교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향

연세대학교 대학원 치의학과
민 샘
교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향

지도 차 정 열 교수

이 논문을 석사 학위논문으로 제출함

2009년 7월 1일

연세대학교 대학원
치의학과
민샘
민 샘의 석사 학위논문을 인준함

심사위원 ____________인

심사위원 ____________인

심사위원 ____________인

심사위원 ____________인

연세대학교 대학원

2009 년 7 월 일
차 례

표 차례 .. iii
그림 차례 .. iv
국문 요약 .. v

I. 서론 ... 1

II. 연구 대상 및 방법 .. 4
 1. 연구재료 ... 4
 2. 연구방법 ... 6
 2.1 열성변형 전후의 두께변화 ... 6
 2.2 3점 굴곡 실험 및 3점 굴곡 회복실험 ... 7
 3. 계측치의 분석 및 통계 처리 ... 8

III. 연구결과 ... 9
 1. 열성변형 전후의 두께변화 ... 9
 2. 하중(gf)과 응력(gf/mm²)에 대한 재료, 제품, 두께, 변형량 정도에 대한
 회귀 방정식 .. 10
 3. 두께와 변형에 따른 하중(gf)과 응력(gf/mm²)의 범위 12
 4. 반복하중 이후 힘의 상쇄(force decay) ... 15

IV. 고찰 ... 19

V. 결론 .. 26
참고문헌... 28
영문요약... 32
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prescription of materials used in this study</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>Condition of thermoform used in this study</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Thickness differentiation after thermoform</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Interaction and regressional equation table for force and stress</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of load (gf) depending on deflection level for each product</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>Comparison of stress (gf/mm²) depending on deflection rate for each product</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>Comparison of load (gf) depending on deflection level for each product</td>
<td>17</td>
</tr>
<tr>
<td>8</td>
<td>Comparison of stress (gf/mm²) depending on deflection rate for each product</td>
<td>18</td>
</tr>
</tbody>
</table>
그림 차례

Figure 1. Biostar (Scheu-Dental, Iserlohn, Germany) · · · · · · · · · · · · 6

Figure 2. Experimental procedure in this study. (Lt. : Universal test machine, Instron® , Rt. ; schematic diagram of 3 point bending test.) · ...
국문 요약

교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향

심미적인 교정 장치에 대한 관심이 증가되면서 투명교정장치에 관한 관심도 증가되었다. 투명교정장치는 심미적일 뿐 아니라 쉽게 제작할 수 있고 성형성이 우수하여 부분적인 치열 교정이나 유지장치와 같은 목적으로도 많이 쓰이고 있다. 다양한 열가소성 교정 재료를 이용한 많은 성공적인 임상 결과가 보고되었지만, 재료의 물리적 성질에 관한 연구는 많지 않다. 특히 장치에 전달되는 하중(force)과 장치가 장착되어 원래의 상태(resting position)로 되돌아가려 할 때의 재료의 응력(stress)에 대해 완전히 알려져지 않았다.

본 연구에서는 실험적인 Model의 조건에서 투명 교정장치의 재료로 쓰이는 4가지 종류의 열가소성 재료(0.5 mm, 0.75mm, 1.0 mm 두께)를 2.0 mm 까지 변위 시킬 때 필요로 하는 하중(gf)과 변위 후 탄성력에 의해 회복될 때 재료의 응력(gf/mm²)을 평가하였다. 하중과 응력에 영향을 미치는 조건에 대해 알아보았고, 열가소성 재료의 힘의 상쇄(force decay)를 평가하기 위해 반복하중 후의 하중과 응력의 변화에 대해 실험하여 다음과 같은 결과를 얻었다.

1. 열가소성 재료의 두께와 변형량에 대해 상호 교호작용이 관찰되었으며 (P < 0.05), 하중(gf)과 응력(gf/mm²)에 대한 회귀 방정식을 도출하였다. 열가소성 재료의 두께 및 변형량이 하중과 응력에 가장 큰 영향력을 나타내었으며, 재료간 혹은 제품간의 하중과 응력에는 유의한 차이가 없었다.

2. 모든 제품을 1.0 mm 이상 변형 시. 최소 221 gf의 하중이 필요하였고, 이
때 최소 37 gf/mm2의 응력이 발생되었다. 두께가 1.0 mm인 모든 제품에서 0.5 mm 변형 시, 최소 159 gf의 하중이 필요하였고, 이 때 최소 16 gf/mm2의 응력이 발생되었다.

3. 각 실험군에 대한 반복하중 시 하중(gf)과 응력(gf/mm2)의 감소에서 유의한 차이가 관찰되었고 ($P < 0.01$), 평균 10~17%의 하중의 감소와 4~7%의 응력의 감소가 관찰되었다.

이상의 결과, 하중(gf)과 응력(gf/mm2)에 가장 영향을 많이 주는 요소는 재료의 두께와 치아의 이동량의 것을 알 수 있다. 투명교정장치를 이용하여 생리적으로 치아를 이동시키기 위해서는, 초기 치아 배열을 위해 사용하는 열가소성 재료의 두께와 셋업 시 치아 이동량을 고려하여 과도한 힘이 가해지지 않도록 해야 한다. 또한 반복하중 후에 열가소성 재료의 피로도에 의한 힘의 상쇄를 고려하여 임상에 적용해야 한다.

핵심 되는 말: 열가소성 재료, 하중, 응력, 반복하중
교정용 열가소성 재료의 두께와 변형량이 재료의 물리적 특성에 미치는 영향

(지도교수 : 차 정 열)
연세대학교 대학원 치의학과

민 샘

I. 서론

오늘날 성인 교정에 관한 관심이 증가하면서 일반적으로 사용하는 고정식 브라켓 장치를 대체할 수 있는 심미적인 교정 장치에 대한 관심이 증가하고 있다. 특히 투명교정장치는 심미적이고 쉽게 제작할 수 있고 발음 시 불편함을 주지 않으며 클래식형이 없이도 유지력이 우수하다는 장점을 가지고 있다. 또한 치료 중에도 장치의 조정이 간단하거나 거의 필요가 없고, 기능 시 방해가 되지 않아 저작 효용에도 영향을 주지 않기 때문에 성인 교정에서 쓰여지고 있다. 부분적인 치열 교정이나 유지장치와 같은 교정영역에서도 많이 쓰이고 있으며, 이외에도 이같이 장치, 턱관절 스플린트, 미백 트레이등 다양한 용도로 사용되고 있다 (McNamara 등, 1985; Ponitz 등, 1971; Rinchuse 등, 1997).

최근에는 투명교정장치가 일반적인 브라켓과 와이어를 대체할 수 있는

투명교정장치를 이용한 치아이동 역시 생역학적인 치아 이동과 관련하여 힘의 크기를 고려해야 한다. 브라켓과 와이어를 이용한 교정치료에서 와이어의 회복력을 이용하여 치아에 교정력을 가하는 것처럼 투명교정장치도 재료의 탄성력을 이용하여 치아에 교정력을 가한다. Kwon 등(2008)은 효율적인 교정력을 알아보기 위해 3점 굴곡 회복 실험(Three-point bending-recovery tests)을 이용한 하중과 에너지 전달 특성(energy delivery properties)에 대한 실험을 하였는데, 얇은 재료를 사용하는 것이 치아를 이동시킬 수 있는 효율적인 힘을 얻을 수 있다고 하였다. 이론적으로는 약하고 지속적인 교정력이 가장 효과적인 치아이동을 나타낸다는 것은 의심의 여지가 없으나, 덜 효과적이지만 강하고 간헐적인 교정력도 임상적으로는 받아들일 수 있다. 하지만 강하고 지속적인 교정력은 치아와 골에 부작용을 발생시킨다(Burstone 등, 1989).

투명교정장치가 치아에 부여할 수 있는 힘의 크기는 장치의 피로도에 따라서 변화될 수 있다. 비록 초기의 힘이 크다고 하더라도, 치아 이동 후에 반복하중에 따른 힘의 상쇄(force decay)에 의한 감소율이 큰 경우 힘이 다시 작용하기 전까지 치주연구의 재생과 보상을 위한 기간이 있게 된다. 반면 초기에는 힘의 크기가 적절하였으나, 치아 이동 후에 반복하중에 따른 힘의 상쇄가 큰 경우에는 교정 치료에 필요한 암낮은 힘을 적응할 수 없게 된다. 그러므로 이상적인 치아이동을 위한 힘의 작용 시 힘의 상쇄에 대해 중요하게 고려하여야 한다. 임상적인 연구를 살펴보면, Bollen 등(2003)이 투명교정장치의 활성화 시간에 대해서 연구하였는데, 2주 간격으로 장치를 활성화 시키는 것이 가장 효과적이라고 하였다. 하지만 현재 재료나 회사에 따라 서로 다른 다양한 숨식을
제시하고 있다. 여러 연구들이 있었으나 주로 임상중례 중심의 연구였으며, 재료의 물리적 성질에 관한 연구는 많지 않았고, 연구 시 사용한 재료가 한정적이었다. 대부분의 연구에서는 하중을 재료에 부여하는 방법이나 측정하는 방법이 임상에서의 조건을 반영하지 못하였다는 한계점을 가지고 있다.

따라서 임상적인 상황을 실험에 반영하기 위해서, 한국성인 상악 전치부 배열을 고려한 일정 크기의 시편을 제작한 후, 시편의 양 끝이 고정된 상태에서 열가소성 재료의 종류, 두께, 변형량에 따라 변형시키고자 할 때 필요한 하중(gf)과, 변형되었던 재료가 원래의 상태(resting position)로 돌아갈 때 재료의 응력(gf/mm²)을 평가하였다. 또한 이전에 연구되지 않은 반복하중에 따른 하중과 응력의 변화를 분석하였다.
II. 연구대상 및 방법

1. 연구 재료

본 실험에서 사용한 치과 교정용 투명교정장치는 현재 시판되고 있는 재료인 0.5, 0.75, 1.0 mm 두께의 Duran(Scheu-Dental, Iserlohn, Germany), 0.5, 0.75, 1.0 mm 두께의 Easy-vac(3A Medes, Gyeonggi-do, Korea), 0.5, 0.75, 1.0 mm 두께의 Essix A+(Raintree Essix, Inc. New Orleans, Louisiana, USA), 0.75, 1.0 mm 두께의 Essix ACE(Raintree Essix, Inc. New Orleans, Louisiana, USA)를 이용하였다 (Table 1). 한국 성인에서의 평균적인 상악 전치 절단면에서의 두께(2 mm)와 상악 전치의 최대 종류부에서의 두께(8.5 mm)와 높이(7 mm)를 반영하고(이 등, 1997), 모형의 총 높이는 Sheridon 등(1993)이 제안한 모형 높이(20 mm)를 고려하여 경석고로 모형을 제작한 뒤 연마 하였다. 이후 Biostar®(Scheu-Dental, Iserlohn, Germany)(Fig 1)에 제작한 모형을 올려놓고 제조사가 추천하는 열성변형조건을 이용하여 열을 가한 뒤 시편을 만들었다 (Table 2). 시편을 다시 15 × 35 mm 크기로 각각 9개씩 총 99개를 얻었다.

Table 1. Prescription of materials used in this study

<table>
<thead>
<tr>
<th>Product name</th>
<th>Thickness (mm)</th>
<th>Manufacturer</th>
<th>Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duran</td>
<td>0.5, 0.75, 1.0 mm</td>
<td>Scheu-Dental (Iserlohn, Germany)</td>
<td>Polyethylene terephthalate glycol</td>
</tr>
<tr>
<td>Easy-vac</td>
<td>0.5, 0.75, 1.0 mm</td>
<td>3A Medes (Gyeonggi-do, Korea)</td>
<td>Polyethylene terephthalate glycol</td>
</tr>
<tr>
<td>Essix A+</td>
<td>0.5, 0.75, 1.0 mm</td>
<td>Raintree Essix, Inc. (Louisiana, USA)</td>
<td>Copolyester</td>
</tr>
<tr>
<td>Essix ACE</td>
<td>0.75, 1.0 mm</td>
<td>Raintree Essix, Inc. (Louisiana, USA)</td>
<td>Copolyester</td>
</tr>
</tbody>
</table>

Essix ACE is not produced 0.5 mm thickness sheet.
Fig 1. Biestar® (Scheu–Dental, Iserlohn, Germany) and fabricated dental model
2. 연구방법

2.1. 열성변형 전후의 두께변화

재료의 두께에 대해 명시되어 있지만, 열성변형 전에 판형 모형의 열가소성 재료의 두께를 세부분에서 측정하여 평균을 구하였다. 열성변형조건을 이용하여 시편을 제작한 후에 시편의 중심 부위의 두께를 electronic digital caliper로 측정하여 열성 변형 전후의 두께 변화를 비교하였다 (Table 2).

Table 2. Condition of thermoform used in this study

<table>
<thead>
<tr>
<th>Brand</th>
<th>Thickness (mm)</th>
<th>Temperature (°C)</th>
<th>Heating time (Sec)</th>
<th>Cooling Time (Sec)</th>
<th>Biostar® Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duran</td>
<td>0.50</td>
<td>220</td>
<td>25</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>220</td>
<td>30</td>
<td>20</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>220</td>
<td>35</td>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td>Easy-vac</td>
<td>0.50</td>
<td>220</td>
<td>25</td>
<td>20</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>220</td>
<td>30</td>
<td>20</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>220</td>
<td>35</td>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td>Essix A+</td>
<td>0.50</td>
<td>220</td>
<td>30</td>
<td>20</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>220</td>
<td>35</td>
<td>60</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>220</td>
<td>40</td>
<td>60</td>
<td>142</td>
</tr>
<tr>
<td>Essix ACE</td>
<td>0.75</td>
<td>220</td>
<td>25</td>
<td>60</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>220</td>
<td>35</td>
<td>60</td>
<td>133</td>
</tr>
</tbody>
</table>
2.2. 3점 굴곡 실험 및 3점 굴곡 회복 실험

3점 굴곡 실험은 만능시험기(Model 5567, Instron® Co. Pennsylvania, USA)를 사용하여 시행하였다. 임상적인 상황을 실험에 반영하기 위하여 3점 굴곡 실험시 양측을 유리단이 아닌 고정하는 방법을 선택하였다 (Fig 2). 양끝단 고정된 사이의 길이를 24.0 mm가 되도록 제작하였는데, 이것은 상악 중절치 2개와 측절치 1개의 크기를 반영한 것이다. 3점 굴곡 실험을 위하여 제품의 두께별로 6개씩 시편을 준비하여 5 mm/min 속도의 crosshead speed로 변위량이 2.0 mm가 될 때까지 하중을 부여하였고, 0.5 mm 간격마다 gf 단위로 총 66개 시편의 하중(gf)을 측정하였다. 이때 스타일러스의 폭은 12.2 mm이다.

최대 변형(2.0 mm) 시행 후 하중 전달 실험(force delivery test)을 위해서 3점 굴곡 회복 실험을 수행하였다. 위와 동일한 시편을 사용하여 스타일러스를 5 mm/min의 crosshead speed로 위쪽으로 0.0 mm가 될 때까지 이동시켰다. 이 때 변형 되었다가 회복될 때의 재료가 가지는 응력(gf/mm²)을 0.5 mm 간격마다 gf/mm² 단위로 측정하였다.

위의 실험을 동일하게 5회 반복하면서 동시에 하중(gf)과 응력(gf/mm²)을 측정하였다.

Fig 2. Experimental procedure in this study. (Lt.: Universal test machine, Instron®, Rt.: schematic diagram of 3 point bending test.)
3. 계측치의 분석 및 통계 처리

하중(gf)과 응력(gf/mm²)에 영향을 주는 요인을 알아보기 위해 Linear Regression을 시행하였으며, 두께와 변형량이 동일할 경우 제품간의 차이를 알아보기 위해서는 One-way ANOVA test 후 사후검정으로 Tukey test를 시행하였다. 두께와 변형량이 동일할 경우 재료에 따른 차이를 알아보기 위해 Independent two-samples t-test를 시행하였고, 5회 반복하중 후 하중(gf)과 응력(gf/mm²)의 변화를 알아보기 위해서 repeated measures ANOVA test를 시행하였다. 분석 도구는 SAS 9.1Ver(SAS Inc., North Carolina)이다.
III. 연구 결과

1. 열성 변형 전후의 두께변화

모든 재료는 열성 변형 후 두께가 감소하였으며, 평균적인 두께 감소율은 41.1~43.8 % 였다 (Table 3).

Table 3. Thickness differentiation after thermoform

<table>
<thead>
<tr>
<th>Original thickness</th>
<th>Brand</th>
<th>Thickness before thermoform</th>
<th>Thickness after thermoform</th>
<th>ΔThickness</th>
<th>ΔThickness rate (%)</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.50</td>
<td>Duran</td>
<td>0.58</td>
<td>0.30</td>
<td>0.28</td>
<td>48.3</td>
<td>43.8</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>0.51</td>
<td>0.29</td>
<td>0.22</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>0.50</td>
<td>0.30</td>
<td>0.20</td>
<td>40.0</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Duran</td>
<td>0.85</td>
<td>0.48</td>
<td>0.36</td>
<td>42.4</td>
<td>43.7</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>0.71</td>
<td>0.41</td>
<td>0.30</td>
<td>42.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>0.74</td>
<td>0.40</td>
<td>0.34</td>
<td>45.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>0.75</td>
<td>0.42</td>
<td>0.33</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>Duran</td>
<td>0.99</td>
<td>0.58</td>
<td>0.41</td>
<td>41.4</td>
<td>41.1</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>1.03</td>
<td>0.59</td>
<td>0.44</td>
<td>42.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>1.02</td>
<td>0.59</td>
<td>0.43</td>
<td>42.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>1.03</td>
<td>0.64</td>
<td>0.39</td>
<td>37.9</td>
<td></td>
</tr>
</tbody>
</table>

SD, standard deviation
ΔThickness(%), percentage of thickness change after thermoform
2. 재료, 제품, 두께, 변형량의 하중(gf)과 응력(gf/mm²)에 대한 영향

두께와 변형량에 대해 상호 교호작용이 관찰되었으며 ($P < 0.05$), 하중(gf)과 응력(gf/mm²)에 대한 회귀 방정식을 도출하였다. 두께 및 변형량이 해석식에서 하중과 응력에 가장 큰 영향력을 나타내었으며, 재료와 제품에 따라 하중과 응력의 유의한 차이는 없었다 (Table 4, Fig 3).

Table 4. Interaction and regressional equation table for force and stress

<table>
<thead>
<tr>
<th>Source</th>
<th>DF</th>
<th>Type III</th>
<th>Mean Square</th>
<th>F value</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force (gf)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products-Thickness</td>
<td>3</td>
<td>165005.16</td>
<td>55001.72</td>
<td>0.04</td>
<td>NS</td>
</tr>
<tr>
<td>Thickness</td>
<td>1</td>
<td>29310957.92</td>
<td>29310957.92</td>
<td>20.38</td>
<td>***</td>
</tr>
<tr>
<td>Products-Deflection</td>
<td>3</td>
<td>1147142.1</td>
<td>382380.7</td>
<td>0.89</td>
<td>NS</td>
</tr>
<tr>
<td>Deflection</td>
<td>1</td>
<td>322134835.7</td>
<td>322134835.7</td>
<td>752.14</td>
<td>***</td>
</tr>
<tr>
<td>Stress (gf/mm²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Products-Thickness</td>
<td>3</td>
<td>24032.151</td>
<td>8010.717</td>
<td>0.07</td>
<td>NS</td>
</tr>
<tr>
<td>Thickness</td>
<td>1</td>
<td>1774483.80</td>
<td>1774483.809</td>
<td>15.63</td>
<td>***</td>
</tr>
<tr>
<td>Products-Deflection</td>
<td>3</td>
<td>52259.91</td>
<td>17419.97</td>
<td>0.46</td>
<td>NS</td>
</tr>
<tr>
<td>Deflection</td>
<td>1</td>
<td>23675190.96</td>
<td>23675190.96</td>
<td>623.27</td>
<td>***</td>
</tr>
</tbody>
</table>

DF, degree of freedom; Sig, significance; NS, not significance.

*** : $P < 0.001$

10
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Beta</th>
<th>SE</th>
<th>t</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>-40.652988</td>
<td>215.9988796</td>
<td>-0.19</td>
<td>0.8508</td>
</tr>
<tr>
<td>Duran</td>
<td>29.541121</td>
<td>83.8757615</td>
<td>0.35</td>
<td>0.7248</td>
</tr>
<tr>
<td>Easy-vac</td>
<td>19.594683</td>
<td>83.4017941</td>
<td>0.23</td>
<td>0.8143</td>
</tr>
<tr>
<td>Essix A+</td>
<td>47.609460</td>
<td>85.0087192</td>
<td>0.56</td>
<td>0.5757</td>
</tr>
<tr>
<td>Essix ACE (Reference)</td>
<td>0.000000</td>
<td>.</td>
<td>.</td>
<td>.</td>
</tr>
<tr>
<td>Thickness</td>
<td>-353.455108</td>
<td>249.5547074</td>
<td>-1.42</td>
<td>0.1572</td>
</tr>
<tr>
<td>Deflection</td>
<td>-143.878767</td>
<td>162.0279966</td>
<td>-0.89</td>
<td>0.3749</td>
</tr>
<tr>
<td>Thickness × Deflection</td>
<td>1389.205438</td>
<td>201.5631523</td>
<td>6.89</td>
<td><.0001</td>
</tr>
</tbody>
</table>

SE, Standard Error

Fig 3. The increase of force and stress level depending on thickness and amount of deflection. (Lt. : Force (gf), Rt. : Stress (gf/mm²))
3. 두께와 변형에 따른 하중(gf)과 응력(gf/mm²)의 범위

모든 제품을 1.0 mm 이상 변형 시, 최소 221 gf의 하중이 필요하였고 (Table 5), 이때 최소 37 gf/mm²의 응력이 발생되었다 (Table 6). 두께가 1.0 mm인 모든 제품에서 0.5 mm 변형 시, 최소 159 gf의 하중이 필요하였고, 이때 최소 16 gf/mm²의 응력이 발생되었다. 최소 응력은 19 gf/mm² 이상이었다.

두께와 변형량에 따른 하중과 응력에 미치는 영향력이 크기 때문에, 두 가지 조건 중 한가지 조건을 동일하게 한 경우 재료간 혹은 제품간에는 유의한 차이가 있는지 알아보았다. 동일한 두께에서 재료간 혹은 제품간의 유의한 차이가 없었고, 또한 변형량이 동일한 경우에도 재료간 혹은 제품간 유의한 차이가 없었다.

두께와 변형량의 두 조건을 모두 동일하게 한 뒤 제품에 따른 차이를 알아보았다. 0.75 mm 두께의 재료에서 0.5, 1.0, 1.5 mm 변형하였을 경우에만 제품에 따라 하중에서 유의한 차이가 있었고, 이 경우를 제외하고는 유의한 차이가 없었다.

두께와 변형량의 두 조건을 모두 동일하게 한 뒤재료에 따른 차이를 알아보았다. Copolyester로 구성된 재료들과 polyethylene terephthalate glycol로 구성된 재료들을 비교하여 보면, 두께에 상관없이 변형량이 1.0 mm일 때 재료의 응력에서만 통계적으로 유의한 차이가 있었고 (P < 0.05), 이 경우를 제외하고는 재료에 따른 유의한 차이가 없었다.
Table 5. Comparison of force (gf) depending on deflection level for each product

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Brand</th>
<th>Force (gf)</th>
<th>Deflection (mm)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>0.50</td>
<td></td>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td></td>
<td>Duran</td>
<td>86.8</td>
<td>36.6</td>
<td>373.2</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>32.7</td>
<td>18.0</td>
<td>220.9</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>54.3</td>
<td>18.1</td>
<td>299.8</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>92.9</td>
<td>44.7</td>
<td>435.4</td>
</tr>
<tr>
<td>0.75</td>
<td></td>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td></td>
<td>Duran</td>
<td>153.0</td>
<td>42.8</td>
<td>613.2</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>85.9</td>
<td>28.1</td>
<td>436.6</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>110.9</td>
<td>36.0</td>
<td>499.2</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>92.9</td>
<td>44.7</td>
<td>435.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td>Duran</td>
<td>158.6</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>214.0</td>
<td>41.9</td>
<td>825.5</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>213.9</td>
<td>50.0</td>
<td>818.5</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>239.4</td>
<td>89.5</td>
<td>875.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Duran</td>
<td>158.6</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>214.0</td>
<td>41.9</td>
<td>825.5</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>213.9</td>
<td>50.0</td>
<td>818.5</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>239.4</td>
<td>89.5</td>
<td>875.2</td>
</tr>
</tbody>
</table>

* : P < 0.05
Table 6. Comparison of stress (gf/mm²) depending on deflection rate for each product

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Brand</th>
<th>Stress (gf/mm²)</th>
<th>Deflection (mm)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td>S.D.</td>
</tr>
<tr>
<td>0.5</td>
<td>Duran</td>
<td>5.3</td>
<td>5.0</td>
<td>54.9</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>2.0</td>
<td>5.0</td>
<td>36.6</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>3.1</td>
<td>2.0</td>
<td>55.7</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>5.8</td>
<td>3.0</td>
<td>77.4</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>0.75</td>
<td>Duran</td>
<td>8.9</td>
<td>14.2</td>
<td>87.3</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>4.4</td>
<td>4.6</td>
<td>73.0</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>10.2</td>
<td>7.0</td>
<td>86.5</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>5.8</td>
<td>3.0</td>
<td>77.4</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>1.00</td>
<td>Duran</td>
<td>19.0</td>
<td>11.4</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>23.9</td>
<td>15.5</td>
<td>154.0</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>29.4</td>
<td>5.3</td>
<td>159.7</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>15.8</td>
<td>16.3</td>
<td>135.8</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>
4. 반복하중 이후 힘의 상쇄 (force decay)

각 실험군에 대한 반복하중 시, 모든 군에서 하중 (gf)과 응력 (gf/mm²)의 유의한 감소가 관찰되었다 ($P < 0.01$). 5회의 반복하중 후 평균 10-17%의 하중의 감소와 4-7%의 응력의 감소가 관찰되었다 (Fig 4).

(Thickness : 0.5 mm)

(Thickness : 0.75 mm)
Fig 4. The graph of force and stress changes after repeated loading. (Lt. : Force(gf), Rt. : Stress(gf/mm²))

두께와 변형량의 두 조건을 모두 동일하게 한 뒤 반복 하중에 따른 제품의 차이를 알아보았다. 하중(gf)을 살펴보면, 0.5 mm 두께의 재료를 1.0 mm 이상 변형하였을 때 Easy-vac의 값이 유의하게 낮았으나, 0.75 mm 두께의 재료를 1.5 mm 이상 변형하였을 때 Duran이 유의하게 높은 값을 나타냈다. 1.0 mm 두께의 재료를 1.5 mm 이상 변형하였을 때 Duran이 유의하게 높은 값을 보였다 (Table 7). 응력(gf/mm²)을 살펴보면, 0.5 mm 두께의 재료를 1.0 mm 이상 변형하였을 때 Easy-vac의 값이 유의하게 낮았으나, 0.75 mm 두께의 재료를 2.0 mm 이상 변형하였을 때 Duran이 유의하게 높은 값을 나타냈다. 1.0 mm 두께의 재료를 1.0 mm 이상 변형하였을 때 Duran이 유의하게 높은 값을 보였다. 응력과 하중의 제품간 경향성은 비슷하였다 (Table 8).
Table 7. Comparison of force (gf) depending on deflection level for each product

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Brand</th>
<th>Force (gf)</th>
<th>Deflection (mm)</th>
<th>Mean</th>
<th>S.D.</th>
<th>Mean</th>
<th>S.D.</th>
<th>Mean</th>
<th>S.D.</th>
<th>Mean</th>
<th>S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td>Duran</td>
<td>31.2</td>
<td>40.5</td>
<td>250.8</td>
<td>a</td>
<td>116.6</td>
<td>844.8</td>
<td>a</td>
<td>215.8</td>
<td>1890.9</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>16.5</td>
<td>19.6</td>
<td>161.8</td>
<td>b</td>
<td>64.6</td>
<td>639.4</td>
<td>b</td>
<td>111.2</td>
<td>1549.1</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>25.2</td>
<td>26.8</td>
<td>234.1</td>
<td>ab</td>
<td>60.1</td>
<td>830.3</td>
<td>a</td>
<td>108.1</td>
<td>1921.6</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>Duran</td>
<td>71.1</td>
<td>74.6</td>
<td>427.9</td>
<td></td>
<td>185.5</td>
<td>1423.7</td>
<td>a</td>
<td>213.3</td>
<td>3075.4</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>37.5</td>
<td>42.2</td>
<td>328.9</td>
<td></td>
<td>107.2</td>
<td>1149.2</td>
<td>b</td>
<td>196.6</td>
<td>2611.6</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>58.5</td>
<td>46.6</td>
<td>382.4</td>
<td></td>
<td>144.3</td>
<td>1231.6</td>
<td>ab</td>
<td>300.5</td>
<td>2705.4</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>45.9</td>
<td>43.3</td>
<td>338.4</td>
<td></td>
<td>124.1</td>
<td>1138.6</td>
<td>b</td>
<td>214</td>
<td>2549.0</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
<tr>
<td>1.00</td>
<td>Duran</td>
<td>97.7</td>
<td>56.9</td>
<td>515.7</td>
<td></td>
<td>151.5</td>
<td>1581.2</td>
<td>b</td>
<td>331.1</td>
<td>3426.5</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>127.2</td>
<td>80.1</td>
<td>660.7</td>
<td></td>
<td>149.5</td>
<td>1996.9</td>
<td>a</td>
<td>264.3</td>
<td>4239.7</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>136.9</td>
<td>65.6</td>
<td>680.4</td>
<td></td>
<td>149.3</td>
<td>1967.4</td>
<td>a</td>
<td>275.8</td>
<td>4133.4</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>108.7</td>
<td>119.9</td>
<td>642.6</td>
<td></td>
<td>248.2</td>
<td>1888.0</td>
<td>a</td>
<td>441.8</td>
<td>3852.1</td>
<td>ab</td>
</tr>
<tr>
<td></td>
<td>Significance</td>
<td></td>
</tr>
</tbody>
</table>

The significant difference was defined by Tukey test.

a,b,c The same superscripts indicate no stability significant difference between the indicated group \((P > 0.05)\).

* : \(P < 0.05\)

** : \(P < 0.001\)
Table 8. Comparison of stress (gf/mm²) depending on deflection rate for each product

<table>
<thead>
<tr>
<th>Thickness (mm)</th>
<th>Brand</th>
<th>Stress (gf/mm²)</th>
<th>Deflection (mm)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Mean S.D.</td>
<td>Mean S.D.</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>Duran</td>
<td>1.9 4.0</td>
<td>50.2 a 21.2</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>0.9 4.2</td>
<td>33.3 b 13.2</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>2.6 2.5</td>
<td>51.1 a 8.2</td>
<td>*</td>
</tr>
<tr>
<td>0.75</td>
<td>Duran</td>
<td>5.8 12.2</td>
<td>77.4 42.5</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>2.5 4.4</td>
<td>67.6 17.3</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>7.4 6.6</td>
<td>81.1 30.9</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>4.0 3.5</td>
<td>72.4 20.4</td>
<td>*</td>
</tr>
<tr>
<td>1.00</td>
<td>Duran</td>
<td>15.5 ab 10.1</td>
<td>110.7 ab 34.1</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Easy-vac</td>
<td>18.0 ab 15.9</td>
<td>142.4 ab 26.3</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Essix A+</td>
<td>24.4 a 7.0</td>
<td>149.5 ab 22.5</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Essix ACE</td>
<td>8.6 b 18.5</td>
<td>122.0 d 28.5</td>
<td>*</td>
</tr>
</tbody>
</table>

The significant difference was defined by Tukey test.

a,b,c The same superscripts indicate no stability significant difference between the indicated group (P > 0.05).

* : P < 0.05

** : P < 0.001
IV. 고찰

심미적인 교정 장치에 관한 관심이 증가되면서 투명교정장치에 관한 관심도 증가되었다. 투명교정장치는 Kesling 등(1945)에 의해서 처음 소개되어, 최근 Align Technology에서 개발한 Invisalign System (Align Technology, Santa Clara, Calif, USA)에 이르기까지 점점 적용범위가 확대되었다 (Boyd 등, 2000).

특히 투명교정장치의 재료가 되는 열가소성 재료는 심미적이며 사용하기 쉽고 성형성이 우수하여, 교정용 유지장치나 이갈이 장치, 턱관절 스플린트, 미백 트레이 등에서도 사용되고 있다(McNamara 등, 1985; Ponitz 등, 1971; Rinchuse 등, 1997).

열가소성 재료를 열성변형 하여 여러 가지 장치를 만들 수 있는데, 이는 열가소성 재료가 가지는 온도에 따른 물리적인 특성의 변화를 이용한 것이다. 열가소성 재료는 중합체(polymers)의 일종으로 강한 분자 내 공유결합과 약한 분자간 반데르발스 결합으로 이루어져 있다. 온도가 올라가면 분자들 사이의 결합들이 쉽게 약해져 분자들 사이에서 흐름성이 나타나게 되고, 온도가 내려가게 되면 분자들 사이의 결합은 새로운 모양으로 고형화된다. 온도 변화에 따른 물리적인 변형 동안에도 열가소성 재료는 화학적으로는 변화가 일어나지 않는다. 이러한 온도에 따른 열가소성 재료의 물리적인 변형을 이용하여 판형의 열가소성 재료로 치아모형에 적합되는 투명교정장치를 만들 수 있다.

투명교정장치는 치아에 직접적인 접촉을 통하여 교정력을 부여하고, 원하는 위치로 치아 이동이 일어나게 한다. 이때 장치가 치아에 교정력을 가하는 원리는 재료가 원래의 모양으로 돌아가려는 탄성력을 사용하는 것이다. 투명교정장치는 원하는 위치로 이동시킨 치아 모형을 이용하여 제작되기 때문에 장치를 구성 내 장착시 셋업 된 위치로 치아가 이동하도록 힘을 가한다. 즉, 장착 시 변형되었던 장치가 원래의 모양으로 회복되려는 힘에 의해 치아에 교정력을 가하게 된다. 변형 후 회복과정 동안에 장치에 존재하는 응력이 회복을 통하여 치아를 이동시키므로, 재료의 응력은 교정력을 반영한다는 점에서 임상적으로 중요하다.

현재 다양한 열가소성 재료가 시판되어 임상적으로 쓰여지고 있다. Bollen 등(2003)은 투명교정장치로 치료 시 여러 가지 조건에 관해 연구하였는데,
재료의 단단한 정도는 치료의 효율성에 큰 영향을 주지 않는다고 하였다. 그러나 발치 유무와 총생의 정도, 활성화 간격은 치료의 효율성에 영향을 주었는데, 비발치 치료이면서 PAR index (Peer Assessment Rating index)가 낮은 경우(Riedel 등, 1992)에 2주 간격으로 활성화 시키는 것이 가장 효과적이라고 하였다. Clements 등(2003)은 투명교정장치로 치료한 후 치료 결과에 대해 분석하여 보았는데, 협측 교합은 거의 개선되지 않지만 전치부 배열은 가장 많이 개선 되었다고 하였다. 이와 같은 다양한 열가소성 교정 재료를 이용한 많은 성공적인 임상 결과가 보고되었지만(Chenin 등, 2003; Vlaskalic 등, 2001), 재료의 물리적 성질에 관한 연구는 많지 않았다. 또한 연구 시 사용한 재료가 한정적이었으며, 장치에 전달되는 하중과 임상적으로 교정력과 관련된 장치가 장착되어 원래의 상태(resting position)로 되돌아가려 할 때의 재료의 응력에 대해 완전히 알려지지 않았다.

본 실험은 적용 범위가 점점 확대되고 있는 투명교정장치의 열가소성 재료에 대해 변형 시 가해지는 하중과 원래의 상태로 되돌아가려 할 때 재료가 가지는 응력에 관해서 연구하였다. 연구의 특징을 살펴보면 첫째, 3점 굴곡 실험을 실시할 때 이전 실험(Kwon 등, 2008)과는 다르게 양 끝을 고정원(fixation zig)으로 고정한 상태로 실험을 하였다. 양끝을 고정한 것은 투명교정장치를 구강 내착용시 고정원 치아들에 의해 장치가 유지되는 임상적인 상황을 실험에 반영한 것이다. 둘째, 한국 성인에서의 평균적인 상악 전치의 크기를 모형에 반영하여 시편을 제작하였다. 상악 전치 절단면에서의 두께(2 mm)와 상악 전치 최대 높이에서의 두께(8.5 mm)와 높이(7 mm)를 반영하여 모형을 만들었고(이 등, 1997), 이것을 열성변형 시 사용하였다. 셋째, 3점 굴곡 실험을 실시할 때 3점 굴곡 회복 실험을 함께 실시하였다. 즉 재료가 변형되도록 하는 하중과 함께 변형 후 재료의 탄성에 의해 원래의 상태로 돌아올 때 재료의 응력도 함께 측정하였다. 장착 시 변형되었던 투명교정장치가 회복 시 가지고 있는 응력에 의해 치아를 이동시키므로 투명교정장치의 교정력을 알아보기 위해 응력 측정하였다. 열가소성 재료는 높은 점탄성 재료로서 일반적으로 열성 변형 과정을 거치며 주변 환경의 온도, 습도와 열성 변형을 시행한 시간, 열성 변형 방법등에 의해 물리적 특성이 영향을 받게 된다(Eliades 등, 1999; Huget 등, 1990). 열성 변형
과정은 판형의 열가소성 재료에 열을 가해서 연화시킨 후 모형에 적합시킨 뒤 압력을 가하는 것으로 열을 가하여 sheet를 연화(softening)시킨 정도나 모형의 준비상태, positive 혹은 negative pressure를 사용한 방법 등에 의해서 최종적인 적합성이 영향을 받게 된다(Yamada 등, 2007). 만약 과열(overheating) 된다면 변색이 일어나거나 표면의 질감이 변하게 되며, 저열(underheating)시에는 모형의 세세한 부분이 제외되지 않는다. 본 연구에서는 제조자가 추천한 방법으로 실험을 실시하였다. 제조회사가 제공하는 Material Safety Data Sheet (MSDS)에 나타있는 특성은 표준환경(23.8 ℃, 50 % Relative Humidity)상태에서 측정된 것으로, 이 특성을 기본으로 코드를 이용하여 임상에 사용되고 있다. 현재 구강 내 환경에서 열성변형의 조건에 따른 재료의 특성에 대해 보고된 것은 없고, 단지 제조회사의 추천방법과 제작자의 경험에 기초하여 임상에서 쓰여지고 있다.

현재 다양한 두께의 열가소성 재료가 시판되고 있는데, 명시된 열가소성 재료의 두께가 열성변형 과정을 거치는 동안 변하게 된다. Ryokawa 등(2006)은 열성변형 후에 열가소성 재료의 두께가 기존 두께의 74.9-92.6 % 정도의 두께로 줄어든다고 보고하였다. 이번 실험에서는 평균적으로 원래의 두께의 57.5 %로 두께가 감소하였고, 이전 연구보다 두께 감소량이 컸다. 두께 감소량의 차이는 재료의 두께에 따라서 달라질 수 있는데, 두꺼운 재료 일수록 더 많이 감소하는 경향을 보였다. 또한 제작 시 사용하는 모형에 따라서도 달라질 수 있는데, 이전 연구는 사전에 제작 시 직사각형 모양의 모형을 사용하였으나 본 연구에서는 임상적인 환경을 반영하기 위해 한국인의 평균적인 상악 전치 형태를 반영하여 삼각기둥 형태의 모형을 열성변형 시 이용하였다(Table 2). 또한 재료에 따라서 혹은 열성변형 조건에 따라서 두께변화가 달라질 수 있는데, 이것에 관한 추가적인 연구가 필요할 것으로 생각된다.

교정장치의 목적으로서는 작용 부위에 존재하는 모든 세포를 자극하여 치아 또는 골을 물리적으로 변위시키는 것으로, 골을 개조하고 치아와 주위 지지조직간에 새로운 평형 상태를 형성하게 하는 것이다. 교정 치료를 위한 적절한 힘의 양은 치주인대 내에서 혈관을 폐쇄시키지 않으면서 세포활성을 자극할 만큼 충분해야 한다. 이상적인 치아이동을 위해서는 치아에 적용되는 힘의 양 뿐만 아니라 치주인대에 분포되는 힘의 양도 중요하다. 실제로 치주 인대의 반응은 종 힘의
양으로 결정되지 않고 단위 면적당 힘에 의해 결정된다. 하지만 임상적으로 치주
인대 내의 힘의 분포나 교착에 대해서는 알기 어렵기 때문에 최적의 힘에
관하여서는 아직까지도 논란이 있다. Proffit 등(2007)은 단일 치아의 경우
이동의 종류에 따른 최적의 힘에 대해서 언급하였다. 투명교정장치는
치주손목이나 치근이동 보다는 경사이동이나 회전을 위해서 주로 사용되는데
경사이동과 회전을 위해서는 35~60 g의 힘이 치아에 가해져야 한다고 하였다.
모든 제품에서 1.0 mm 이상의 변형을 위해서는 적어도 221 gf의 하중이
필요하였고 (Tables 5), 1.0 mm 이상의 변형 시 재료가 가지는 응력은 37
gf/mm² 이상이었다 (Tables 6). 또한 1.0 mm 두께의 모든 제품에서는 0.5 mm
변형량에서 적어도 159 gf의 하중이 필요하였고, 응력은 16 gf/mm² 이상이었다.
재료의 선택 시 1.0 mm 이상의 두께를 사용하거나 치아를 1.0 mm 이상
이동시에는 예상했던 교정력보다 과도한 힘이 발생하였다. 이로 인해 치아 및
치아 주위 조직에 위한 부작용이 가해질 수 있으며, 환자의 통증 역시 이상으로
교정력이 가해질 경우 환자의 불편감이 증대 될 수 있다. 실제 임상에서도 0.5
mm 혹은 0.75 mm 두께의 재료는 초기 배열을 위해 주로 사용하고 있고, 1.0
mm 두께의 재료는 유지장치로 쓰여지고 있다. 경우에 따라 다양하겠지만, 치아
모형의 셋업 양은 일반적으로 0.5 mm 정도였다. 투명교정장치에 의해 치아에
전달되는 힘은 실제 임상에서 술자가 의도한 교정력 이상으로 강한 힘이 작용 할
수 있을음에 유의해야 한다. 만약 많은 치아이동이 필요한 경우에는 장치 제작 시
한변에 치아 이동을 많이 하는 것 보다는, 치아의 이동을 적절하게 한 뒤 치아가
운동하는 후 장치를 제작하거나 장치에 플라워를 이용한 indentation이나
bump를 부여하여 추가적인 치아이동을 도모하는 것이 좋다(Sheridan 등, 1993).
투명교정장치가 변형 시 필요한 하중과 재료가 원래의 상태로 돌아올 때의
응력에 영향을 주는 요인을 살펴보면, 재료, 제품, 두께, 변형량 중에서 두께와
변형량에 대해 상호 교착작용이 관찰되었으며 ($P < 0.05$), 하중과 응력에 대한
회귀 방정식이 도출되었다. 두께 및 변형량이 하중과 응력에 큰 영향력을
바탕으로하였다. 재료와 제품은 하중과 응력에 대한 두께와 변형량에 비해서는
유의한 영향력이 없었다. 두께와 변형량이 하중과 응력에 미치는 영향력이 컸기
때문에 두 가지 조건 중 한 가지 조건이 동일한 경우 제품간 혹은 재료간에

22
유의한 차이가 있는지 알아보았다. 동일한 두께에서 변형량에 따라서는 유의한 차이가 있었으나 제품간 제품간의 유의한 차이가 없었고, 또한 변형량에 동일한 경우에도 두께에 따른 유의한 차이가 있었으나 제품간 제품간의 차이가 없었다. 즉, 생리적인 치아이동을 위한 필요한 응력을 얻기 위하여 제품과 제품간 신중하게 선택해야 하지만 가장 중요한 것은 임상 상황에 따라 적절한 제품의 두께와 치아의 이동량을 결정해야 한다는 것이다.

두께와 변형량의 두 조건을 모두 동일하게 한 뒤 열가소성 재료에 따른 차이를 알아보았다. Copolyester로 구성된 Duran, Easy-vac과 polyethylene terephthalate glycol로 구성된 Essix A+, Essix ACE를 비교하여 보면 두께와 관계없이 변형량이 1.0 mm일 때 재료의 응력에서만 통계적으로 유의한 차이가 있었고 ($P < 0.05$), 이 경우를 제외하고는 재료에 따른 유의한 차이가 없었다. Polyethylene terephthalate glycol은 무색 투명한 재료로 테레프탈산과 에틸렌글리콜의 축합반응에 의해 얻어지는 포화폴리에스테르 수지로서 주로 섬유용에 이용하는 것 외에 필름이나 열가소성 성형재료로서 사용된다. 이 재료는 인장 및 기계강도가 강하며 내마모성이 크며, 분자구조와 결정성은 극성분자를 함유하여 결정화하기 쉬우며 강력한 성형재료를 만든다. Copolyester는 polyester를 변형한 것으로, polyethylene terephthalate의 에스테르 교환 반응에 의해서 제조될 수 있으며, 물질에 영향을 주는 다양한 화학적 환경에서도 강도와 투명성이 유지되며 변형성과 굴곡성을 가지고 있다.

두께와 변형량의 두 조건을 모두 동일하게 한 뒤, 1회 실험 시 제품간의 차이를 알아보았다. 0.75 mm 두께를 0.5, 1.0, 1.5 mm 변형시킬 경우 하중에서만 제품간의 유의한 차이가 있다. 0.75 mm 두께의 Duran이 다른 0.75 mm 두께의 제품에 비해서 열성변형 후에 두께가 큰 경향을 나타내었는데, 열성변형 후의 두께의 차이가 하중의 크기에 영향을 주었을 것으로 생각된다. 통계적으로는 두께와 변형량이 같은 조건에서 제품의 차이를 나타낼 것이지만, 제품의 특성에 따른 차이 뿐만아니라 열성변형 후 제품의 두께 차이에 의한 영향이 있었을 것으로 생각된다. 나머지 경우에는 제품간의 차이는 유의한 차이가 없었다. 즉, 제품의 두께와 치아의 이동량이 변형 시 제품가 필요로 하는 하중과 변형 후 회복 시 제품의 응력이 가장 큰 영향을 끼친다.
투명교정장치를 이용한 교정 치료시 반복적으로 착탈(Gardner 등, 2003)을 하게 되며, 이러한 상황에 따른 하중과 응력의 변화에 대하여 연구하였다. 모든 실험시편에 대해 2.0 mm 변위량까지 5회 반복하중을 가하였으며, 5회 반복하중 동안에 0.5 mm 간격으로 하중(gf)과 응력(gf/mm²)을 측정하였다. 결과를 살펴보면 모든 실험군에서 유의한 차이가 관찰되었고 (P < 0.01), 평균 10-17 %의 하중의 감소와 4-7 %의 응력의 감소가 관찰되었다 (Fig 4). 두께와 변형량의 두 조건을 모두 동일하게 한 뒤 반복하중에 따른 제품간의 차이를 알아보았다. 하중을 구체적으로 살펴보면, 0.5 mm 두께의 재료를 1.0 mm 이상 변형하였을 때 Easy-vac의 값이 제품 중에 제일 낮았고 (P < 0.05), 1.0 mm 두께의 재료를 1.5 mm 이상 변형하였을 때는 Duran이 제일 낮은 값을 보였다고 (P < 0.05). 하지만 0.75 mm 두께의 재료를 1.5 mm 이상 변형하였을 때 Duran이 제일 높은 값을 나타내었다 (P < 0.01). 응력에서도 동일한 두께와 동일한 변형량에서 하중과 같은 양상을 보였다. 두께가 0.75 mm 인 Duran의 열성변형 후의 두께 차이가 하중의 크기에 영향을 주었을 것으로 생각된다.

교정력의 크기는 얼마나 감소하는가와 중요한 상호관계가 있다. 비록 가하는 교정력이 적절하다 하더라도 치아 이동 후나, 반복하중에 따른 힘의 상쇄(force decay)에 의해 감소율이 큰 경우 원하는 힘을 발휘할 수 없다. 그러나 강한 힘을 적절한 경우에 힘의 상쇄(force decay)가 크다면, 힘을 다시 작용하기 전까지 치주인대의 재생과 보상을 위한 시간을 제공할 수 있다. 두께가 0.75 mm인 재료의 초기 하중은 최대 153 gf 이었으나, 반복하중을 가한 뒤 최대값이 71.1 gf 까지 감소하였다. 0.75 mm 두께를 사용시 초기에는 과도한 교정력을 가할 수 있지만, 초기의 과도한 힘은 반복하중에 따른 재료의 피로도에 의해 감소하게 된다. Invisalign system에서는 0.75 mm 두께의 재료를 주로 이용하는데, 이 때 치아 이동량을 0.2-0.3 mm 정도로 추천하고 있다 (Tuncay 등, 2006). 이와 같이 투명교정장치를 임상에 적용시 반복적인 착탈에 의한 힘의 상쇄를 고려하여야 하며, 특히 0.75 mm 두께의 재료를 초기 배열을 위해 사용시에는 치아 이동량에 대하여 신중하게 결정하여야 한다.

이상의 결과 하중과 응력에 가장 영향을 많이 주는 요소는 재료의 두께와 치아의 이동량인 것을 알 수 있다. 제품에 상관없이 두께가 1.0 mm 이상인
재료를 사용하거나 치아를 1.0 mm 이상 이동시에는 예상했던 교정력보다 과도한 힘이 발생하였다. 생리적으로 치아를 이동시키기 위해서는, 초기에 치아배열을 위해 사용하는 투명교정장치의 결정 시 재료의 두께와 치아 이동량을 고려하여 과도한 힘이 가해지지 않도록 해야 한다. 또한 반복하중 후에 열가소성 재료의 피로도에 의한 힘의 상쇄를 고려하여 임상에 적용해야 한다.

본 연구에서는 amorphous plastic만을 실험재료로 이용하였고, 습윤 조건등 구강 내 환경을 완벽하게 재현하지는 못하였다. 또한 모델 조건도 단일 치아 조건을 반영한 것으로 임상적인 상황을 완벽하게 재현하기는 못하였다. 앞으로 다양한 열가소성 재료를 이용하여 구강 내 환경과 임상적인 상황을 재현한 추가적인 연구가 필요할 것으로 생각한다. 또한 임상에서 실제로 사용한 투명교정장치를 이용하여 열가소성 재료의 특성을 연구하는 실험도 필요할 것이다.
본 연구에서는 실험적인 Model의 조건에서 투명 교정장치의 재료로 쓰이는 4가지 종류의 열가소성 재료(0.5 mm, 0.75 mm, 1.0 mm 두께)를 2.0 mm까지 변위 시킬 때 필요로 하는 하중(gf)과 변위 후 탄성력에 의한 회복 시 재료의 응력(gf/mm²)을 평가하였다. 또한 하중과 응력에 영향을 미치는 조건에 대해 알아보았고, 열가소성 재료의 피로도를 평가하기 위해 반복하중 후의 하중과 응력의 변화에 대해 실험하여 다음과 같은 결과를 얻었다.

1. 열가소성 재료의 두께와 변형량에 대해 상호 교호작용이 관찰되었으며 ($P < 0.05$), 하중(gf)과 응력(gf/mm²)에 대한 회귀 방정식이 도출되었다. 열가소성 재료의 두께 및 변형량이 하중과 응력에 가장 큰 영향력을 나타내었으며, 재료간 혹은 제품간의 하중과 응력에는 유의한 차이가 없었다.

2. 모든 제품을 1.0 mm 이상 변형 시. 최소 221 gf의 하중이 필요하였고, 이때 최소 37 gf/mm²의 응력이 발생하였다. 두께가 1.0 mm인 모든 제품에서 0.5 mm 변형 시, 최소 159 gf의 하중이 필요하였고, 이때 최소 16 gf/mm²의 응력이 발생하였다.

3. 각 실험군에 대한 반복하중 시 하중(gf)과 응력(gf/mm²)에서 유의한 차이가 관찰되었고 ($P < 0.01$), 평균 10-17%의 하중의 감소와 4-7%의 응력의 감소가 관찰되었다.

이상의 결과, 하중(gf)과 응력(gf/mm²)에 가장 영향을 많이 주는 요소는 재료의 두께와 치아의 이동량인 것을 알 수 있다. 투명교정장치를 이용하여 생리적으로 치아를 이동시키기 위해서는 초기 치아배열을 위해 사용하는 열가소성 재료의 두께와 셋업 시 치아 이동량을 고려하여 과도한 힘이 가해지지 않도록 하여야 한다.
않도록 해야 한다. 또한 반복하중 후에 열가소성 재료의 피로도에 의한 혈의
상해를 고려하여 임상에 적용해야 한다.
참고문헌

Eliades T, Eliades G, Watts DC. Structural conformation of in vitro and in

Nahoum H. The vacuum formed dental contour appliance. NY State Dent J

Abstract

The effect of thickness and deflection of orthodontic thermoplastic materials on its mechanical properties

Sam Min

Department of Dentistry
The Graduate School, Yonsei University
(Directed by Professor Jung-Yul Cha, D.D.S., Ph.D.)

Today’s demand for esthetic method of orthodontic treatment has increased the usage of clear orthodontic appliances. Clear orthodontic appliances are esthetic, simple to use, and have excellent formability. Clear orthodontic appliances have been used in partial orthodontic treatment or as retainers. Although many successful clinical results with clear orthodontic appliances have been reported, the mechanical properties of thermoplastic materials are not fully studied. the force applied and stress when the material is restoring to its resting position are not fully demonstrated.

The 4 types of thermoplastic products (0.5 mm, 0.75 mm, 1.0 mm) were tested in this study. Applied force until the deflections of 2.0 mm and the stress when the materials were restoring to its resting position were evaluated. The conditions which affected force and stress are investigated, the mechanical properties of different thermoplastic materials evaluated after 5 repeated loading cycles.

The obtained results were as follows:'
1. The interaction was observed between the thickness and the deflection level \((P < 0.05)\) from the regression equation. Thickness and amount of deflection rather than products and materials showed the largest effect on force and stress.

2. In all products, at least 221 gf of force was required for more than 1.0 mm deflection. The stress recorded were more than 37 gf/mm\(^2\). At least 159 gf of force was required when materials with 1.0 mm thickness were deflected more than 0.5 mm. At least 16 gf/mm\(^2\) of stress was recorded for the same condition.

3. During repeated loading, each group showed significant difference on the force and the stress \((P < 0.01)\), and 10\(^{-}\text{17~}\%\) reduction of force and 4\(^{-}\text{7~}\%\) reduction of stress in average.

These results showed that the thickness and the amount of deflection showed the largest effect on the force and the stress. Proper thickness of thermoplastic appliance and deflection level of tooth movement should be decided for the physiologic tooth movement. In addition, force decay after repeated loading should be considered for the efficient tooth movement.

Key word: Thermoplastic material, Force, Stress, Repeated loading