.\cite{39} 향후 임상 적용 시 고려해볼 만한 점이다. 정맥내주입법은 줄기세포가 척수손상 부위의 파괴된 뇌-혈액 장벽을 통과하여 생착할 것으로 기대하며 정맥주사만 필요한 것으로 가장 덜 침습적이다.\cite{41-44} 그러나 본 연구에서 정맥내주입군은 6주까지 생착된 MSCs를 확인할 수 있었으나 그 수가 다른 두 실험군에 비해 매우 적었다. 병변내주입군에 비해 무려 67배의 세포를 주입하였음에도 불구하고 매우 적은 양만 생착되었고 행동기능검사 결과도 대조군을 제외하고 실험군 중에서 가장 불량하였다. 기존 연구에 의하면 비장, 폐, 간 등을 거치면서 걸러지는 일차관문효과 (first-pass effect) 때문에 생착율이 현저히 저조한 것으로 사료된다.\cite{39} 본 연구에서도 조직검사 상에서 비장에서 걸려진 줄기세포를 확인할 수 있었다.

본 연구는 이식된 줄기세포가 이식 후 2주를 지나 4주부터 감소하여 6주에는 90% 정도가 사라졌음을에도 불구하고 행동기능검사 결과는 6주부터 차이가 날을 보여 주고 있다.\cite{22} 이는 이식된 줄기세포가 신경세포로 기능하는 것이 아니라 기존 신경세포가 회복될 수 있도록 도와주는 역할을 하기 때문에 것으로 생각된다.\cite{45} 기존 연구에 의하면 이식된 줄기세포는 손상된 조직 내에서 싸이토카인과 성장인자와 같은 치유 인자를 분비함으로써 손상부위의 회복을 돕고 축삭의 형성도 돕는다고 알려져 있다.\cite{45, 46} 물론 줄기세포를 이식할 때는 이식된 세포가 손상된 척수 조직을 대체할 수 있기를 기대하였고 몇몇 실험에서 이식 후에 신경세포 표식인자가 발생되는 것을 관찰할 수 있었지만 과연
신경세포로 분화하여 신경 기능을 담당하는지는 명확히 증명되지 않고 있다.45, 46

본 연구에서는 뇌수조내주입군과 정맥내주입군에서 정상 조직이 아닌 손상 조직으로 생착되는 선택성이 있음이 확인되었다. 뇌척수액 속으로 줄기세포를 흘려 보낼 때 병변 부위에 선택적으로 생착할 수 있는 것은 대식세포 (macrophage) 덕분이라고 Mercier가 주장한 바 있으며17 손상부위에서 분비되는 미상의 화학적 유도 물질 (chemoattractant) 이 있거나 부착 분자 (adhesion molecule)가 있어 줄기세포를 유도한다는 보고도 있다.48 Bakshi는 줄기세포가 아닌 형광물질을 요추천자로 주입하여 보았지만 MSCs와 같은 선택성을 보이지는 않았다고 하였다.27 이런 줄기세포의 선택성 때문에 뇌수조내주입법과 정맥내주입법이 가능할 것이므로 향후 선택성에 대한 심도 깊은 연구가 필요할 것으로 사료된다.

본 연구는 줄기세포 이식을 척수손상 1주 후에 시행하였다. 이는 여러 실험에서 밝혀진 조기 이식의 우수성에 따른 것인데 Bakshi는 MSCs를 수상 후 2주에 주입한 것이 4주에 주입한 것보다 생착율이 높았다고 보고 하였으며27 Rosenzweig는 척수손상 후 첫 2주 간이 효과적인 세포치료를 시행할 수 있는 치료 시기라고 하였다.49 Bakshi는 또 주입량과 생착된 부피 사이에는 상관성이 없고 적절한 시기에 주입하는 것이 생착율을 높인다고 하였다.27 척수손상 급성기는 염증반응으로 이식된 세포에 악영향을 줄 수 도 있지만 조직을 보호하는 작용이 큰 시기라고 한다.49 또한 Chen은 첫 2주 간이 화학물질의 도움과 함께 조직 침습이 쉬운
상태라는 장점이 있다고 하였다.50

마지막으로 본 연구는 임상적으로 적용하기 힘든 이중이식이라는 점, 실험군 간에 주입된 줄기세포의 양이 큰 차이를 보여 결과를 서로 직접 비교하기가 힘들다는 점, 신경세포로의 분화도를 보지 않았다는 점에도 불구하고 줄기세포의 적수 내 주입법 등을 상호 비교한 최초의 논문이라는 점에서 의의가 있다고 생각한다. 향후 사용된 MSCs의 양을 줄이고 생착율을 높일 수 있다면 고식적인 병변내주입법을 뇌척수액내주입법이 대체할 수 있을 것으로 사료된다.

V. 결론

병변내주입법은 조직검사 상 생착된 세포수가 가장 높지만 침습적이라 손상된 적수에 이차 손상을 유발할 가능성이 있다. 뇌수조내주입법은 가장 양호한 행동기능 향상을 보였으며 조직 검사 상 손상 부위에 골고루 퍼져 있었다. 정맥내주입법은 줄기세포의 상당 수가 손상 부위에 도달하기 전 다른 장기에 걸려서 생착된 세포수가 실험군 중 가장 낮았지만 대조군 보다 양호한 행동기능 향상을 보였다. 향후 사용된 MSCs의 양을 줄이면서 생착율을 높일 수 있다면 고식적인 병변내주입법을 뇌수조내주입법이 대체할 수 있을 것으로 사료된다.
참고 문헌

35. Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantation of clonal neural precursor cells derived from adult

Abstract

Comparison of the outcomes after intraleisional, intracisternal, and intravenous transplantation of human bone marrow derived mesenchymal stem cells for spinal cord injured rat

Dong Ah Shin

Department of Medicine

The Graduate School, Yonsei University

(Directed by Professor Do Heum Yoon)

Mesenchymal stem cells (MSCs) have shown promise in potentially repairing injured spinal cord. These and similar cell types are being tested clinically, but understanding of delivery and subsequent results is lacking. This study was designed to compare MSCs engraftment results after intraleisional, intracisternal, or intravenous injection in a rat with spinal cord injury (SCI). A total of 48 male Sprague-Dawley rats (300–350g in size) were used with 12 in each group. Allogenic MSCs were cultured from human bone marrow aspirates. The SCI was induced using an NYU (New York University) impactor and MSCs
were transplanted 1 week after SCI. Behavioral testing was performed weekly for 6 weeks. The recipients were analyzed histologically to evaluate the extent of cell delivery and survival at the injury site. All three experimental groups showed better behavioral recovery compared with the control group since 6 weeks after stem cell injection ($P<0.05$). The intracisternal injection group showed best functional improvement ($P<0.05$). The intralesional injection group showed the best engraftment until 4 weeks after stem cell injection ($P<0.05$). A number of the injected MSCs were trapped in the spleen in the intravenous injection group. Transplantation of stem cells by a variety of routes can deliver cells with the potential to repair injured spinal cord. Intracisternal injection can easily be translated to patients after some modifications, thus accelerating clinical application of cell therapies.

Key Words: spinal cord injury, bone marrow mesenchymal stem cell, transplantation, behavioral test