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ABSTRACT 
  
 
 
Functional Characterization of a Novel POK family Transcription Factor, 
ZBTB5, in the Transcriptional Regulation of Cell Cycle Arrest p21CIP1 

Gene 
 
 

Dong-In Koh 
 
 

Department of Medical Science 
The Graduate School, Yonsei University 

 
(Directed by Professor Man-Wook Hur) 

 
 

 

Transcriptional repression through chromatin remodeling and histone 

deacetylation has been postulated as a driving force for tumorigenesis. We isolated 

and characterized a novel POZ domain Krüppel-like zinc finger transcription 

repressor, ZBTB5 (zinc finger and BTB domain-containing 5). Serial analysis of gene 

expression (SAGE) analysis showed that ZBTB5 expression is higher in 

retinoblastoma and muscle cancer tissues. Immunocytochemistry showed that ZBTB5 

was localized to the nucleus, particularly nuclear speckles. ZBTB5 directly repressed 

transcription of cell cycle arrest gene p21 by binding to the proximal GC-box 5/6 
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elements and the two distal p53-responsive elements (bp -2323 ~ -2299; bp -1416 ~ 

-1392). Chromatin immunoprecipitation assays showed that ZBTB5 and p53 

competed with each other in occupying the p53 binding elements. ZBTB5 interacted 

with corepress or histone deacetylase complexes such as BCoR (BCL-6-interacting 

corepressor), NCoR (nuclear receptor corepressor), and SMRT (silencing mediator for 

retinoid and thyroid receptors) via its POZ domain. These interactions resulted in 

deacetylation of histones Ac-H3 and Ac-H4 at the proximal promoter, which is 

important in the transcriptional repression of p21.    

MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays and 

fluorescent-activated cell sorter analysis revealed that ZBTB5 stimulated both cell 

proliferation and cell cycle progression, significantly increasing the number of cells in 

S-phase. Overall, our data suggest that ZBTB5 is a potent transcription repressor of 

cell cycle arrest gene p21 and a potential proto-oncogene stimulating cell 

proliferation. 

 

Key words: ZBTB5, p53, p21, Sp1, Transcriptional factor, BTB/POZ protein  
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Ι. INTRODUCTION 

The POZ domain, an evolutionarily conserved protein-protein interaction motif 

found in many regulatory proteins1-2, was originally identified in Drosophila 

melanogaster bric-á- brac, tramtrack, and broad complex transcription regulators and 

in many pox virus zinc finger proteins3-4. As many as 184 known human proteins, 96 

Drosophila proteins, and 137 Caenorhabditis elegans proteins are estimated to 

contain the POZ domain (SMART data base). POZ domain proteins are involved in 

many critical cellular processes such as apoptosis5, development6-7, ion channel 

activity4, oncogenesis8–10, and transcription10–16. In particular, some of the POZ 

domain Krüppel-like zinc finger (POK) proteins are the major determinants of 
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development, differentiation, and oncogenesis. For instance, promyelocytic leukemia 

zinc finger (PLZF)-null mice display severe defects in limb development and germ 

stem cell maintenance7,17. Th-POK (T-helper-inducing POZ/Kru¨ppel- like factor, 

also known as cKrox) has been recently reported as a master regulator of T-cell 

lineage commitment18. BCL-6(B cell lymphoma transcription factor-6), PLZF, and 

HIC1 (Hypermethylated In Cancer) have been implicated in non- Hodgkin lymphoma, 

acute promyelocytic leukemia, and spontaneous malignant tumors, respectively8- 9,19. 

Recently, FBI-1 (also called Pokemon/LRF/ZBTB7A) was characterized as a 

proto-oncogenic transcription factor regulating ARF and Rb (retinoblastoma) genes10, 

20 and also as a critical determinant of B versus T lymphoid lineage fate21.          

The most striking and common property of POZ domain transcription factors is 

their ability to repress transcription via their POZ domains12–16,20, although a few 

actually activate transcription, such as FBI-1 and MIZ-1 in certain promoter 

contexts22-23. This characteristic probably underlies many biological processes 

controlled by these factors. The ability of the domain to interact with other key 

regulatory proteins such as corepressor proteins and other transcription factors 

appears to be important for repression. In particular, the POZ domains of human 

PLZF and BCL-6 have been shown to interact with SMRT/N-CoR, mSin3A, BCoR, 

and histone deacetylase12–16,20. Chromatin compaction by histone deacetylase complex 

recruited by the POZ domain was suggested to repress transcription in the case of 

PLZF-RAR a fusion protein13, 24, 26.  
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The cyclin-dependent kinase inhibitor p21 is a major player in cell cycle arrest in 

mammalian cells and the downstream cell-cycle regulator of the ARF-HDM2 

-p53-p21 pathway27–29. The p21 gene, mainly regulated at the transcriptional level, is 

a transcriptional target of tumor suppressor p53 and plays a crucial role in mediating 

growth arrest when cells are exposed to DNA-damaging agents. Overexpression of 

p21 results in G1-, G2-, or S-phase arrest upon exposure to DNA-damaging 

agents30–32. Whereas induction of p21 predominantly leads to cell cycle arrest, 

repression of p21 may have a variety of outcomes depending on the cellular context29. 

Aside from p53, a variety of other factors including specificity proteins 1 and 3 

(Sp1/Sp3), Smads, Ap2, STAT, BRCA1, E2F-1/E2F-3, and C/EBPα and ß-activate 

the transcription of p2129 In addition to its role responding to DNA damage, p21 has 

also been implicated in terminal differentiation, replicative senescence, and protection 

from p53-dependent and -independent apoptosis29.  

Sp1 family transcription factors that bind at the proximal promoter (bp -120 to -50) 

represent another group of major regulators that affect p21 gene expression29. Sp1 is 

one of the best characterized transcription factors that bind to GC-rich DNA 

sequences in numerous cellular and viral genes33-34. The six Sp1 binding GC boxes of 

the p21 proximal promoter have been shown to be important; mutation of the sites not 

only significantly affects transcription but also disrupts synergistic transcription 

activation by Sp1 and p53 and other signals that regulate p21 gene transcription29,35. 

Among the six GC boxes found in this region, GC-box 3 mediates p21 induction by 
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various agents such as transforming growth factor-ß, butyrate, the histone deacetylase 

inhibitor trichostatin A, lovastatin, and Ca2+. In contrast, GC-boxes 1 and 2 mediate 

transcriptional activation by phorbol esters and okadaic acid, the tumor suppressor 

protein BRCA1, and gut-enriched Krüppel-like factor (GKLF, KLF4). To date, no 

specific role has been attributed to the most proximal and overlapping GC boxes 5 

and 629. Together, these observations suggest that the specificity of utilizing different 

proximal GC-boxes under different p21 regulation conditions is important.  

From the analysis of amino acid sequences of all available human POZ-domain 

proteins, we identified a novel ZBTB5 POK protein with a POZ-domain and two 

unique zinc finger domains. We investigated whether ZBTB5 could regulate any 

components of the ARF-HDM2-p53-p21 pathway and examined the mechanisms and 

physiological consequences of ZBTB5 action. ZBTB5 repressed transcription of the 

p21 gene and significantly increased cell proliferation. Our data suggest that ZBTB5 

may be an important transcription regulator of p21 and may play a critical role in 

regulating important biological processes controlled by p21.  
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Π. MATERIALS AND METHODS 

 

1. Plasmids, Antibodies, and Reagents 

p21-Luc plasmid was kindly provided by Dr. Yoshihiro Sowa of the Kyoto 

Perpetual University of Medicine (Kyoto, Japan). The various pGL2-p21-Luc, 

pGL2-p53-Luc, pGL2-ARF-Luc, pGL2-HDM2-Luc, pcDNA3.1-p53, pcDNA3.1-Sp1, 

pG5-5x(GC-box)-Luc, corepressor expression vectors, and VP16-corepressors we 

used have been reported elsewhere or were prepared by us20,23,25. The 

pcDNA3-ZBTB5 plasmid was prepared by cloning a cDNA fragment (KIAA0354) 

into pcDNA3.0. The GAL4-POZZBTB5 plasmid was prepared by cloning a cDNA 

fragment (encoding amino acids 1–135) into a pCMX-Gal4 plasmid. To prepare 

recombinant GST-POZZBTB5 and GST-ZFZBTB5 proteins, cDNA fragments 

encoding the POZ domain (amino acids 1–123) and zinc fingers (amino acids 

612–766) were cloned into pGEX4T3. All plasmid constructs were verified by DNA 

sequencing. Antibodies against p21, p53, Sp1, glyceraldehyde-3-phosphate 

dehydrogenase, FLAG tag, Ac-H3, Ac-H4, HDAC3, and SMRT were purchased from 

Upstate (Charlottesville, VA), Chemicon (Temecula,CA), Calbiochem, and Santa 

Cruz Biotechnology (Santa Cruz, CA). Most of the chemical reagents were purchased 

from Sigma. 
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2. Cell Cultures 

HEK293A, HCT116 p53-/-, and CV-1 cells were cultured in Dulbecco’s modified 

eagle medium supplemented with 10% fetal bovine serum. Saos-2 cells were cultured 

in McCoy’s 5A medium supplemented with 15% fetal bovine serum. Transcriptional 

Analysis of ARF-, HDM2-, p53-, p21-, and p53-responsive Promoter : pGL2-ARF- 

Luc, pGL2-HDM2-Luc, pGL2-p53-Luc, pG13-Luc, pG5-5x(GC-box)-Luc, and 

various pGL2-p21-Luc promoter reporter fusion plasmids as well as pcDNA3-ZBTB5, 

pcDNA3.1-p53, and pCMV-LacZ in various combinations were transiently 

transfected into various cell lines (HEK293A, HCT116, Saos-2, and CV-1) using 

Lipofectamine Plus reagent (Invitrogen). After 24–36 h of incubation, cells were 

harvested and analyzed for luciferase activity. Reporter activity was normalized with 

contransfected ß-galactosidase activity for transfection efficiency. Cells were seeded 

in the 96-well plate and incubated for 16 hr. The cells were co-treated with 30 μM 

TBB(SIGMA-Aldrich, St-Louis, MO, USA) and 500 ng/ml TRAIL(ATGen, 

Sungnam, Korea) for 3 hr. For the measurement of cell viability, MTT assay was 

performed. Briefly, cells were incubated with 2 mg/ml MTT (SIGMA-Aldrich) for 2 

hr. The supernatants were then removed and 100 μl DMSO (Duchefa, BH Haarlem, 

The Netherlands) was added to the 96-well plate. Absorbance was recorded at 570nm 

using SpectraMax ELISA reader. The data are expressed as mean±s.d. for 

quardruplicate, and similar results were obtained from two independent experiments. 
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3. Quantitative real-time PCR of ZBTB5 mRNA expression in cells and RT-PCR 

of total RNA prepared from FVB mouse tissues 

Total RNA was isolated from HEK293A cells using TRIzol reagent (Invitrogen). 

cDNAs were synthesized using 5 μg of total RNA, random hexamer (10 pmol), and 

Superscript reverse transcriptase II (200 units) in 20μl using a reverse transcription kit 

(Invitrogen). qPCR was performed using SYBR Green Master Mix (Applied 

Biosystems). The following qPCR oligonucleotide primers sets were used: ZBTB5 

forward, 5’-CCACTAGTGACTGCAGGCTG-3’, ZBTB5 reverse, 5’-CCTGCATAG 

GCCTGACGAA- 3’; p21 forward, 5’-AGGGGACAGCAGAGGAAG-3’, p21 rever 

se, 5’-GCGTTTGGAGTGGTAGAAATCTG-3’; GAPDH forward, 5’-CCCCTTCAT 

TGACCTCAACTAC-3’, GAPDH reverse, 5’-TCTCGCTCCTGGAAGATGG-3’.  

To analyze ZBTB5 mRNA expression in FVB mouse, total RNA was isolated as 

described above from mouse brain, heart, liver, muscle, kidney, spleen, brown 

adipose tissues, and white adipose tissues, and RT-PCR was carried out using the 

following oligonucleotide primer sets ZBTB5 mRNA forward, 5’-TTGCTGTTCAC 

AGCTGCCAC-3’; reverse, 5’-TTAGCCTGCGGGCCTTCCAC-3’. 

 

4. Western blot analysis 

Cells were harvested and lysed in RIPA buffer (50 mM Tris-HCl pH8.0, 1% 

NP-40, 0.25% sodium deoxycholic acid, 150 mM NaCl, 1 mM EGTA, complete 

Mini-Protease cocktail). Cell extracts (40 ㎍) were separated using 12% SDS-PAGE 
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gel electrophoresis, transferred onto Immun-BlotTM PVDF membranes (Bio-Rad, CA), 

and blocked with 5% skim milk (BD Biosciences, MD). Blotted membranes were 

incubated with antibodies against FLAG-tag (Sigma), GAPDH (Chemicon, CA), p21, 

p53, Sp1 (SantaCruz Biotech, CA) and then incubated with anti-mouse or rabbit 

secondary antibody conjugated with HRP (Vector Laboratory, CA). Protein bands 

were visualized with ECL solution (PerkinElmer, CA).  

 

5. Knock-down of ZBTB5 mRNA by siRNA 

Four siRNA against ZBTB5 mRNA were designed and purchased from 

Dharmacon(Lafayette,CO):siZBTB5-1,5’-AACUUUACU-3’,5’-AGUAAAGUUAU-

3’;siZBTB5-2,5’-AGCUCGCAA-3’,5’-UUGCGAGCUCC-3’;siZBTB5-3,5’-UCCUC

AUUU-3’,5’-AAAUGAGGACG-3’;siZBTB5-4,5’-UAAUGGAUG-3’,5’-CAUCCA

UUACA-3’. siRNA (200pmoles) were transfected into HEK293A cells using 

Lipofectamine 2000 (Invitrogen, CA). After transfection, the cells were harvested, 

total RNA was prepared, and RT-PCR analysis of mRNA was performed as described 

above. 

 

6. Quantitative chromatin immunoprecipitation (qChIP) assays 

    The molecular interaction between ZBTB5 and p53 or Sp1 on the p21 promoter 

and histone modification at the p21 proximal promoter in HEK293A, Saos-2 and 

Drosophila SL2 cells, were analyzed by following standard qChIP assay protocol, as 



 11

described elsewhere20,23,36.  

Qualtitative PCR of chromatin immunoprecipitated DNA was carried out using 

oligonucleotide primer sets designed to amplify the upstream regulatory regions 

around p53 binding sites and the proximal promoter region of the p21 gene: p53 

RE#1 binding primers (bp:-2307~-1947), forward, 5’-CTGTGGCTCTGATTGGCTT 

-3’, reverse, 5’- GGGTCTTTAGAGGTCTCCTGTCT-3’; p53 RE#2 binding primers 

(bp: -1462~-1128), forward, 5’- CCACAGCAGAGGAGAAAGAAG -3’, reverse, 5’- 

GCTGCTCAGAGTCTGGAAATC-3’. To analyze histone H3 and H4 modification at 

the proximal promoter (bp -133 to +100), forward, 5’-GATCGGTACCGCGCTGGGC 

AGCCAGGAGCCT-3’, reverse,5’-TCGTCACCCGCGCACTTAGA-3’ primers were 

used. Control 3’UTR region of p21 gene, forward, 5’-TCCTTCCCATCGCTGTC 

ACA-3’, reverse, 5’-GTCACCCTGCCCAACCTTAG-3’. 

 

7. Immunoprecipitation assays 

Cells transfected with pcDNA3-FLAG-ZBTB5 expression vector were washed, 

pelleted, and resuspended in a lysis buffer supplemented with protease inhibitors (20 

mM Tris-HCl, pH7.5, 150 mM NaCl, 10% glycerol, 1% Triton X-100). Cell lysate 

was precleared, and the supernatant was incubated overnight with anti-FLAG 

antibody on a rotating platform at 4℃, followed by incubation with protein 

A-Sepharose Fast Flow beads. Beads were collected, washed, and resuspended in 

equal volumes of 5x SDS loading buffer. Immunoprecipitated proteins were separated 
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with 12% SDS-PAGE. The western blot assay was performed as described above. 

 

8. Mammalian two-hybrid assays 

HEK293A cells (or CV-1 cells) were co-transfected with pG5-Luc, 

pGal4-POZZBTB5, pVP16-corepressors, and pCMV-LacZ using Lipofectamin Plus 

(Invitrogen, CA). After 36 hrs of transfection, cells were harvested and assayed for 

luciferase activity. Luciferase activity was then normalized with co-transfected 

β-galactosidase activity. 

 

9. GST fusion protein purification, in vitro transcription and translation of 

corepressors, p53, or Sp1, and pull-down assays  

Recombinant GST, GST-POZZBTB5, and GST-ZFZBTB5 fusion proteins were 

prepared from E. coli BL21 (DE3) grown for 4 hrs at 37℃ in a medium containing 1 

mM IPTG. The E. coli were lysed and purified using glutathione-agarose 4 bead 

affinity chromatography (Peptron, Taejeon, Korea). The purified proteins were then 

resolved with 12% SDS-PAGE to quantitate and assess purity. Corepressor, p53, and 

Sp1 polypeptides were prepared by incubating 1 µg of pcDNA3-corepressor, 

pcDNA3.1-p53, and pcDNA3.1-Sp1 expression plasmid with TNT Quick-coupled 

Transcription/Translation Extract (Promega, WI) containing 40 ㎕ of TNT Quick 

Master Mix and 2 µl of [35S]-methionine (1175.0 Ci/mol) (PerkinElmer Life Sciences, 

MA) at 30°C for 90 min. Polypeptide expression levels were then analyzed by 
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running 1 ㎕ of the total mixture through 12% SDS-PAGE and autoradiography. 

For GST-fusion protein pull-down assays, GST-fusion protein-agarose bead 

complexes were incubated with 10 ㎕ of in vitro translated [35S]-methione–labeled 

corepressors, p53, and Sp1 polypeptides at 4°C for 4 hrs in HEMG buffer. The 

reaction mixtures were centrifuged, pellets were rinsed, and the bound proteins were 

separated using 12% SDS-PAGE. Gels were then exposed to X-ray film using an 

image-intensifying screen (Kodak, NY). 

 

10. Preparation of recombinant adenovirus overexpressing ZBTB5 

ZBTB5 cDNA was cloned into the adenovirus E1 shuttle vector pCA14 

(Microbix; Ontario, Canada), to generate pCA14-ZBTB5. The pCA14-ZBTB5 shuttle 

vector was linearized by XmnI digestion, and the adenovirus vector vmdl324Bst 

(from Dr. Verca at the University of Fribourgh, Switzerland) containing the Ad5 

genome deleted in the E1 and E3 region was also linearized with BstBI digestion. The 

linearized pCA14-ZBTB5 and the vmdl324Bst digested with BstBI were 

co-transformed into E. coli BJ518 for homologous recombination. TProper 

homologous recombinant adenoviral plasmid was digested with PacI and tranfected 

into 293 cells to generate the adenovirus expressing ZBTB5 (dl324-ZBTB5). 

Propagation and titration of the recombinant virus was carried out by standard 

methods. PCR amplification and DNA sequencing using primers specific to ZBTB5 

confirmed the adenovirus genotype. 
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11. EMSA (Electro-Mobility Shift Assay) 

EMSAs were carried out as described previously20,23,36. The probe sequences of Sp1 

response elements on the p21 proximal promoter or the sequences of p53 response 

elements on the p21 distal promoter used in EMSA were as follows (only top strands 

are shown): GC-box 1, 5’-GATCGGGAGGGCGGTCCCG-3’; GC-box2, 5’-GATCC 

CGGGCGGCGCG-3’; GC-box3, 5’-GATCCGAGCGCGGGTCCCGCTC-3’; GC- 

box4, 5’-GATCCTTGAGGCGGGCCCG-3’; GC-box 5/6, 5’-GATCGGGCGGGGCG 

GTTGTATATCA-3’; p53 Re #1, 5’-GATCCGTTAGAGGA AGAAGACTGGGCATG 

TCTG-3’; p53 RE2 #2, 5’-GATCCATCAGGAACATGTCCCAACATGTTGAGCTC 

-3’. 

 

12. Immunocytochemistry 

HEK 293A cells were transfected with pcDNA3-ZBTB5 plasmid, washed, and 

fixed with cold methanol/formaldehyde. Cells were permeabilized, washed, blocked 

with horse serum, and cells were incubated with mouse anti-His primary antibody. 

After thorough washing, cells were further incubated with FITC-conjugated 

anti-mouse IgG secondary antibody and, finally, the cells were soaked with solution 

containing 4, 6-diamidino-2-phenylindole (1 mg/ml). The cells were mounted and 

examined with Carl Zeiss LSM 510 confocal laser scanning microscope (Carl Zeiss, 

Germany). 
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13. FACS analysis 

HEK293A cells were transfected with ZBTB5 expression vector or siZBTB5 

RNA. The cells were washed, fixed with methanol, and stained with 50 μg/ml 

propidium iodide in100 μg/ml ribonuclease A for 30 min at 37°C in the dark. DNA 

content, cell cycle profiles, and forward scatter were analyzed with a FACS Calibur 

(BD Biosciences), with emission detection at 488 nm (excitation) and 575 nm (peak 

emission). Data were analyzed using ModFit LT 2.0 (Verity Software House, Inc., 

ME) and WindMDI 2.8 (Joseph Trotter, Scripps Research Institute, CA). 

 

14. MTT assay 

Confluent HEK293A cells grown on 10 cm culture dishes were transfected with 

ZBTB5 expression vector or siZBTB5 RNA in the presence or absence of p53 

expression vector. And cells (1.5x105 cells) were transferred to 6 well culture dish and 

grown for 0-6 days. At 0, 2, 4, 6 days, cells were incubated 1 h at 37°C with 20μl/well 

MTT (2 mg/ml). Precipitates were dissolved with 1 ml of dimethylsulfoxide. Cellular 

proliferation was determined from the conversion of MTT to formazan using a 

SpectraMAX 250 (Molecular Device Co., Sunnyvale, CA) at 570 nm 

 

 

15. BrdUrd incorporation 

HEK293A cells were plated at 40% confluency and transfected for 48 hrs with 
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1.68 μg siRNA, pcDNA3-FBI-1-FLAG, or pcDNA3. Cells were incubated 4 h in 

DMEM with BrdUrd (20μM), washed, fixed, permeabilized, incubated 2 h with an 

anti-BrdUrd monoclonal antibody, washed, and incubated 1 h with an AlexaFluor 488 

goat anti-mouse IgG secondary antibody. Nuclei were stained with DAPI for 10 min. 

HeLa cells were analyzed with a Radiance 2100 Laser Scanning System (Bio-Rad). 
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Ш. RESULTS 

 

1. ZBTB5 is a New BTB/POK protein that represses transcription of the p21 

and HDM2 genes of the p53 pathway. 

We isolated and characterized a novel member of the human POZ protein family, 

ZBTB5 (zinc finger and BTB domain-containing 5 or KIAA0354), which encodes a 

protein of 677 amino acid residues. ZBTB5 has a POZ domain at its N terminus 

(amino acids 1–123) and two zinc finger domains at its C terminus (amino acids 613– 

664) (Fig. 1A; supplementary Fig. 1). Serial analysis of gene expression (SAGE) 

analysis shows that ZBTB5 is expressed in most human tissues, and our RT-PCR 

analysis of mouse total RNA showed that mouse Zbtb5 is also expressed ubiquitously, 

with particularly high expression in spleen and white adipose tissues (supplementary 

Fig. 3B). Immunocytochemistry revealed nuclear localization of ZBTB5 

(supplementary Fig. 3C). Interestingly, ZBTB5 is highly expressed in retina and 

muscle cancer tissues (cgap.nci.nih.gov). 

Recently, several reports have implicated POZ domain proteins such as FBI-1, 

BCL-6, and Miz-1 in cell cycle regulation, differentiation, development, and 

oncogenesis10,20,22. We investigated whether ZBTB5 influenced expression of genes of 

the p53 pathway, which are important in the regulation of cell cycle. ZBTB5 

expression vector and various promoter-Luc fusion reporter constructs were 

transiently co-transfected and analyzed for reporter luciferase gene expression in 
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HEK293A cells. ZBTB5 repressed transcription of p21 and HDM2 gene expression 

by 70 and 35%, respectively (Fig. 1B). The ectopic ZBTB5 expressed by plasmid or 

recombinant ZBTB5 adenovirus repressed endogenous p21 gene transcription (Fig. 1, 

C and D). Alternatively, knock-down of ZBTB5 mRNA by siRNA derepressed 

endogenous p21 transcription in HEK293A cells (Fig. 1, E and F).  Overall, our data 

suggest that ZBTB5 is a transcription repressor of p21 gene.  
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Figure 1. ZBTB5 represses transcription of the p21 and HDM2 genes in 

HEK293A cells. (A) Structure of the ZBTB5 protein. Open box, POZ domain; 

numbered open circles, zinc fingers. (B) Transcription assays of p53 pathway genes 

by ZBTB5. ZBTB5 expression vector and promoter-luciferase fusion reporter plasmid 

were transiently co-transfected into HEK293A cells and luciferase activity was 

measured. (C) Western blot analysis of HEK293A cell lysates transiently transfected 

with ZBTB5 expression vector. GAPDH, control. (D) qRT-PCR analysis of the total 

RNA isolated from HCT116 and HEK293A cells transfected with either control 

adenovirus (dl324) or recombinant adenovirus (dl324-ZBTB5) overexpressing 

ZBTB5. (E) qRT-PCR analysis of the endogenous p21 and ZBTB5 mRNA after 

HEK293A cells were transfected with three different siRNAs targeting ZBTB5 or 

nonsilencing siRNA. Knock-down of ZBTB5 mRNA derepressed p21 gene 

expression. (F) Western blot analysis of HEK293A cell lysates transiently transfected 

with ZBTB5 siRNA, GAPDH, control. 
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2. ZBTB5 represses transcription of cell cycle arrest p21 gene an repression by 

ZBTB5 is dependent on p53 binding elements. 

We examined which regulatory elements of the p21 promoter were important for 

transcriptional repression of p21 by ZBTB5 in HEK293A cells. As ZBTB5 repressed 

transcription of the endogenous p21 gene (Fig. 1B). ZBZTB5 repressed transcription 

of two different promoter constructs (-1462 and -2307 bp) by 30–80%, and repression 

was particularly potent with the -2.3-kilobase promoter. Interestingly, ZBTB5 was not 

able to repress transcription of shorter promoter constructs (-864 and -131 bp) and 

instead significantly activated transcription of p21 (190–310%). ZBTB5 transcription 

activation was particularly potent with the shortest promoter construct (-131 bp), 

which is highly concentrated in Sp1 binding GC boxes (Fig. 2, A and B). It appears 

that ZTB5 significantly repressed transcription of the p21 promoter bearing a 

-2.3-kilobase upstream sequence containing the two distal p53-binding sites but that 

repression was somewhat weak with the -1.5-kilobase construct with one p53 binding 

element. These data suggest that transcriptional repression by ZBTB5 may involve 

p53 and distal p53 binding elements. 
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Figure 2. ZBTB5 represses transcription of the p21 gene by acting on the distal 

regulatory element containing p53 binding sites. (A) Structure of various p21 

promoter constructs tested. (B) Transcription assays. HEK293A cells were transiently 

co-transfected with ZBTB5 expression vector and pGL2-p21-Luc reporter plasmids 

with variable upstream sequences and analyzed for luciferase activity. 
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3. ZBTB5 represses transcriptional activation of p21 by p53 and binds to the 

p53 binding elements and proximal Sp1 binding GC-box 5/6 

Because ZBTB5 only significantly repressed transcription of the promoter with 

distal p53 binding sites, we suspected that the repression mechanisms involved p53 

and distal p53 binding elements. We investigated whether ZBTB5 could block the 

transcriptional activation of p21 by etoposide activated p53 or by ectopic p53 in 

HEK293A cells and HCT116 p53-/- cells lacking p53. In HEK293A cells, treatment 

with the DNA-damaging agent etoposide increased p21 gene expression by inducing 

p53, which was again repressed by ZBTB5 (Fig. 3A). Additional transcriptional 

analysis of pG5–6x(p53RE)-Luc with five copies of p53 binding elements of the p21 

gene in the proximal promoter showed that ZBTB5 blocked transcription activation 

by p53 in Saos-2 cells (Fig. 3B). Ectopic p53 expression in HCT116 p53-/- cells 

increased p21 gene expression, which was repressed by ZBTB5 (Fig. 3C). 

Interestingly, ZBTB5 increased p21 gene expression in HCT116 p53-/- cells, which is 

relevant with the transcription activation of the short p21 promoter lacking p53 

binding element in HEK293A cells (Fig. 2B).  

It is also important to note that ZBTB5 repressed transcription without the 

induced or ectopic p53 in HEK293A cells on the two promoter constructs (Fig. 3, A 

and B). These data suggest that ZBTB5 may inhibit transcription of the p21 gene by 

directly acting on the distal p53 binding elements. Indeed, EMSA showed that the 

zinc finger DNA binding domain of ZBTB5 can bind to p53RE-1 and -2 (Fig. 3, D 
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and E). Moreover, oligonucleotide pulldown assays showed that endogenous ZBTB5 

binds the elements (Fig. 3E). These results imply a two p53 binding elements and that 

the binding competition may be important in transcription repression. In addition, 

ZBZTB5 also bound to the proximal Sp1 binding GC-box 5/6, although relatively 

weakly compared with the p53 binding elements in EMSA (Fig. 3, D and E). 
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Figure 3. ZBTB5 represses transcription activation by p53. ZBTB5 binds to the 

distal p53 binding elements and proximal GC-box 5/6 of the p21 gene. (A)      

Transcription analysis in HEK293A cells. Etoposide treatment of the cells increased 

p21 gene expression, which was repressed by ZBTB5. (B) Transcriptional activation 

of pGL2-6x(p53RE)-Luc by ectopic p53 was repressed by ZBTB5 in Saos-2 cells 

lacking p53. p53RE, distal p53-binding element of p21. (C) Transcription analysis. 

HCT116 p53-/- cells lacking p53 were transiently co-transfected with a mixture of an 

expression vector of p53 and/or ZBTB5 and pGL2-p21-Luc Wt (-2.3 kb), and 

luciferase activity was measured. (D) EMSA. Two p32-α-dATP-labeled p53RE-1 and 

-2 probes and Sp1 binding GC-box 5/6 probes were incubated with GST-ZFZBTB5 

(0.5 μg) and separated by 4% nondenaturing PAGE. ZBTB5 bound to the distal p53 

binding elements and GC-box 5/6 of p21. ZFZBTB5, Zinc finger DNA binding 

domain of  ZBTB5. (E) Oligonucleotide pull-down assay of ZBTB5 binding to the 

p53 binding elements and proximal GC-box 5/6. HEK293A cells extracts were 

incubated with biotinylated double-stranded oligonucleotides. The mixtures were 

further incubated with streptavidin-agarose beads and precipitated by centrifugation. 

The precipitate was analyzed by Western blot assay using antibodies against ZBTB5 

and Sp1. 
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4. ZBTB5 and p53 compete with each other in binding to the p53 binding 

elements, but ZBTB5 dramatically increases Sp1 binding to the proximal 

GC-box 5/6 of endogenous p21 gene 

We tested whether the ZBTB5 and p53 proteins compete for sites on the 

endogenous p21 gene using quantitative ChIP assays. A FLAG-ZBTB5 expression 

vector was transiently transfected into HEK293A cells, and binding interactions were 

analyzed on the p53RE-1 and -2 and the proximal GC boxes of endogenous p21. ChIP 

assays using antibodies against FLAG tag and p53 revealed that ZBTB5 bound to 

p53RE-1 and -2 by competing with p53 in a dose-dependent manner (Fig. 4, B and C). 

In contrast, qChIP assays of binding of ZBTB5 and Sp1 on the proximal promoter of 

endogenous p21 revealed that ZBTB5 not only binds to the region but also 

dramatically increases Sp1 binding to the region (Fig. 4D), which may explain the 

synergistic transcription activation on the short p21 promoter construct.  

Although the functional significance of the binding of FLA-ZBTB5 to the 

proximal promoter GC boxes in the short promoter context remains unclear, our data 

suggest that ZBTB5 may repress transcription of the endogenous p21 gene by binding 

competition with p53, thus interfering with p53 binding onto the distal p53 binding 

elements and communication between p53 and proximal promoter bound Sp1 on the 

endogenous p21 gene. 
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Figure 4. ZBTB5 competes with p53 in binding to the distal p53 binding elements 

and increases Sp1 binding to the GC-box 5/6 in vivo. (A) Structure of the 

endogenous p21 gene. Distal p53 binding elements and proximal GC-rich elements 

are indicated. Arrows indicate binding positions of the qChIP oligonucleotide primers. 

Tsp (+1), transcription start site. (B, C) qChIP assay of binding competition between 

p53 and FLAG-ZBTB5 on the distal p53 binding regions of endogenous p21 in 

HEK293A cells. ZBTB5 competed with p53 in binding to the elements. The cells 

were transfected with increasing amounts (0-6 μg) of FLAG-ZBTB5 expression 

vector. (D) qChIP assay of FLAG-ZBTB5 and Sp1 binding on the proximal promoter 

region of endogenous p21 in HEK293A cells. ZBTB5 increases Sp1 binding to the 

elements. The cells were transfected with increasing amounts of FLAG-ZBTB5 

expression vector (0-6 μg). Antibodies against FLAG tag , p53, Sp1, and IgG were 

used in ChIP assays.   
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5.  ZBTB5 interacts with p53 or Sp1, and the interaction may be important in 

the transcriptional regulation of p53 or Sp1 target genes. 

Because transcription repression or activation can be achieved by protein-protein 

interaction between transcription factors, we investigated whether ZBTB5 interacts 

with either p53 or Sp1. Co-immunoprecipitation and Western blot assays of 

HEK293A cells transfected with FLAG-ZBTB5 expression vector revealed that 

ZBTB5 and p53 or Sp1 interact with each other in vivo (Fig. 5, B and E). The GST 

fusion protein pulldown assay also showed that the GST-ZFZBTB5 domain and 

GST-POZZBTB5 interacted with p53 or Sp1 in vitro, suggesting that ZBTB5 interact 

directly with p53 or Sp1 (Fig. 5, C and F).  

To address the functional significance of such protein-protein interactions, we 

examined whether ZBTB5 affected transcription activation by either p53 or Sp1 on 

artificial test promoter constructs designed to analyze transcription activation by the 

two factors. In the case of p53, as shown in the above, transcriptional activation of 

p21 by p53 was repressed by ZBTB5 (Fig. 3 A and B). Furthermore, transcription of 

the p53- responsive gene, pGL2-6x(p53RE)-Luc, which contains the p53 binding 

elements of p21, was repressed by ZBTB5 in Saos-2 cells (Fig. 3C). We observed 

similar results with pG13-Luc with 13 putative p53 binding sites (Fig. 5A). The data 

potentially indicate that the protein interactions may contribute to inhibiting 

transcriptional activation by p53, probably by decreasing p53 binding on the distal 

p53 binding elements (Fig. 4, B and C).  
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In contrast to p53 ZBTB5 synergistically activated transcription on the test 

promoter pG5-5x(GCbox)-Luc, indicating that the Sp1-ZBTB5 interaction might be 

an important in synergistic transcription activation (Fig. 5D). This discovery is in line 

with transcription activation of the short proximal promoter of p21 (-131 bp) by 

ZBTB5 (Fig. 2B) and increased Sp1 binding by ZBTB5 (Fig. 4D) on the proximal 

promoter of endogenous p21 gene, which is loaded with six Sp1 binding GC boxes. 
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Figure 5. ZBTB5 interacts directly with p53 and inhibits transcription activation 

of pG13-Luc by p53. (A) Transcriptional activation of pG13-Luc by ectopic p53 can 

be repressed by ZBTB5 in Saos-2 cells. pG13 contains 13 copies of the p53-binding 

element. (B) Co-immunoprecipitation of ZBTB5 and p53. HEK293A cell lysates 

were immunoprecipitated using anti-ZBTB5 antibody and analyzed by Western 

blotting using anti-p53 antibody. The lysates were also immunoprecipitated by 

anti-p53 antibody and analyzed by Western blotting using anti-ZBTB5 antibody. (C) 

In vitro GST-fusion protein pull-down assays. Left, SDS-PAGE gel of recombinant 

GST, GST-ZFZBTB5, and GST-POZZBTB5 proteins. Right, Recombinant GST, 

GST-POZZBTB5, or GST-ZFZBTB5 was incubated with [35S]-methionine-labeled 

p53, pulled down, and resolved by 10% SDS-PAGE. The gel was then exposed to 

x-ray film. Input, 10% of the p53 added in the binding reactions. (D) Transcriptional 

activation of  pG5-5x(GC-box)-Luc by Sp1 can be synergistically activated by 

ZBTB5 in HEK293A. pG5-5x(GC-box)-Luc contains 5 copies of the putative Sp1 

binding sites. (E) Co-immunoprecipitation of ZBTB5 and Sp1. HEK293A cell lysates 

were immunoprecipitated using anti-ZBTB5 antibody and analyzed by Western 

blotting using anti-Sp1 antibody. The lysates were also immunoprecipitated by 

anti-Sp1 antibody and analyzed by Western blotting using anti-ZBTB5 antibody. (F) 

In vitro GST-fusion protein pull-down assays. Recombinant GST, GST-POZZBTB5, 

and GST-ZFZBTB5 was incubated with [35S]-methionine-labeled Sp1, pulled down, 

and resolved by 10% SDS-PAGE. The gels were then exposed to x-ray film. Input, 
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10% of the labeled Sp1 added in the binding reactions. 

 

6. The POZ domain of ZBTB5 interacts with the corepressor-HDAC complex to 

deacetylate histones Ac-H3 and Ac-H4 at the proximal promoter of endogenous 

p21. 

ZBTB5 repressed transcription by direct binding competition with p53 at the 

distal p53 binding elements (Figs. 1B, 2B, 3, A and B, and Fig. 4, B and C). 

Transcriptional repressors, including some POZ-domain proteins like PLZF and 

BCL-6, often repress transcription through interaction with corepressors such as 

SMRT, NCoR, BCoR, and mSin3A. Mammalian two-hybrid assays in HEK293A cells 

using pG5-Luc, pGal4-POZZBTB5, and pVP16-corepressor fusion protein expression 

vectors demonstrated that the POZ domain interacted with SMRT, BCoR, and NCoR 

(Fig. 6A). Co-immunoprecipitation and Western blot analysis of HEK293A cell 

extracts or HEK293A cell extracts transfected with FLAG-ZBTB5 expression vector 

using anti-SMRT co-repressor and anti-HDAC3 antibodies revealed that ZBTB5 

interacted with BCoR, NCoR, SMRT, and HDAC3 in vivo (Fig. 6B), indicating that 

ZBTB5 may inhibit transcription on the p21 proximal promoter by interacting with 

the corepressor- HDAC complex via its POZ domain. In addition, GST fusion protein 

pulldown assays using the recombinant GST-POZZBTB5 protein and in vitro 

translated [S35] methionine labeled co-repressor polypeptides showed that the POZ 

domain of ZBTB5 can interact directly with SMRT, BCoR, and NCoR (Fig. 6C).     
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Corepressor complexes recruited by transcriptional repressors often contain 

HDAC proteins, and ZBTB5 fits this pattern. These HDACs deacetylate the histones 

of nearby nucleosomes to repress transcription. Treatment of HEK293A cells with the 

HDAC inhibitor trichostatin A after co-transfection with pG5-Luc, and pGal4 

-POZZBTB5 significantly affected transcriptional repression by the POZ domain and 

resulted in a significant increase in transcription (Fig. 6D). These data implicate the 

involvement of HDACs in transcriptional repression by ZBTB5.   

Corepressor-HDACs recruited by ZBTB5 may deacetylate the histones of nearby 

nucleosomes around the proximal promoter. Accordingly, we used ChIP to examine 

whether the acetylation status of histones H3 and H4 at the proximal promoter of the 

endogenous p21 gene was altered by ZBTB5-corepressor-HDACs complexes in 

HEK293A cells transfected with FLAG-ZBTB5 expression vector. The complex 

significantly decreased acetylated histones H3 and H4 at the proximal promoter of 

p21 by 40–65% (Fig. 6E). 
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Figure 6. The POZ domain of ZBTB5 interacts directly with corepressors SMRT, 

NCoR, and BCoR. And ZBTB5-corepressor-HDAC complexes deacetylate 

histones Ac-H3 and Ac-H4. (A) Mammalian two-hybrid assays of protein-protein 

interactions between the POZ-domain and corepressor proteins. HEK293A cells were 

transfected with pG5-Luc, pGal4-POZZBTB5, and pVP16-corepressor expression 

plasmids and luciferase activity was measured. (B) Co-immunoprecipitation of 

ZBTB5, BCoR, NCoR, SMRT, and HDAC3. Cell lysates prepared from HEK293A 

cells or HEK293A transfected with FLAG-ZBTB5 expression vector were 

immunoprecipitated using anti-FLAG or ZBTB5 antibody and analyzed by Western 

blotting using anti-Myc-BCoR, NCoR, SMRT and HDAC3 antibodies. (C) In vitro 

GST-fusion protein pull-down assays. Recombinant GST or GST-POZZBTB5 was 

incubated with [35S]-methionine-labeled corepressors, pulled down, and resolved by 

10% SDS-PAGE. The gels were then exposed to x-ray film. Input, 10% of the 

corepressors added in the binding reactions. (D) TSA treatment derepressed 

transcriptional repression of pG5-Luc by the Gal4-POZ ZBTB5 domain. Plasmid 

mixtures of pG5-Luc and the pGal4-POZZBTB5 expression plasmid were transiently 

co-transfected into HEK293A cells. TSA treatment derepressed transcription of the 

reporter gene, implicating the involvement of HDACs in transcriptional repression by 

ZBTB5. (E) qChIP assays of histone modification at the proximal promoter of the 

endogenous p21 gene using antibodies against Ac-H3 and Ac-H4. Cells were 

transfected with FLAG-ZBTB5 and immunoprecipitated with the indicated antibodies, 
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IgG, Ac-H3, or Ac-H4. ZBTB5 deacetylated histones Ac-H3 and Ac-H4 at the 

proximal promoter.  

 

7. ZBTB5 stimulates cell proliferation and increases the number of cells in 

S-phase  

ZBTB5 potently repressed transcription of p21, which is a major regulator of cell 

cycle arrest. HEK293A cells transfected with ZBTB5 expression vector were 

analyzed for cell cycle progression by FACS. ZBTB5 stimulated cell cycle 

progression and increased the number of HEK293A cells in S phase (21.3% in control 

versus 31.2% in HEK293A-ZBTB5) (Fig. 7A). Knockdown of endogenous ZBTB5 

mRNA by siZBTB5 RNA resulted in a decrease in the number of cells in S-phase 

(31.0% in control versus 24.6% in HEK293AZBTB5) and a concomitant increase in 

the number of cells in the G0-G1 phases (Fig. 7B). MTT assays showed the 

overexpression of ZBTB5 significantly increased cell proliferation, and knockdown 

of ZBTB5 mRNA by siRNA decreased cell proliferation in HEK293A cells (Fig. 7, C 

and D). Overall, our data suggest that ZBTB5 potently stimulates cell growth and 

proliferation and may be one of the major regulators of cell proliferation by regulating 

p21 gene expression. 
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Figure 7. ZBTB5 stimulates cell proliferation and increases the number of cells 

in S-phase. (A) FACS analysis of cell cycle progression. HEK293A cells were 

transfected with ZBTB5 expression vector or control vector, cultured, and stained 

with propidium iodide. Cell proliferation was measured by FACS. Alternatively, the 

cells were transfected with siRNA against ZBTB5 mRNA and cell cycle progression 

was analyzed. N.C., scrambled siRNA negative control. (B) MTT assay of HEK293A 

cells grown for 1, 2, 3, and 4 days. The cells were transfected with either control 

pcDNA3 vector or pcDNA3-FLAG-ZBTB5 expression vector and analyzed for cell 
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growth. Alternatively, the cells were treated with either negative control siRNA or 

siZBTB5 RNA. All assays were performed in triplicate. Error bars are included, but 

are too tight to see. 
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Figure 8. Hypothetical model of transcriptional regulation of cell cycle arrest 

gene p21 by ZBTB5. (A) p53 pathway and ZBTB5 targets. ZBTB5 represses 

transcription of the HDM2 and p21 genes. Solid line with arrowhead (→), 

transcriptional activation; solid line with ┴, transcriptional repression. Solid line with 

double arrowhead (<->), molecular interaction. (B) Hypothetical model of 

transcriptional repression of p21 by ZBTB5 under three different cellular conditions. 

ZBTB5 represses transcription of cell cycle arrest gene p21 by binding to the two 

distal p53 binding elements by competition with p53. ZBTB5 also binds to the 

proximal Sp1 binding GC-box 5/6, with an unclear function in the transcriptional 

repression of the endogenous p21 gene by ZBTB5. ZBTB5 recruits 

co-repressor–HDAC complexes, which deacetylate histones Ac-H3 and Ac-H4 at the 

proximal promoter to repress transcription. Tsp (+1), transcription start site. ZF, 

zinc-finger DNA binding domain. x, transcription repression. 
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Supplement Figure 1. ZBTB5 is a POZ-domain Krüppel-like zinc finger (POK) 

protein. Nucleotide and amino acid sequences of the ZBTB5 protein (GenBank 

Accession NP_055687.1). ZBTB5 is composed of 677 amino acids and contains a 

N-terminus POZ domain (a.a. 1-123, solid underline) and two zinc fingers, one 

typical C2H2 and one atypical C2HC types in the C-terminus (a.a. 613-677, dotted 

underline region with circles). 
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Supplement Figure 2. (A) Structures of the promoter-luciferase gene constructs of 

the p53 pathway tested in Figure 1A. Promoters of ARF, HDM2, p53, and p21 were 

fused with the luciferase gene of the pGL2-basic vector. Binding sites for 

transcriptional factors are indicated. +1, Tsp, transcriptional start site. HDM2(P2), 

p53-dependent promoter 2 of HDM2. (B) RT-PCR analysis of total RNA isolated 

from HEK293A and HCT116 cells transfected either with control adenovirus (dl324) 

or recombinant adenovirus (dl324-ZBTB5) overexpressing ZBTB5. (C) RT-PCR 

analysis of total RNA isolated from HEK293A cells transfected with either negative 

control scrambled siRNA or siZBTB5 RNA. 



 44

 
Supplement Figure 3. (A) A diagram showing the homology of amino acid 

sequences of mammalian ZBTB5 proteins. All mammalian ZBTB5s show a sequence 

homology greater than 92%. (B) Tissue distribution of mouse Zbtb5 mRNA 

expression. RT-PCR analysis of cDNA prepared from total RNA of male FVB mouse 

tissues. (C) Immunocytochemistry of human FLAG-ZBTB5 in HEK293A cells 

transfected with FLAG-ZBTB5 expression vector. ZBTB5 was detected in the 

nucleus. 
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IV. DISCUSSION 

 

We found that ZBTB5 repressed transcription of the p21 and HDM2 genes. Our 

investigation on transcription regulation of the cell cycle arrest gene p21 by ZBTB5 

revealed that p21 is the direct target of ZBTB5. ZBTB5 regulates transcription of the 

p21 gene through a molecular mechanism that involves p53, and the two upstream 

p53-responsive elements. ZBTB5 bound to distal p53 binding elements by competing 

with p53, and repressed the contribution of p53 to transcription. The site has been 

shown to mediate the induction of p21 gene expression by genotoxic stresses. 

Accordingly, DNA damaging signals that result in p53 medicated induction of p21 

gene can be blocked by ZBTB5. Overall, these molecular features of ZBTB5 may 

explain how ZBTB5 acts as a regulatory protein of cell growth and proliferation and, 

potentially in oncogenesis, by inhibiting p21 transcription. 

ZBTB5 binds to the proximal Sp1 binding GC box 5/6, which is a direct target of 

regulation by Sp1 and Sp-family members. Intriguingly, ZBTB5 binding to this 

particular site increased transcription activation of short promoter by Sp1, although in 

the much longer promoter context, ZBTB5 repressed transcription of p21. In line with 

this finding, ChIP assays showed that ZBTB5 significantly increases Sp1 binding to 

the proximal promoter region, which may explain transcription activation on the short 

proximal promoter.  
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Protein interaction between proximal promoter-bound Sp1 and distal p53 is 

important in the transcriptional activation of the p21 gene, even in the basal level of 

p53. It appears that the presence of p53 and p53 binding element affects the role of 

ZBTB5 either as a transcription repressor or activator of the p21 gene. Although 

ZBTB5 represses transcription of p21 in the p53-/- HEK293A and HCT116 p53-/- 

cells, ZBTB5 stimulates transcription significantly, even on the longer p21 promoter 

construct or endogenous p21 gene in HCT116 p53-/- cells, probably by the molecular 

interaction between ZBTB5 and Sp1 on the proximal promoter.3 ZBTB5 may disrupt 

protein- protein interaction by Sp1 and p53 on the p21 gene to repress transcription. 

This observation raised the possibility that ZBTB5 is a unique POK family 

transcription regulator that can act either as a positive or negative regulator of p21 

transcription depending on the cellular p53 status, i.e. mutation, absence, or presence. 

Based on our data, we propose a hypothetical model of transcriptional regulation of 

p21 by ZBTB5 in p53-positive cells  (Fig. 8). Under normal cellular conditions 

where p53 expression is low and ZBTB5 expression is absent or lower than Sp1, the 

p21 gene is expressed in low basal levels driven by Sp1, and cells proliferate normally. 

Challenge with a genotoxic stress induces production of tumor suppressor p53, which 

binds to the distal p53 responsive elements and activates transcription of p21 by 

interacting with the Sp1 bound at the proximal GC boxes. The induced p21 arrests 

cell cycle progression, allowing cells to repair DNA damage. In cells without DNA 

damage where ZBTB5 expression is high, ZBTB5 represses transcription directly by 
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binding to both the distal p53 binding elements and proximal GC-box 5/6. ZBTB5 

bound to the regulatory elements recruits the corepressor-HDAC complex, causing 

deacetylation of histone Ac-H3 and Ac-H4 around the proximal promoter and 

repressing transcription. 

Whencells are under genotoxic stress and ZBTB5 expression is high or in 

cancerous tissues that have high levels of both p53 and ZBTB5, ZBTB5 represses 

transcription directly by binding to both the distal p53 binding elements and proximal 

GC-box 5/6. Although p53 expression is also highly induced under these conditions, 

p53 has to compete with ZBTB5 to bind to the distal p53 binding elements and is also 

affected by molecular interactions between p53 and ZBTB5 that further impede 

binding. Although p53 is present, transcription of p21 is potently repressed by ZBTB5. 

Cells proliferate without cell cycle arrest, mutations accumulate, and cells are likely 

to undergo oncogenic transformation (Fig. 8). These series of molecular events may 

be important in the oncogenesis of retinoblastoma and muscle cancer, where 

expression of ZBTB5 is high. 

Although it can bind to the distal p53 binding elements to repress transcription of 

p21, ZBTB5 also has characteristics of Sp1 family Kru¨ppel-like zinc finger proteins 

and binds to some of the GC boxes that are similar to the GC boxes recognized by 

Sp1. Our findings suggest that some GC boxes recognized by Sp1 may be 

transcriptional activation targets of ZBTB5 and that Sp1-ZBTB5 binding competition 

or enhancement may be a general mechanism of transcriptional regulation of some 
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ZBTB5 target genes. 

Molecular interactions occurring both in the proximal and distal promoter of the 

p21 gene are unique and may also be applicable to the transcription regulation of 

other genes such as HDM2. Indeed, the HDM2 gene has one binding site for p53 in 

the P2 promoter region and is transcriptionally activated by p53. In contrast, p21 has 

two p53 binding elements. The difference in the binding site number may explain 

why ZBTB5 repressed transcription of p21 more potently. 

In our laboratory we have observed that other POZ-domain transcription factors 

such as FBI-1 (Pokemon), ZBTB2, and PLZF repress transcription of p21 by acting 

on the distal p53 binding elements and proximal Sp1 binding GC-box.4 The common 

theme of transcriptional regulation of cell cycle regulator gene p21 by POZ-domain 

class transcription factors is that distal p53 binding elements are the primary target 

sites of transcription repression, which is eventually conveyed into the histone 

deacetylation of the proximal promoter. 

Although the molecular events involving ZBTB5 on the p53 binding elements are 

relatively straightforward, their action in the short proximal promoter seems more 

complex, probably because Sp1 family members, MIZ-1, c-Myc, BCL-6, FBI-1, and 

ZBTB5 are integrated into the region to either activate or repress transcription. 

ZBTB5 activates transcription by acting on the short proximal promoter. ZBTB5 may 

act as transcription activator in the region by interacting with transcription regulators 

such as Sp family members and MIZ-1 that can bind to the juxtaposed regulatory 
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elements. The physiological importance of the transcription activation of the short 

p21 promoter (-131 bp) by ZBTB5 is unclear at present because ZBTB5 apparently 

represses endogenous p21 gene transcription. Taken together, our findings indicate 

that ZBTB5 may play a critical role in regulating important biological processes such 

as DNA repair and cell growth, differentiation, and apoptosis by regulating the 

transcription of p21 and HDM2 of the p53 pathway. 
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ABSTRACT (in Korean) 

 

새로운 POK 계 발암 유발 후보 단백질 ZBTB5의 세포주기 억제 p21 

유전자의 발현조절 기전 규명 

<지도교수 허 만 욱>  

 

연세대학교 대학원 의과학과 

 

고 동 인 

   

인간 게놈 프로젝트를 통해 알려지게 된 많은 유전자들은 최근 기능 

동정을 중심으로 많은 연구가 진행되고 있다. 이 계열의 단백질은 

단백질-단백질간의 상호작용 모티프로 작용하는 BTB/POZ domain을 

가지며 다양한 세포기능 조절에 관여한다.  

    세포 기능조절 단백질은 수십-수백 개의 아미노산으로 구성된 조각 

(모듈: module)로 구성되어 있으며, 모듈을 중심으로 일어나는 

단백질-단백질 상호작용에 의하여 고유의 기능을 발휘한다. 주로 

POZ-도메인을 갖는 단백질들은 세포 죽음, 염색체 구조조절, 암 발생, 

유전자 발현조절 등에 관련되어 있다. 이에 우리 팀은 BTB/POZ 도메인중 

하나인 ZBTB5를 분리, 동정하였으며, RT-PCR을 통해 생쥐에서 심장과 
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 갈색지방을 제외한 거의 모든 조직에서 ZBTB5가 발현되고 있음을 

확인하게 되었다. SAGE 분석 결과 안암과 근육암에서 ZBTB5의 발현량이 

현저하게 증가되어 있음을 알 수 있다. 최근 BTB/POZ 도메인 단백질 중 

하나인 FBI-1이 세포주기를 촉진시킨다는 보고로 proto-oncogene으로서 

주목을 받고 있는데, 우리는 아마도 ZBTB5 역시 세포주기에 관계되는 

Arf-Mdm2-p53-p21의 promoter에 영향을 끼칠 것으로 예상하고 

luciferase assay를 실시하였다. 흥미롭게도 p53 경로의 하위단계 

조절인자인 p21의 전사만 억제하는 것을 관찰하였다. 이는 상위단계의 

조절여부와는 상관없이 하위단계 인자를 조절하게 때문에 세포주기 조절에 

기여하는 바가 크다고 판단하여 p21의 전사를 억제 하는 ZBTB5의 

작용기전을 연구하였다.     

ZBTB5 는 직접적으로 세포주기 조절인자인  p21 유전자 프로모터의 

근접조절 부위의 GC Box 5/6 번 자리와 Distal 부위의 p53 결함부위에 

징크핑거를 통하여 결합하여 p21 의 발현을 감소시킴을 GST pull- down , 

EMSA, ChIP을 통하여 밝히었다. 또한, 기존의 알려진 p53과 Sp1 과의 

관계는 ChIP(Chromatin Immunoprecipitation Assay)를 통해 p53과는 

결합자리를 두고 경쟁하며, Sp1의 결합은 증가시킴을 알 수 있었다. 이와 

같은 방법으로 ZBTB5는 POZ와 징크핑거 도메인을 통하여 corepressor 

히스톤 디아세틸 복합체 중 BCoR, NCoR 그리고 SMRT와 상호작용을 

하는 것으로 나타났고 최종적으로 p21 프로모터 근접조절 부분의 

히스톤을 디아세틸화 시킴으로써 전사를 억제시킨다. 이러한 전사 
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억제효과가 세포기능 조절에 어떠한 영향을 미치는가를 관찰하기 위하여 

MTT 와 FACS 분석을 실시하였다. 그 결과 ZBTB5가 세포성장과 

세포주기의 조절에 중요하며 특히, 세포주기중 S 기의 세포수가 현저히 

증가함을 관찰하였다. 

 결과적으로, ZBTB5는 세포주기를 멈추게 하는 p21 의 발현을  

감소시킴으로써 세포의 증식을 촉진할 수 있는  원암 유전자의 성격을 

가지고 있음을 발견하였다 

 

 핵심되는 말 : BTB/POZ, 암,  p53,  p21,  ZBTB5,  세포주기, 전사인자, 

원암 유전자 

 


